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Abstract
Background N6-methyladenosine  (m6A) is the most common internal RNA modification and is involved in regulation 
of RNA and protein expression. AlkB family member 5 (ALKBH5) is a  m6A demethylase. Given the important role of  m6A 
in biological mechanisms,  m6A and its regulators, have been implicated in many disease processes, including cancer. 
However, the contribution of ALKBH5 to invasive breast cancer (BC) remains poorly understood. The aim of this study 
was to evaluate the clinicopathological value of ALKBH5 in BC.
Methods Publicly available data were used to investigate ALKBH5 mRNA alterations, prognostic significance, and asso-
ciation with clinical parameters at the genomic and transcriptomic level. Differentially expressed genes (DEGs) and 
enriched pathways with low or high ALKBH5 expression were investigated. Immunohistochemistry (IHC) was used to 
assess ALKBH5 protein expression in a large well-characterised BC series (n = 1327) to determine the clinical significance 
and association of ALKBH5 expression.
Results Reduced ALKBH5 mRNA expression was significantly associated with poor prognosis and unfavourable clinical 
parameters. ALKBH5 gene harboured few mutations and/or copy number alternations, but low ALKBH5 mRNA expression 
was seen. Patients with low ALKBH5 mRNA expression had a number of differentially expressed genes and enriched path-
ways, including the cytokine-cytokine receptor interaction pathway. Low ALKBH5 protein expression was significantly 
associated with unfavourable clinical parameters associated with tumour progression including larger tumour size and 
worse Nottingham Prognostic Index group.
Conclusion This study implicates ALKBH5 in BC and highlights the need for further functional studies to decipher the 
role of ALKBH5 and RNA  m6A methylation in BC progression.
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1 Introduction

Breast cancer (BC) is the most commonly diagnosed cancer and the leading cause of cancer related mortality amongst 
women [1]. It is a heterogeneous group of diseases with distinct clinical, morphological, and molecular features between 
tumours that aid disease classification and inform treatment decision making [2].

N6-methyladenosine  (m6A) is the most abundant internal mRNA modification and is dynamically regulated by a mul-
tiprotein complex of ‘writers’, ‘erasers’, and ‘readers’ that methylate, demethylate, and interpret the  m6A mark, respectively 
[3]. The RNA methyltransferase complex is made up of methyltransferase-like 3 (METTL3), METTL14, and multiple adapter 
proteins [4]. AlkB family member 5 (ALKBH5) and fat-mass and obesity-associated protein (FTO) are currently the only 
identified  m6A demethylases [5, 6].

The  m6A modification is involved in a diverse set of mRNA transcription, splicing, translation, and stability functions 
[6–11]. Evidence is emerging that implicates the  m6A epitranscriptomic modification in a variety of biological processes, 
including carcinogenesis [12–20]. Recent studies have also associated  m6A regulators, including ALKBH5, in BC develop-
ment, progression, and prognosis [21–27]. In BC, it has been reported that ALKBH5 expression is regulated by hypoxia 
inducible factors (HIFs), leading to increased expression of NANOG, thereby promoting the BC stem cell phenotype 
[28, 29]. ALKBH5 expression has also been shown to be increased in immortalised and transformed breast cell lines and 
tumour samples, and implicated in migration, invasion, and metastasis [22, 23, 27, 30–32]. However, the role of ALKBH5 
in BC remains unclear. Therefore, this study aimed to investigate the relationship between ALKBH5 expression and 
clinicopathological factors in a large patient cohort and to relate this to mechanisms involving differential global gene 
expression identified using the TCGA-BRCA cohort of invasive BC cases stratified based on ALKBH5 mRNA expression.

2  Materials and methods

2.1  Cell line culture conditions

Human mammary epithelial cells (HMEC), MCF10A, MCF7, T-47D, MDA-MB-453, and MDA-MB-231 breast cells were 
utilised. HMEC, MCF-7, T47D, MDA-MB-231, and MDA-MB-453 were generously provided by Professor Lorraine Gudas 
(Weill Cornell Medicine). The MCF10A were a generous gift from Dr Cinzia Allegrucci (University of Nottingham). BC cell 
lines MCF7, T-47D and MDA-MB-231 were grown in phenol red containing RPMI-1640 medium with L-glutamine (Gibco) 
supplemented with 10% foetal bovine serum (FBS) (Sigma-Aldrich), 1% penicillin–streptomycin–glutamine (Gibco), and 
1 mM sodium pyruvate (Gibco). MDA-MB-453 were maintained in DMEM media (Gibco) supplemented with FBS (Sigma-
Aldrich) and 1% penicillin–streptomycin–glutamine (Gibco). HMEC cells grown in HuMEC media with the addition and 
HuMEC supplements (Gibco). MCF10A were grown in HuMEC media with HuMEC supplements (Gibco) and 100 ng/ml 
cholera toxin (Sigma-Aldrich). All cells were cultured at 5%  CO2 at 37 °C.

2.2  Gene expression analysis

Cells were harvested for RNA using the GenElute™ Mammalian Total RNA Miniprep Kit (RTN70-1KT, Sigma-Aldrich), fol-
lowing manufacturer’s instructions. The qScript cDNA Synthesis Kit was used for complementary DNA (cDNA) synthe-
sis (95047-100, Quantabio). For mRNA expression analysis, quantitative real-time polymerase chain reaction (qRT-PCR) 
was performed using ALKBH5 (Hs00539502_m1) and β-actin (Hs01060665_g1) Taqman probes (ThermoScientific) with 
 LightCycler® 480 Probes Master (Roche Diagnostics) in a qRT-PCR machine (Bio-Rad) and the relative mRNA expression 
was determined by the Pfaffl method, as previously described [33].

2.3  Western blotting

Cell lysates in final sample buffer (100 mM Tris–HCl pH 6.8, 4% SDS and 20% glycerol) were used to assess protein expres-
sion of ALKBH5 in cell lines using western blotting (n = 3). The membrane was blocked using 5% bovine serum albumin 
or milk for 1 h at room temperature and probed with ALKBH5 antibody overnight at 4 °C (1:5000; Novus Biologicals, 
NBP1-82188) or β-actin antibody (1:10,000; Invitrogen, MA515739). For secondary antibodies, goat IgG HRP anti-rabbit 
or goat IgG HRP anti-mouse (1:10,000; Abcam, ab6721 and ab97023) were used for 1 h at room temperature, the signal 
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was detected using Amersham™ ECL™ Prime reagent (GE Healthcare) and image captured using a ChemiDoc™ MP Imag-
ing System (Bio-Rad). Full uncropped western blots are displayed in Supplementary Fig. 1.

2.4  Patient cohort

This study used a well-characterised retrospective cohort of patients diagnosed with primary invasive BC (Stage I–III, age 
(55, 20–87), tumour size (1.7250, 0.2–8)) at Nottingham University Hospitals NHS Trust—City Hospital Campus between 
1998 and 2006 (n = 1327), as previously described [34]. The full patient demographics are described in Supplementary 
Table 1. This study was reviewed and approved by the Nottingham Research Ethics Committee, (approval # REC202313), 
and the research ethics committee of the University of Nottingham School of Veterinary Medicine and Science (approval 
# 2803 190814). The General Data Protection Regulation (GDPR) was applied, and informed consent obtained. The Hel-
sinki Declaration of Human Rights was strictly observed. The Nottingham Prognostic Index (NPI) and hormone receptor 
status were used to inform patient management. Patients within the NPI excellent prognostic group (score ≤ 3.4) did not 
receive adjuvant therapy, but those patients with NPI > 3.4 received tamoxifen if ER-positive and were able to receive 
chemotherapy if ER-negative. Chemotherapy regimen included cyclophosphamide, methotrexate, and 5-flurouracil 
(CMF). Outcome data includes breast cancer specific survival (BCSS), disease free interval (DFI), and distant metastasis 
free survival (DMFS) [35].

2.5  Tissue microarrays and immunohistochemical staining

The cohort was arrayed using a tissue microarray (TMA) Grand Master (3D Histech), as previously described [36]. Immu-
nohistochemical (IHC) staining was performed on 4-μm thick TMA sections using the Novolink polymer detection system 
(Leica Biosystems). Heat-induced antigen epitope retrieval was performed in citrate buffer (pH 6.0) for 20 min using a 
microwave oven. Sections were incubated with the primary ALKBH5 antibody (1:100; Novus Biologicals, NBP1-82188) 
diluted in Leica antibody diluent (Leica Biosystems) at room temperature for 1 h. Slides were washed and incubated 
with post primary block for 30 min. Novolink polymer was applied for 30 min followed by application of 3, 3′-diamin-
obenzidine (DAB) chromogen for 5 min. Slides were counterstained with Novolink haematoxylin for 6 min, dehydrated, 
and cover slipped.

2.6  Scoring of ALKBH5 protein expression

Stained TMA sections were scanned using a digital scanner (NanoZoomer, Hamamatsu Photonics) at × 20 magnification. 
High resolution images were viewed using Xplore (Phillips Pathology) to score ALKBH5 expression within the tumour 
cells. A modified histochemical score (H-score) was used to evaluate stained cells [37]. Staining intensity was assessed 
as follows: 0, negative; 1, weak; 2, moderate; 3, strong, and the percentage of the positively stained tumour cells was 
estimated subjectively. The final H-score was calculated by multiplying the percentage of positive cells (0–100) by the 
intensity (0–3), producing a total range of 0–300. Scoring was assessed independently by two researchers and an intra-
class concordance of > 0.8 was confirmed.

2.7  ALKBH5 transcriptomic data

The cBioPortal for Cancer Genomics [38, 39] was used to investigate ALKBH5 copy number and mRNA expression altera-
tions in BC patients utilising The Cancer Genome Atlas (TCGA) Firehose Legacy (n = 1108) [40] and the Molecular Taxon-
omy of Breast Cancer International Consortium (METABRIC) (n = 2509) [41, 42] cohorts. Kaplan Meier Plotter (KM-Plotter) 
was used to investigate the prognostic value of ALKBH5 for overall survival (OS), relapse free survival (RFS), and distant 
metastasis free survival (DMFS) [43] and the Breast Cancer Gene-Expression Miner v4.7 (bc-GenExMiner v4.7) database 
used to investigate ALKBH5 expression and clinical factors [44]. The UCSC Xena browser [45] was used to access the GDC 
TCGA BC RNA-sequencing dataset to determine ALKBH5 expression in normal (n = 113), primary tumour (n = 1097), and 
metastatic samples (n = 7). Utilising the METABRIC dataset, mRNA expression in primary patients were dichotomised 
into low and high ALKBH5 expression and correlated with clinical factors. Differential gene expression analysis was 
conducted on the primary tumour data from TCGA data set using DESeq2. Samples were dichotomised by quartile into 
lowest (< 4804.337) and highest (> 6911.127) expression of ALKBH5 and significantly differentially expressed genes (DEGs) 
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identified (fold change ± 2 and FDR-corrected p-value < 0.05). WEB-based GEne SeT AnaLysis Toolkit (WebGestalt) [46] 
was used to investigate over representation analysis and enrichment of KEGG pathways with the up-and down-regulated 
DEGs.

2.8  Statistical analysis

Statistical analysis was performed using SPSS 24.0 statistical software (SPSS Inc.) or GraphPad Prism 8 (Dotmatics). A t-test 
was used to assess ALKBH5 mRNA expression in different cell lines (n = 5/6). ALKBH5 protein expression was dichotomised 
into low and high expression using the X-tile software, used to identify the optimal cut-off based on the association 
of the protein expression and patient outcome (BCSS) [47]. This has resulted in the following, for nuclear (0–300; low 
expression ≤ 135, high expression > 135), cytoplasmic (0–300; low expression ≤ 90, high expression > 90), and for nuclear 
and cytoplasmic staining combined (0–300 calculated but the scores were added together and dived by 2; low expres-
sion ≤ 88, high expression > 88). The chi-square test (χ2) was performed to analyse the relationships between expression 
and categorical variables. Survival curves were analysed by the KM and log rank test. The p-values ≤ 0.05 were considered 
significant. Data is reported in line with the REMARK guidance [48].

3  Results

The basal expression of ALKBH5 was observed across breast cell lines at the mRNA and protein levels (Fig. 1A, B). In the 
TCGA dataset, 46.98% of samples showed ALKBH5 mRNA expression alterations (Fig. 2A). Similarly, 47.71% of samples 
in the METABRIC cohort had ALKBH5 mRNA alterations, the majority of which exhibited low mRNA expression, as com-
pared with expression in the diploid samples (Fig. 2A). The TCGA dataset showed that 1.14% of patients harboured a 
copy number alteration (CNA), with 0.31% being amplification, 0.52% being deep deletion, and 0.31% being mutation 
(Fig. 2B). In the METABRIC cohort, 1.34% of patients had a CNA, with 1.2% being amplification, and 0.14% being deep 
deletion (Fig. 2B). Copy number gain was associated with high ALKBH5 mRNA expression (p < 0.001; Fig. 2C, D and Sup-
plementary Table 2). ALKBH5 expression was lower in metastatic samples as compared to normal tissues (p < 0.05; Sup-
plementary Fig. 2A).

The expression of ALKBH5 was then correlated with survival. Low expression of ALKBH5 was associated with shorter 
OS, RFS, and DMFS (p < 0.05; Fig. 3A–C). In the METABRIC dataset, low ALKBH5 mRNA expression was significantly 
associated with factors pertinent to poor prognosis including larger tumour size, high grade, and higher NPI (p < 0.05; 
Supplementary Table 3). It was also observed that low ALKBH5 expression was associated with shorter BCSS (p = 0.029; 
Supplementary Fig. 2B). Similar results were obtained utilising the bc-GenExMiner (Supplementary Table 4).

Fig. 1  ALKBH5 basal expres-
sion in breast cell lines. A 
ALKBH5 mRNA expression 
in primary human mam-
mary epithelial cells (HMEC), 
non-malignant MCF10A and 
breast cancer MCF7, T-47D, 
MDA-MB-436, and MDA-
MB-231 cell lines (n = 5/6). B 
Western blot showing ALKBH5 
protein is expressed across 
the breast cell lines, β-actin 
was used as a loading control 
(n = 3). *P ≤ 0.05, ***P ≤ 0.001, 
****P ≤ 0.0001 by t-test
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ALKBH5 protein expression in BC patient samples showed a range of staining in both the nuclei and cytoplasm of 
invasive tumour cells (Fig. 4). Supplementary Table 5 shows the association between ALKBH5 nuclear and cytoplas-
mic protein expression separately with clinicopathological parameters. Low ALKBH5 protein expression (combined 
nuclear and cytoplasmic expression) was significantly associated with a number of clinical parameters including larger 
tumour size, higher nodal stage, less tubule formation, presence of vascular invasion, hormone receptor negativity, 
and worse NPI prognostic group (p < 0.05, Table 1). Furthermore, low ALKBH5 protein expression was associated with 
worse prognosis (Fig. 5) and was a significant prognostic indicator, independent of other clinical parameters (Fig. 6, 
Supplementary Fig. 4 and Supplementary Table 6).

Given the evidence suggesting that low ALKBH5 expression is associated with worse outcome, the TCGA-BRCA 
cohort was stratified into low and high ALKBH5 expression, and DEGs identified. A total of 1964 DEGs were identi-
fied, 594 with lower expression, and 1321 more highly expressed in samples with low as compared to high ALKBH5 
expression (Fig. 7 and Supplementary Table 7). Genes higher in tumours with low ALKBH5 expression were signifi-
cantly enriched (FDR < 0.05) in the cytokine-cytokine receptor interaction pathway (Supplementary Table 8). In the 
lower DEGs in tumours with low ALKBH5 expression, 14 KEGG pathways were significantly enriched (FDR < 0.05). 
This included neural related pathways such as neuroactive ligand-receptor interaction, glutamatergic synapse, and 
dopaminergic synapse pathways (Supplementary Table 8).

Fig. 2  Bioinformatic analysis of ALKBH5 in breast cancer datasets. The cBioPortal was used to investigate ALKBH5 mRNA and copy number 
alterations (A-D) in breast cancer patients from the TCGA (Firehose Legacy) and METABRIC datasets
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Fig. 3   Kaplan–Meier plots 
was used to investigate 
ALKBH5 mRNA expression and 
(A) overall survival (n = 626), 
(B) relapse free survival 
(n = 1764), and (C) distant 
metastasis free survival 
(n = 664)
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4  Discussion

Whilst alterations in gene expression in BC have been extensively studied [49, 50], the contribution of covalent mRNA 
modifications such as  m6A is still largely unknown. ALKBH5 is a  m6A RNA demethylase [6], and the role of  m6A com-
ponents in cancer is only just being revealed. Several recent studies reported that reduced ALKBH5 expression in BC 
cell lines decreased viability, migration, invasion and tumour growth and metastasis in mouse models [29, 31, 32]. 
Mechanistically, hypoxia dependant expression of ALKBH5 promotes a BC stem cell phenotype [28, 29]. Despite the 
fundamental importance of  m6A in cancer, the exact clinical relevance of ALKBH5 remains elusive as ALKBH5 protein 
and mRNA expression have been shown to be both increased [23, 31] or decreased [22, 31] in tumours compared 
to normal tissue. High ALKBH5 mRNA expression has previously been associated with ER-positive and PR-positive 

Fig. 4  ALKBH5 immunohis-
tochemical staining in the 
Nottingham Invasive BC 
TMA. A range of staining in 
the nuclear and cytoplasmic 
compartments was observed 
(A–F). Examples of weakly 
stained (A, B), moderately 
stained (C, D), and strongly 
stained (E, F) tumour samples 
are shown
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Table 1  Clinical associations 
with ALKBH5 combined 
protein expression in the 
Nottingham invasive breast 
carcinoma series

Parameters ALKBH5 protein Expression

Low (%) High (%) p-value

Age
 < 50 years 52 (12.5) 364 (87.5) 0.609
 ≥ 50 years 122 (13.5) 780 (86.5)

Tumour size
 < 2 cm 90 (11.6) 688 (88.4) 0.035
 ≥ 2 cm 84 (15.6) 456 (84.4)

Grade
 1 18 (10.2) 158 (89.8) 0.04
 2 59 (11.3) 465 (88.7)
 3 97 (15.7) 521 (84.3)

Stage
 1 91 (11.5) 703 (88.5) 0.012
 2 53 (14.1) 323 (85.9)
 3 30 (20.3) 118 (79.7)

Tubule formation
 1 7 (10.1) 62 (89.9)  < 0.001
 2 32 (8.2) 359 (91.8)
 3 135 (15.7) 723 (84.3)

Pleomorphism
 1 0 (0) 15 (100) 0.315
 2 48 (13.4) 311 (86.6)
 3 126 (13.3) 818 (86.7)

Mitosis
 1 69 (11.5) 533 (88.5) 0.194
 2 37 (13.7) 233 (86.3)
 3 68 (15.2) 378 (84.8)

Multifocality
 No 124 (12.4) 876 (87.6) 0.066
 Yes 50 (15.7) 268 (84.3)

Tumour type
 NST 117 (13.2) 767 (86.8) 0.016
 ILC, including lobular mixed 20 (19.2) 84 (80.8)
 Mixed NST and Iobular 12 (14.8) 69 (85.2)
 Mixed NST and special type 4 (10.5) 34 (89.5)
 Other Special tumour type including Mucinous, papillary, 

micropapillary, cribriform and adenoidcystic carcinoma
1 (11.1) 8 (88.9)

 Metaplastic carcinoma 2 (66.7) 1 (33.3)
 Tubular and tubular mixed 18 (9) 181 (91)

Vascular invasion
 Negative 110 (12) 806 (88) 0.033
 Positive 64 (15.9) 338 (84.1)

Associated DCIS
 Negative 22 (10.9) 179 (89.1) 0.173
 Positive 152 (13.7) 960 (86.3)

LCIS
 Negative 148 (13.1) 983 (86.9) 0.252
 Positive 26 (14.3) 156 (85.7)

Lymph node status
 Negative 91 (11.5) 703 (88.5) 0.015
 Positive 83 (15.8) 441 (84.2)
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patients [31], suggesting that ALKBH5 may have distinct clinical significance depending on BC subtype. To address 
this, our study assessed the clinical association of ALKBH5 in a large well characterised cohort of BC patients.

ALKBH5 mRNA and protein expression was confirmed in malignant and non-malignant breast cell lines. Higher 
ALKBH5 mRNA expression was observed in transformed (MCF10A) and malignant cells compared to non-malignant 
primary HMEC at the mRNA level. ALKBH5 expression was increased, and  m6A decreased, after immortalisation and 

Statistically significant associations are highlighted in bold

Table 1  (continued) Parameters ALKBH5 protein Expression

Low (%) High (%) p-value

ER
 Negative 55 (20.1) 219 (79.9)  < 0.001
 Positive 118 (11.3) 925 (88.7)

PgR
 Negative 91 (17) 444 (83)  < 0.001
 Positive 79 (10.3) 691 (89.7)

HER2
 Negative 144 (12.7) 990 (87.3) 0.12
 Positive 28 (15.5) 153 (84.5)

Triple negative
 No 135 (12.1) 978 (87.9) 0.009
 Yes 36 (19) 153 (81)

Ki67 index groups
 < 15 Hscore 59 (12.1) 430 (87.9) 0.356
 ≥ 15 Hscore 69 (14.1) 422 (85.9)

Molecular classes
 Luminal types combined 118 (11.3) 925 (88.7)  < 0.001
 HER2 enriched 17 (24.3) 53 (75.7)
 TNBC 36 (19) 153 (81)

Nottingham Prognostic Index
 Good prognostic group 41 (9.8) 378 (90.2) 0.006
 Moderate prognostic group 92 (13.6) 582 (86.4)
 Poor prognostic group 41 (18.2) 184 (81.8)

Menopausal status
 Pre 56 (12) 410 (88) 0.135
 Post 118 (13.8) 734 (86.2)

Chemotherapy
 Non treated 92 (11) 745 (89) 0.004
 Treated 82 (17.1) 398 (82.9)

Endocrine therapy
 Non treated 70 (16.4) 357 (83.6) 0.013
 Treated 104 (11.7) 787 (88.3)

Radiotherapy local
 Non treated 50 (13.4) 322 (86.6) 0.206
 Treated 124 (13.1) 822 (86.9)

Radiotherapy LNs
 Non treated 123 (12.1) 894 (87.9) 0.02
 Treated 51 (16.9) 250 (83.1)

Biological therapy
 Non treated 130 (13) 873 (87) 0.34
 Treated 10 (14.3) 60 (85.7)



Vol:.(1234567890)

Research Discover Oncology          (2024) 15:343  | https://doi.org/10.1007/s12672-024-01205-8

Fig. 5  Kaplan–Meier plots was 
used to investigate ALKBH5 
protein expression and (A) 
breast cancer specific survival, 
(B) distant metastasis free 
survival, and (C) disease free 
interval (n = 1318)
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Fig. 6  Forest plots showing 
the hazard ratios and 95% 
confidence interval of the 
multivariate survival analyses 
for ALKBH5 protein expres-
sion in the patient cohort 
for (A) breast cancer specific 
survival, (B) distant metastasis 
free survival, and (C) disease 
free interval. ALKBH5 protein 
expression was an independ-
ent prognostic factor

Fig. 7  The TCGA RNA-seq 
dataset was stratified into low 
and high ALKBH5 expression 
by quartile, and the dif-
ferentially expressed genes 
analysed using DeSeq2. Genes 
with significantly higher 
expression in low ALKBH5 
are coloured red and genes 
significantly lower in low 
ALKBH5 are coloured green. 
Non-significantly differen-
tially expressed genes are 
plotted in black. Significant 
gene expression: FC ± 2 and 
FDR < 0.05
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oncogenic transformation of primary HMEC cells [30, 31], supporting a role for ALKBH5 in the progression and trans-
formation of cells from a non-malignant to a malignant state.

Recent investigations into the prognostic value of ALKBH5 mRNA expression showed no clear association [23, 31, 51]. 
However, a recent study showed high ALKBH5 to be a predictor of poor survival in triple-negative BC (TNBC) patients 
[27]. At the mRNA level, the KM-Plotter, METABRIC dataset, and bc-GenExMiner revealed that low ALKBH5 was associ-
ated with unfavourable outcome. Additionally, the expression of ALKBH5 was found to be lower in metastatic samples 
compared to normal tissues, suggesting that lower ALKBH5 expression could lead to an increased chance of developing 
metastasis. Bioinformatic analysis using the cBioPortal for Cancer Genomics revealed that a small number of patients 
had CNA or mutation of ALKBH5 in both BC datasets investigated. In contrast to these modest changes in copy number, 
a large number of changes in ALKBH5 mRNA expression was observed with the majority of these resulting in lower 
mRNA expression. However, given the limited number of copy loss or loss of function mutations identified to date in BC 
patients, it is likely other mechanisms, such as epigenetic down-regulation of expression may also play a role in reduced 
ALKBH5 expression in BC.

Given the results on the mRNA level, ALKBH5 protein expression was assessed in a large cohort of well characterised BC 
patient samples. Consistent with previous studies in cancer, a range of ALKBH5 staining was identified in the nuclear and 
cytoplasmic compartments of cells [16, 23, 29, 52, 53]. Analysis of ALKBH5 nuclear and cytoplasmic staining separately 
revealed few associations with the clinicopathological parameters. However, low ALKBH5 combined protein expression 
was associated with parameters of poor prognosis in BC and worse survival.

To explore the functional role of ALKBH5 in BC, the TCGA BC primary tumour RNA-sequencing dataset was used to 
identify DEGs with low and high ALKBH5 expression. This revealed 1964 DEGS, 594 down-regulated, and 1321 DEGs up-
regulated when ALKBH5 expression is lower. KEGG pathway revealed up-regulated DEGs were enriched in the cytokine-
cytokine receptor interactions pathway. Cytokines in the tumour microenvironment play an important role in tumour 
pathogenesis, including in promoting metastasis [54]. Immune cells are attracted by oncogenic changes, and these 
cells secrete cytokines, chemokines, and growth factors to which the tumour responds leading to tumour development 
and progression [55]. Thus, suggesting tumours with low ALKBH5 have an increased cytokine signalling causing pro-
survival and pro-metastatic signals. In addition, several studies have investigated the role of  m6A RNA methylation and 
the immune system. The METTL3  m6A methyltransferase is important for T cell homeostasis and differentiation [56], and 
dendritic cell maturation and activation [57]. Recent investigations have implicated  m6A in response to immunotherapy, 
an emerging and increasingly used therapy now being utilised in BC. Regulators of  m6A influence the tumour immune 
microenvironment and response to anti-PD1 therapies [58–62]. Two matrix metalloproteinases (MMPs; MMP-1 and MMP-
20) were identified as significantly up-regulated in tumours with low ALKBH5. MMPs play a pivotal role in cancer cell 
migration, invasion, and metastasis [63]. Multiple studies show MMP-1 plays a role in invasiveness by promoting local 
growth and the formation of metastasis [64–66]. Despite initial reports that MMP-20 expression was restricted to enamel, 
it is expressed in BC cell lines and tissue and promotes invasion in ovarian cancer [67, 68].

Fourteen significantly enriched pathways with down-regulated DEGs in tumours with low ALKBH5 expression were 
identified. The majority were related to neural signalling, including neuroactive ligand-receptor interactions, glutamater-
gic synapse, and dopaminergic synapse. Neuroactive ligand-receptor interaction was the most enriched pathway which 
has been shown to play a role in brain metastasis in TNBC [69]. Dopamine functions in many pathways through binding 
to its receptor. There is currently conflicting evidence on the role of dopamine receptor activation in cancers, includ-
ing in BC [70, 71], however several studies have shown that stimulated dopamine signalling inhibits tumour growth 
[72–74]. Dopamine receptor D2 (DRD2) was down-regulated with low ALKBH5, and studies have shown DRD2 to be up 
or down-regulated in different cancer types [75–77]. A study has also implicated FTO in the control of DRD2 dependant 
signalling [78].

Altered metabolism is a widely accepted hallmark of cancer [79], and increased glutamine and glutamate signalling, 
including through up-regulation of receptors, increases cancer cell growth and proliferation [80]. Enrichment of this 
pathway suggests that glutamate signalling is down-regulated in these tumours. Whilst many studies have associated 
the increase of these receptors to be oncogenic, previous research has found that in cancer cells the inhibition of certain 
glutamate receptor subunits has led to the increased proliferation [81, 82]. Interestingly, glutamate metabotropic receptor 
4 (GRM4) was down-regulated with low ALKBH5 expression. In BC high expression of GRM4 was associated with better 
prognosis in patients and furthermore may act as a tumour suppressor [83].

While this study presents promising findings of the potential role of ALKBH5 in invasive BC at both the mRNA and 
protein level using multiple large well-characterised cohorts. However, we acknowledge some limitations. Firstly, the 
protein expression BC cohort used in this study is a retrospective cohort. While these results were validated on additional 
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publicly available BC transcriptomic cohorts, extending this study to include further patient cohorts, including ethnically 
diverse patient cohorts to further understand the prognostic value of ALKBH5 would be beneficial. In addition, in vitro 
and in vivo studies would allow for further insights to be gained into the mechanistic role of ALKBH5 in BC and provide 
a wider mechanistic context to its clinical relevance. Additionally, utilising a range of cell line and patient derived models 
representing different molecular subtypes of BC would allow for further characterisation of the role of ALKBH5 in BC.

Taken together, this study provides clinical evidence that ALKBH5 plays a role in BC. Low ALKBH5 mRNA and protein 
expression was shown to be associated with unfavourable clinical outcomes and worse prognosis. Further functional 
studies into the role of ALKBH5 and related mechanisms are therefore warranted to determine how reduced expression 
of ALKBH5 may contribute to poorer outcomes in BC. Given ALKBH5 functions as an  m6A demethylase, the association 
of low ALKBH5 with poorer outcomes indicates that unopposed RNA  m6A methylation mediated by METTL3 may pro-
mote BC progression. For this reason, a phase 1 clinical trial of the STC-15 METTL3 inhibitor (NCT05584111) is currently 
underway [84], and extending this to BC is justified [85].
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