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Abstract
Acute myeloid leukemia (AML) is one of the most common hematopoietic malignancies that has a poor prognosis and a 
high rate of relapse. Dysregulated metabolism plays an important role in AML progression. This study aimed to conduct 
a comprehensive analysis of MRGs using TCGA and GEO datasets and further explore the potential function of critical 
MRGs in AML progression. In this study, we identified 17 survival-related differentially expressed MRGs in AML using TCGA 
and GEO datasets. The 150 AML samples were divided into three molecular subtypes using 17 MRGs, and we found that 
three molecular subtypes exhibited a different association with ferroptosis, cuproptosis and m6A related genes. Moreo-
ver, a prognostic signature that comprised nine MRGs and had good predictive capacity was established by LASSO-Cox 
stepwise regression analysis. Among the 17 MRGs, our attention focused on MICAL1 which was highly expressed in many 
types of tumors, including AML and its overexpression was also confirmed in several AML cell lines. We also found that 
the expression of MICAL1 was associated with several immune cells. Moreover, functional experiments revealed that 
knockdown of MICAL1 distinctly suppressed the proliferation of AML cells. Overall, this study not only contributes to a 
deeper understanding of the molecular mechanisms underlying AML but also provides potential targets and prognos-
tic markers for AML treatment. These findings offer robust support for further research into therapeutic strategies and 
mechanisms related to AML, with the potential to improve the prognosis and quality of life for AML patients. Nevertheless, 
further research is needed to validate these findings and explore more in-depth molecular mechanisms.
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1 Introduction

Acute myeloid leukemia (AML) is a cancer that threatens human health by causing malignant clonal proliferation as 
a result of genetic abnormalities [1]. AML occurs worldwide, but the incidence rates may vary in different regions. 
Generally, AML is more common in European and North American countries compared to Asian and African regions. 
Globally, the annual rate of new AML diagnoses is approximately 4 to 5 cases per 100,000 people [2, 3]. The incidence 
of AML rises with age, especially among individuals aged 60 and above, where it is most prevalent. While children 
and young adults can also develop AML, it is relatively less frequent in this younger age cohort [4]. Some radiation 
and chemical exposures, such as high doses of ionizing radiation or certain chemicals like benzene and benzopyr-
ene, are associated with an increased risk of AML [5]. These exposures are typically occupational or environmental in 
nature. People who have undergone radiation therapy or chemotherapy for other cancers may be more susceptible to 
developing AML because these treatments can damage normal blood-forming cells [6, 7]. The primary approach for 
managing AML patients currently involves chemotherapy. However, despite achieving initial remission, a significant 
percentage of patients experience disease recurrence or succumb to the illness. Despite substantial research efforts 
aimed at developing targeted and combination therapies, the 5 year survival rate for AML patients remains below 
30%. Consequently, it is imperative to discern innovative prognostic biomarkers for monitoring patient prognoses 
and gaining deeper insights into the pathogenesis of AML.

Dysregulated metabolism is a condition where various biochemical reactions and metabolic processes within the 
body are abnormally regulated. It has been shown to have a strong correlation with the development and occurrence 
of tumors [8]. Tumor cells typically exhibit a range of abnormal metabolic features that play pivotal roles in tumor 
biology [9, 10]. Firstly, tumor cells often exhibit the phenomenon known as the “Warburg effect,” wherein they gener-
ate ATP energy through lactic acid fermentation instead of the typical oxidative phosphorylation process, particularly 
under conditions of low oxygen. This metabolic adaptation enables tumor cells to thrive and sustain rapid growth. 
Additionally, tumor cells display a heightened dependency on glucose, which results in abnormal activation of 
glucose metabolism pathways such as glycolysis and gluconeogenesis. These adaptations are crucial for supporting 
the accelerated proliferation characteristic of cancer cells. Dysregulated lipid metabolism is also common, resulting 
in the accumulation of abnormal lipid compositions that provide essential building blocks for cell membranes and 
promote tumor growth. Furthermore, disruptions in nitrogen metabolism and alterations in acid–base balance are 
also associated with tumor development. These metabolic abnormalities can contribute to tumor initiation and pro-
gression by providing the necessary energy and materials for survival, resistance to cell death, and alteration of the 
extracellular microenvironment, among other mechanisms [11–13]. Certain metabolic abnormalities may increase 
an individual’s risk of developing leukemia. For example, metabolic disorders associated with obesity have been 
linked to an increased incidence of certain leukemia subtypes. Some leukemia subtypes, such as Acute Lympho-
blastic Leukemia (ALL) and AML, may be associated with specific metabolic abnormalities or gene mutations. These 
abnormalities may play a role in cell growth and proliferation [14, 15]. Leukemia treatments themselves can impact 
a patient’s metabolism. For instance, radiation therapy and chemotherapy can induce metabolic disruptions, includ-
ing anemia, nausea, loss of appetite, and other side effects, all of which can impact a patient’s nutritional status and 
metabolic health [16, 17]. Therefore, gaining a deep understanding of and intervening in metabolic abnormalities 
are of paramount importance in AML treatment and research, with the potential to offer critical support for the 
development of more effective therapies.

The Tumor Immune Microenvironment (TME) refers to the complex network of cells and molecules surrounding 
tumor cells, including immune cells, blood vessels, stromal cells, cytokines, and signaling pathways [18, 19]. This envi-
ronment plays a crucial role in the growth, development, and treatment response of tumors. Within the TME, various 
types of immune cells, including macrophages, natural killer cells, B cells, T cells, and dendritic cells, are present and 
play crucial roles in surveilling and combating the growth and spread of tumor cells [20, 21]. However, tumor cells 
can also employ various strategies to evade attacks from the immune system, including reducing the expression of 
tumor antigens and suppressing the activity of immune cells. Additionally, the TME includes the tumor-associated 
vascular system, which supplies nutrients and oxygen required by tumor cells, although tumor blood vessels may 
be abnormal, leading to inadequate oxygen supply. Understanding the TME is crucial for the development of immu-
notherapies designed to alleviate immune suppression within the TME and enhance the immune system’s ability 
to target tumors [22–24]. Lastly, the characteristics of the TME can significantly influence a patient’s prognosis and 
their response to treatment. Therefore, a comprehensive understanding of its features and dynamic changes is 



Vol.:(0123456789)

Discover Oncology          (2024) 15:279  | https://doi.org/10.1007/s12672-024-01150-6 Research

crucial for developing more effective cancer treatment strategies. Several studies have indicated that the immune 
microenvironment of AML is often abundant in immune-suppressive factors such as anti-inflammatory cytokines 
and immune-inhibitory cells. These factors can suppress the activity of immune cells, making it challenging for 
them to effectively attack AML cells. In addition, despite the presence of immune cells in the TME of AML patients, 
AML cells can employ various strategies to evade attacks from the immune system. These strategies include reduc-
ing the expression of tumor antigens, altering cell surface molecules to evade immune detection, and recruiting 
immune-suppressive cells, among others. However, the potential mechanism involved in the effects of TME on AML 
progression remained largely unclear.

In this study, we carried comprehensive assays using High throughput sequencing to explore the expressions of 
metabolism-related genes (MRGs) and their clinical significance in AML patients. Then, we analyzed the association 
between MRGs and TME in AML. Finally, we identified a critical metabolism-related gene MICAL1 and performed func-
tional experiments to explore its potential function in AML. This study is a multi-faceted research effort aimed at gaining 
a comprehensive understanding of the expression and clinical significance of MRGs in AML patients, as well as their inter-
actions with the TME. By identifying and investigating key genes such as MICAL1, our goal is to uncover the underlying 
pathological mechanisms of AML and provide novel therapeutic targets and strategies for patient treatment.

2  Material and methods

2.1  Cell culture and cell transfection

THP-1 and NB-4 cells were purchased from Shanghai Bioleaf Biotech company (Shanghai, China). The cells were routinely 
cultured in phenol red-positive RPMI 1640 media supplemented with 10% (v/v) fetal bovine serum. The small interfer-
ing RNAs (siRNAs) targeting MICAL1 (si-MICAL1-1, si-MICAL1-2) were synthesized by Shanghai Generay Technologies 
(Pudong, Shanghai, China). The  Lipofectamine™ 3000 was employed to transfect siRNAs into TPH-1 and NB-4 cells. Briefly, 
10 μl  Lipofectamine™ 3000 reagent was diluted with 490 μl OpitiMEM (Gibco, Carlsbad, CA, USA), and si-MICAL1-1, si-
MICAL1-2 or si-Control (each 5 μl) was also was diluted with 490 μl OpitiMEM. After combining the LipofectamineTM 
3000 and siRNA solutions and letting them incubate for 5 min, we poured 500 μl of the resulting mixture into a single 
well of 6-well plates. The cells were prepared for studies 48 h after transfection, at which time the medium was replaced 
(at 6 h post-transfection).

2.2  Cell proliferation detection

Using a Cell Counting Kit-8 (CCK-8) (Vazyme, Nanjing, Jiangsu, China), we were able to measure the cell proliferation rates 
of THP-1 and NB-4 cells that had been transfected with siRNAs targeting MICAL1. Briefly, at a density of 5000 cells per 
well, either control cells or cells that had been transfected with siRNA were seeded onto plates that included 96 wells. 
After that, 10 μl of CCK-8 reagent was given to each well at four separate time intervals (24 h, 48 h, 72 h, and 96 h), and 
the cells were cultured at 37 degrees Celsius for two to three hours. The light absorbance at 450 nm was determined by 
employing a microplate reader manufactured by BioTek Instruments (Winooski, Vermont, United States).

2.3  Data acquisition and differentially expressed genes (DEGs) obtainment

Using the TCGA database, we gathered information on the genetic mutations, transcriptomes, and clinical presentations 
of AML. Possemato’s study yielded a total of 2752 metabolism-related genes (MRGs), which are said to code for all of 
the known human metabolic enzymes and transporters. We downloaded the over-expressed and down-expressed in 
AML tumor samples using GEPIA database. Since there were no paired normal sample data of AML in TCGA database, 
the GEPIA database used GTEx data, and there were 173 AML tumor samples from TCGA database and 70 normal tis-
sue samples from GTEx database, and the total DEGs in AML (named TCGA-AML-DEGs) were 7964 (|logFC|> 1, p < 0.05). 
In addition, the GSE114868 data were downloaded from Gene Expression Omnibus (https:// www. ncbi. nlm. nih. gov/ 
geo/), and 1273 up-regulated and 1037 down-regulated genes (|logFC|> 1, p < 0.05) were identified using R software 
“limma” package, and the package “ggplot2” was utilized to plot the volcano map and heatmap. Besides, 2618 genes 
with significant overall survival in AML from UALCAN database (UALCAN-OS) were obtained. The 17 overlap MRGs were 
identified using Venny 2.1.

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
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2.4  Functional enrichment analysis

GO and KEGG are essential bioinformatics resource designed to assist researchers in understanding the functionality 
of genes and genomes, as well as their roles in biological processes [25]. They are developed and maintained by the 
Bioinformatics Center at Kyoto University in Japan and has become a crucial tool in the field of life sciences. Cluster-
Profiler is an R package used in bioinformatics and biostatistics for functional enrichment analysis and visualization. 
Its purpose is to help researchers understand gene sets within high-throughput biological data, enabling the discov-
ery of functional and pathway enrichment patterns associated with these gene sets in biological processes [26]. R’s 
“clusterprofiler” and “enrichplot” packages were used to conduct functional enrichment analysis, which included GO 
and KEGG pathway enrichment analyses. A false discovery rate (FDR) of 0.05 or lower was required for a functional 
category to be considered statistically significant.

2.5  Construction of MRGs related prognostic signature for AML

LASSO is a statistical method used for linear regression and feature selection. It is employed in regression analy-
sis to address high-dimensional datasets and tackle issues like multicollinearity (high correlation among multiple 
independent variables) and feature selection. Using the 17 overlapping MRGs, a prognostic classifier was developed 
using the LASSO Cox regression model. In order to do Lasso Cox regression, the “survival” and “glmnet” R packages 
were utilized. Besides, Multivariate cox regression analysis was another method that was applied for the purpose of 
obtaining the prognostic model for AML based on the 17 overlap MRGs. The Kaplan–Meier method and the “survival” 
package in R were utilized to compare the overall survival rates of patients categorized into high-risk and low-risk 
groups. Additionally, receiver operating characteristic (ROC) analysis and calculation of the area under the curve 
(AUC) were performed using the “survival ROC” package in R.

2.6  Real‑time PCR detection

The RNA purification kits (Invitrogen, Grand Island, NY, USA) were applied to extract the total RNAs from THP-1 and 
NB-4 cells transfected with siRNAs targeting MICAL1. Then SuperScript III Reverse Transcriptase kits (Thermo Fisher 
Scientific, Inc., Waltham, MA, USA) were employed to synthesize the complementary DNAs (cDNAs). The amplifica-
tion of cDNAs were conducted with Light Cycler 480 SYBR Green I Master Mix using the 7900HT Fast Real-Time PCR 
System. Gene expression was standardized against GAPDH, and the 2’-Ct technique was used to assess the relative 
expression levels of MICAL1. The cycling conditions were as follows: 95 ℃ for 5 min, 40 cycles of 95 ℃ for 15 s, 56 ℃ 
for 30 s and 72 ℃ for 30 s, and 95 ℃ for 60 s. The primers were listed as follows: GAPDH: forward 5′-TCA AGA AGG TGG 
TGA AGC AGG-3′ and reverse 5′-TCA AAG GTG GAG GAG TGG GT-3′; MICAL1: forward 5′-TGT TGG CTG AGC GTG AGA G-3′ and 
reverse 5′-ATC TGT CTT GTC GTT GTT CCTC-3′.

2.7  Molecular subtypes of AML identification

The potential molecular subtypes of AML based on these 17 overlap MRGs were investigated by using the R pack-
age “ConsensusClusterPlus”. ConsensusClusterPlus is a bioinformatics tool designed for cluster analysis. Its primary 
purpose is to assist researchers in identifying and evaluating the stability of potential clustering structures within 
high-dimensional biological data. It is typically used to analyze high-dimensional data in fields such as gene expres-
sion, protein interactions, genomics, and others, aiming to uncover hidden biological patterns within the data.The 
CDF and consensus matrices were used to determine the best method for classifying molecules into groups. The 
"ConsensusClusterPlus" R package was used to do the classification of the AML samples using the k-means algorithm, 
with k ranging from 2 to 6. Cluster analysis using CDF and area under the CDF curve at varying cluster sizes indicated 
that k = 3 was optimal for distinguishing between three distinct molecular subtypes in the data set.
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2.8  The immune related analyses

Immune cells and their distribution were analyzed across three AML molecular subtypes using the CIBERSORT algo-
rithm. The potential response to immune checkpoint blockade (ICB) in these subtypes (G1 to G3) was assessed using 
the TIDE algorithm. Furthermore, immune networks involving DEGs or MICAL1 with various immune cell types in 
the AML subtypes (G1 to G3) were analyzed using the R software packages “immuneeconv” and visualized using 
“ggClusterNet”.

2.9  Online websites for bioinformatics analyses

Gene Set Variation Analysis (GSVA) is a computational method commonly used in bioinformatics and genomics for 
the analysis of gene expression data. It is designed to evaluate the activity or enrichment of predefined gene sets or 
biological pathways within a given set of gene expression profiles. GSVA does not require a priori sample grouping 
or class labels and can be particularly useful for exploring functional differences in high-dimensional gene expres-
sion data. The DEGs or MICAL1 expression, various survivals, genetic changes (SNV and CNV), methylation, GSVA 
across pan-cancers were analyzed by using the GSCA database. The expression of MICAL1 in kinds of cancer types 
and their corresponding paired normal specimens were explored by the use of TIMER 2.0 database (http:// timer. 
cistr ome. org/). The MICAL1 expression in kinds of cell types from different human tissues was using Harmonizome 
database (https:// maaya nlab. cloud/ Harmo nizome/). GeneMania (https:// genem ania. org/) database to analyze genes 
or proteins which were able to interact or co-express with MICAL1. Using the TISIDB database, an investigation of 
the connections between the expression of MICAL1 and the number of tumor-infiltrating lymphocytes (TILs), immu-
noinhibitors, and chemokines in pan-cancers was carried out. The GEPIA database was utilized for analyzing gene 
expression and survivals.

2.10  Statistical analysis

The Student’s t-test was utilized in order to carry out statistical comparisons between the two different groups. When 
it was essential to make comparisons between more than two groups, a one-way analysis of variance (ANOVA) was 
used, and then post-hoc Tukey’s honest significant difference (HSD) testing was performed. Survival analyses were 
executed using the log-rank test. The statistical software SPSS was utilized throughout each and every one of the 
analyses. A significance threshold of p < 0.05 was adopted.

3  Results

3.1  The obtainment of overlap metabolism‑related genes (MRGs) in AML

To discover the potential genes which might be selected as possible therapy targets in AML, we first downloaded the 
over-expressed and down-expressed in AML tumor samples using GEPIA database. Since there were no paired normal 
sample data of AML in TCGA database, the GEPIA database used GTEx data, and there were 173 AML tumor samples 
from TCGA datasets and 70 normal samples from GTEx datasets. The distribution of over- and down-expressed genes 
on chromosomes were respectively presented in Fig. 1A and B, and the total DEGs in AML (named TCGA-AML-DEGs) 
were 7964 (|logFC|> 1). Afterwards, we analyzed the GSE114868 data to further verify the deferentially genes (DEGs) 
in AML, and 1273 up-regulated and 1037 down-regulated genes were obtained. The corresponding volcano plot 
and heatmap of these DEGs from GSE114868 data were displayed respectively in Fig. 1C and D. Then, we sought to 
obtain the overlap genes of MRGs (2752 genes), TCGA-AML-DEGs (7964 genes), GSE114868-DEGs (2310 genes) and 
UALCAN-OS (2618 genes with significant overall survival in AML from UALCAN database) using venny website, and 
17 overlap MRGs were identified (Fig. 1E).

http://timer.cistrome.org/
http://timer.cistrome.org/
https://maayanlab.cloud/Harmonizome/
https://genemania.org/
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3.2  The expression and survival analyses of 17 overlap MRGs across cancer types

Next, we employed GSCA database to study the 17 overlap MRGs’ expressions in pan-cancers. We observed that the 
17 overlap MRGs exhibited different expression levels in different cancers (Fig. 2A). For instance, genes like SLC24A3, 
GALM, MPO, and ATP1B1 appear to be commonly down-regulated across various solid cancers, while other MRGs are 

Fig. 1  Overlap MRGs obtainment. A and B The distribution of over- and down-expressed genes on chromosomes were respectively pre-
sented. C Volcano plot of DEGs in GSE114868. D DEGs’ heatmap in GSE114868. E The overlap genes of MRGs, TCGA-AML-DEGs, GSE114868-
DEGs and UALCAN-OS
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frequently up-regulated in many cancer types. The expression patterns of these 17 overlapping MRGs were further 
investigated in relation to clinical and pathological stages. The data demonstrated that nearly all the genes had no 
significant difference between different clinical stages in pan-cancers, and half of the 17 overlap MRGs had obvi-
ous expression difference in pathological stages in KIRC, KIRP, THCA and BLCA but no significant difference in other 
cancers’ pathological stages (Fig. 2B). Moreover, the OS and PFS of the 17 overlap MRGs in cancers were assessed, 
and the data revealed that most of the 17 overlap MRGs had significant OS or PFS in kinds of cancer types (Fig. 2C).

Fig. 2  Expression and survival analysis of 17 overlap MRGs in cancers. A The relative mRNA levels of 17 overlap MRGs in pan-cancers. B The 
expression of the 17 overlap MRGs in clinical stages and pathological stages. C The analysis of the OS and PFS of the 17 overlap MRGs in 
cancers
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Fig. 3  SNV, CNV and methylation analyses of overlap MRGs. A The SNV analysis. B The CNV analysis. C Methylation difference in each cancer 
types
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3.3  Genetics changes and methylation analyses of 17 overlap MRGs in pan‑cancers

Genetic changes including the SNV and the CNV were further evaluated. The SNV percentage heatmap from USCA data-
base based on TCGA data elucidated that most of the 17 overlap MRGs had SNV mutation in UCEC, SKCM and COAD, while 
the the 17 overlap MRGs had no SNV in the majority of cancer types (Fig. 3A). Additionally, the CNV mutation frequen-
cies of the 17 overlap MRGs were assessed, and the results of the pie plots suggested that most of 17 overlap MRGs had 
CNV in most cancer type except in AML, PCPG and THCA, and the CNV type of these genes was mainly heterozygous 
amplification (Fig. 3B). Subsequently, 17 overlap MRGs’ methylation levels were evaluated, and we found that more than 
half of the 17 overlap MRGs’ methylation levels in tumor samples of the majority of cancer types were higher than that 
in the corresponding normal tissues (Fig. 3C).

3.4  GSVA analysis of the 17 overlap MRGs

The 17 overlap MRGs as a whole were then subjected for GSVA analysis. As the data presented in Fig. 4A, the GSVA 
scores of the 17 overlap MRGs were higher in tumor samples of the most cancer types than that in the corresponding 
normal tissues. Then, the GSVA scores in clinical stages and pathological stages of kinds of cancer types were also esti-
mated (Fig. 4B). Furthermore, the correlations between the GSVA scores and many signaling pathway activity was also 
determined, and the results proved that the GSVA score consisted with 17 overlap MRGs was positive correlation with 
apoptosis, EMT, hormone ER, and negative correlation with DNA damage and cell cycle in many tumors (Fig. 4C). Finally, 
the survival analyses of the high and low GSVA score suggested that higher GSVA score had poor OS, PFS, and DSS in 
COAD and KIRC, and there seemed to be no significant difference in other cancer types (Fig. 4D).

3.5  Identification of metabolism‑related genes molecular subtypes of AML

We next attempted to clarify the potential molecular subtypes of AML based on these 17 overlap MRGs. CDF, or cumula-
tive distribution function, was the method that was used to get an agreement on the best number of clusterings. Cluster 
number k = 3, as indicated by the area under the CDF curve in different cluster numbers, was shown to clearly classify 
samples into three different molecular subtype groups (Fig. 5A and B). The heatmap in Fig. 5C presented that the 150 AML 
tumour samples were divided into these 3 molecular subtypes including clustering 1 (C1, 40 AML samples), clustering 
2 (C2, 65 AML samples), and clustering 3 (C3, 45 AML samples). Then, the relative expression of the 17 overlap MRGs in 
the three molecular subtypes of AML was displayed using a heatmap (Fig. 5D).

3.6  Ferroptosis, cuproptosis and m6A related genes’ expression in the three molecular subtypes of AML

Emerging studies had revealed that ferroptosis- and m6A-related genes, particularly the newly discovered cuproptosis-
related genes, were critical regulators in cancer development and progression. Therefore, we next sought to investigate 
the relative expressions of the related genes involved in ferroptosis, cuproptosis and m6A processes in the three molecular 
subtypes of AML. It was found that the expressions of most ferroptosis-related genes was significantly different in the 
three molecular subtypes of AML (Fig. 6A). In addition, all the 9 cuproptosis-related genes had obvious difference in the 
three AML molecular subtypes (Fig. 6B). The m6A-related genes’ expressions in the three AML molecular subtypes were 
also explored, and similar results with the ferroptosis-related genes were also observed that most m6A-related genes’ 
expressions had markedly difference in the three AML molecular subtypes (Fig. 6C).

3.7  The immune analysis in the three AML molecular subtypes

We next sought to perform the immune analysis in three AML molecular subtypes using the CIBERSORT algorithm. 
According to the data, we found that the immune scores of several immune cells including Monocyte, Macrophage M2, 
Eosinophil, T cell CD4 + memory resting, Mast cell activated and B cell plasma were remarkably different in the three 
AML molecular subtypes (Fig. 7A). In addition to this, we analyzed the proportion of immune cells present in each of 
the three molecular subtypes of AML (Fig. 7B). Besides, the relative expression of immune checkpoints in the three AML 
molecular subtypes were evaluated and the data suggested that nearly all the immune checkpoints including LAG3, 
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PDCD1, PDCD1LG2, CD274, CTLA4, HAVCR2 and SIGLEC15, had remarkable difference in the three AML molecular sub-
types (Fig. 8A). Then, we evaluated the potential ICB response with TIDE algorithm, our group observed that the TIDE 
scores were significantly higher in group 3 of AML molecular subtypes when compared with group 1 and group 2, which 
indicated that group 3 of AML molecular subtypes were more sensitive to ICB therapy (Fig. 8B). Additionally, the immune 
interacting networks of each three AML molecular subtype-groups and the 17 overlap MRGs were also separately con-
structed based on EPIC algorithm (Fig. 8C–E).

Fig. 4  Overlap MRGs’ GSVA (Gene Set Enrichment Analysis) analysis. A GSVA scores of the 17 overlap MRGs in pan-cancers. B The analysis of 
the GSVA scores in clinical stages and pathological stages of pan-cancers. C The correlations between the GSVA scores and many signaling 
pathway activities. D The survival analyses of the high and low GSVA score groups in pan-cancers
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3.8  Comparison of the gene and function enrichment differences in each AML molecular subtype‑groups

Considering our above data indicated that there were obvious difference between group 3 (G3) and group 1 (G1) or 
group 2 (G2) of AML molecular subtype, we thus next attempted to investigate gene and function enrichment dif-
ferences between G3 and G1 or G2. The DEGs of G1 and G3 were firstly analyzed, and 487 up-regulated genes and 50 
down-regulated genes in G3 AML samples (compared with G1) were identified, and the volcano plot and heatmap 
were presented in Fig. 9A and B, respectively. Then, these DEGs were applied for analyzing the functional enrich-
ment assays. The KEGG analysis indicated that the up-regulated genes were relevant with Staphylococcus aureus 

Fig. 5  Identifcation of three AML molecular subtypes based on 17 overlap MRGs. A CDF from a consensus clustering sample with k between 
2 and 6 subtypes. B Difference between the area under the k = 2 and k = 6 CDF curves. C Heatmap of sample clustering under k = 3. D the 
heatmap of 17 overlap MRGs in three AML molecular subtypes (C1: clustering 1; C2: clustering 2; C3: clustering 3)
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infection, Viral myocarditis, Type I diabetes mellitus, Tuberculosis, Toxoplasmosis and Th1 and Th2 cell differentiation, 
while the down-regulated genes were correlated with Renal cell carcinoma, Renin-angiotensin system, Thiamine 
metabolism and Thyroid cancer (Fig. 9C and D). Afterwards, the GO analysis demonstrated that the up-regulated 
genes were related with response to molecule of bacterial origin, regulation of mononuclear cell proliferation and 
regulation of lymphocyte proliferation, while the down-regulated genes were correlated with response to ketone, 
response to lipopolysaccharide, response to molecule of bacterial origin, segment specification and skeletal system 
morphogenesis (Fig. 9E and F). Afterwards, DEGs of these two groups were firstly identified, and they contained 523 
up-regulated genes and 194 down-regulated genes. The comparison between G3 and G2 molecular subtypes was 
carried out, and both groups’ DEGs were examined. The corresponding volcano map and heatmap were respectively 
displayed in Supplementary Figure S1A and B. The up- and down-regulated genes’ KEGG analysis were respectively 
presented in Supplementary Figure S1C and D, and it demonstrated that the DEGs were correlated with Systemic 
lupus erythematosus, Tuberculosis, Th17 cell differentiation, Type I diabetes mellitus, Viral myocarditis, Proteoglycans 

Fig. 6  The expression of ferroptosis, cuproptosis and m6A related genes in three AML molecular subtypes. A Ferroptosis-related genes 
expression in three AML molecular subtypes. B Cuproptosis-related genes. C The m6A-related genes
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in cancer, Rap1 signaling pathway, Ras signaling pathway, Renin-angiotensin system and Transcriptional misregula-
tion in cancer. In addition, the GO analysis revealed that the DEGs were relevant with regulation of T cell activation, 
regulation of cell–cell adhesion, response to interferon-gamma, synapse organization, xenobiotic metabolic process 
Supplementary Figure S1E and F).

3.9  A prognostic model for AML was constructed based on the 17 overlap MRGs

In order to develop a risk score model for the purpose of predicting overall survival in patients with AML, the LASSO Cox 
regression model was applied to generate a prognostic classifier using the 17 overlap MRGs. This was done in order to 

Fig. 7  The immune scores and distribution of immune cells in three AML molecular subtypes. A The assays of the immune scores of diverse 
immune cells in three AML molecular subtypes. B The analysis of the distribution of immune cells in three AML molecular subtypes
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fulfill the aforementioned goal. Under LASSO Cox regression analysis (Supplementary Figure S2A and B), a nine-gene 
signature was constructed, and the risk score formula was: Riskscore = (0.3644)*GPX4 + (− 0.2696)*ITPR2 + (− 0.0588)*SL
C24A3 + (− 0.0845)*MPO + (0.1371)*ATIC + (0.0703)*OAS2 + (− 0.0367)*SLC22A16 + (− 0.0236)*STAR + (0.0768)*GALM. The 
samples of AML were then classified into high-risk and low-risk categories based on predetermined threshold values for 
risk scores. There will be more fatalities and cases of disease if the risk score is high(Supplementary Figure S2C). In addi-
tion, Patients with AML who had a high risk score had a shorter overall survival (Supplementary Figure S2D). Then, the 
model reliability was verified via the ROC curves analysis, and the AUC values of 1-, 3- and 5 year OS were 0.8, 0.802 and 
0.81, respectively (Supplementary Figure S2E). Besides, an another method called Multivariate cox regression analysis 

Fig. 8  The relative expression 
of immune checkpoints, ICB 
response and the immune 
interacting networks con-
struction. A The expressions 
of immune checkpoints in 
the three AML molecular 
subtypes. B The potential ICB 
response in the three AML 
molecular subtypes. C–E The 
immune interacting networks 
of each three AML molecular 
subtype-groups and the 17 
overlap MRGs were also sepa-
rately constructed based on 
EPIC algorithm. G1: Group 1; 
G2: Group 2; G3: Group 3
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Fig. 9  Comparison of the gene and function enrichment differences in G1 and G3 of AML molecular subtypes. A Volcano map. B Heatmap. C 
and D KEGG analysis. E and F GO analysis. G1: Group 1; G3: Group 3
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was also utilized for obtain the prognostic model for AML based on the 17 overlap MRGs. Multivariate cox regression 
analysis did not reduce the gene number. Therefore, the prognostic model included 17 genes and the risk score formula 
was: Riskscore = (0.073)*AHCY + (0.578)*GPX4 + (− 0.0181)*MGST1 + (− 0.0374)*PI4K2A + (0.1468)*ATP1B1 + (− 0.4371)*IT
PR2 + (− 0.1177)*KCNQ5 + (− 0.1157)*SLC24A3 + (− 0.0819)*MPO + (− 0.0805)*TAP1 + (0.3747)*ATIC + (− 0.1247)*MICAL1 
+ (0.1131)*OAS2 + (− 0.0776)*SLC22A16 + (0.0038)*SLC25A29 + (− 0.0859)*STAR + (0.2106)*GALM. After that, the training 
cohort was also divided into high- and low-risk groups, and the analysis of the data revealed that the high-risk group 
had a larger frequency of poor survival outcomes compared to the low-risk group. Additionally, a heatmap of 17 genes 
involved in AML was created (Supplementary Figure S2F). According to the findings of the analysis of overall survival, 
individuals with high risk AML had a lower overall survival time (Supplementary Figure S2G). Besides, the AUC values of 
1-, 3- and 5 year OS were 0.815, 0.803 and 0.791, respectively (Supplementary Figure S2H).

4  MICAL1 expression and methylation analysis in tissues and pan‑cancers

Among these 17 overlap MRGs, we selected MICAL1 for further investigation because emerging researches indicated 
that MICAL1 was correlated with cancer development and progression, and its functions in AML had been not studied. 
Hence, we firstly investigated the MICAL1 expression in kinds of cell types from different human tissues using Harmoni-
zome database (https:// maaya nlab. cloud/ Harmo nizome/) (Supplementary Figure S3A). Then, the expression of MICAL1 
in kinds of cancer types and normal specimens were explored using TIMER 2.0 database, and the results indicated that 
MICAL1 expressed more highly in most tumor tissues compared with their corresponding paired normal tissues (Sup-
plementary Figure S3B). Then, MICAL1 methylation across cancer types were investigated and the data suggested that 
MICAL1 methylation levels were diverse in different cancer types: MICAL1 methylation levels were high in the tumor 
tissues of CESC, COAD, DLBC, ESCA, LUSC, and UCEC, and MICAL1 methylation levels were low in the other cancer types’ 
tissue samples (Supplementary Figure S3C).

4.1  The immune analysis of MICAL1 in pan‑cancers

We next sought to investigate the relations between MICAL1 expression and the abundance of TILs, immunoinhibitors 
and chemokines in pan-cancers. It was found that MICAL1 expression was positive correlation with different TILs in most 
solid cancer types (Supplementary Figure S4A). Similarly, MICAL1 expression was positively relevant with nearly all the 
immunoinhibitors in most types of cancers except COAD, READ and SARC (Supplementary Figure S4B). In addition, the 
analysis of chemokines revealed that MICAL1 expression was positively relevant with most chemokines in more than half 
of the TCGA cancer types (Supplementary Figure S4C). Besides, since the tumor mutational burden (TMB) was closely 
correlated with cancer progression, we next also investigate the correlation of MICAL1 and TMB in pan-cancers, and 
the data suggested that MICAL1 and TMB was negatively correlated in most cancer types (Supplementary Figure S4D).

4.2  MICAL1 is a potential prognostic factor in AML

Using the GEPIA database, we found that MICAL1 was much more expressed in AML than in GTEx normal tissues (Sup-
plementary Figure S5A). The Sankey diagram then showed the association between MICAL1 expression and demographic 
variables such as age, gender, race, and survival (Supplementary Figure S5B). Subsequently, MICAL1 expression levels 
were used to categorize all AML samples into either a high or low group, with a higher MICAL1 expression corresponding 
to a higher percentage of patients who had died (Supplementary Figure S5C). In addition, according to the findings of an 
analysis of survival times, the overall survival of AML patients whose MICAL1 expression was high was lower than that of 
persons whose MICAL1 expression was low(Supplementary Figure S5D). Then, the ROC curves analysis suggested that 
the AUC values of 1-, 3- and 5 year OS were 0.655, 0.606 and 0.687, respectively (Supplementary Figure S5E).

4.3  Immune filtration and immune interacting network construction of MICAL1 in AML

We next attempted to elucidate the correlations of immune infiltration and MICAL1 expression in AML. Using GSCA 
database, we found that MICAL1 expressions were positively relevant with Macrophage, Infiltration-Score, Exhausted 
infiltrate, and NKT (Supplementary Figure S6A-D), while negatively correlated with Gamma-delta infiltrate, nTreg, NK, 
Central-memory infiltrate, and Th17 (Supplementary Figure S6E-I). Thereafter, we constructed the immune interacting 

https://maayanlab.cloud/Harmonizome/
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network construction of MICAL1 in AML based on CIBERSORT algorithm. The data suggested that MICAL1 was positive 
correlations with many immune cells such as Eosinophil, Mast cell resting, Myeloid dendritic cell activated, NK cell acti-
vated, Macrophage M0, T cell follicular helper, T cell CD4 + memory resting, T cell CD8 + , B cell plasma and B cell naive 
(Supplementary Figure S6J). Our suggested that MICAL1 may play an important role in regulating the activities of these 
immune cells.

4.4  Building the protein interacting network of MICAL1 and functional enrichment analysis 
of MICAL1‑related proteins

Next, the potential interacting proteins of MICAL1 was investigated by using Genemania database, and there were 20 
interacting genes were found including NEDD9, SEPTIN1, INPP4B, RAB1B, RAB35, INPP4A, FLNB, CASS4, VIM, STK38, 
BMERB1, PLXNB2, TAS2R7, PLXNA3, EHD1, PLXNA4, PLXND1, CNPY3, PLXNC1, and COQ6 (Supplementary Figure S7A). 
Additionally, the correlation of each genes in AML tissues were investigated and the data suggested that most of the 
20 genes were positively correlated with each other (Supplementary Figure S7B). Moreover, the functional enrichment 
analyses of the 20 genes were carried out. The BP of GO analysis revealed that the 20 genes were relevant with regula-
tion of cell shape, positive regulation of axonogenesis, semaphorin-plexin pathway, regulation of cell morphogenesis, 
and positive regulation of cell development (Supplementary Figure S7C). Then, the CC and MF of GO analysis suggested 
that the 20 genes were relevant with recycling endosome membrane, cell-substrate junction, focal adhesion, endocytic 
vesicle, semaphorin receptor complex, semaphorin receptor activity, and phosphatase activity (Supplementary Figure 
S7D and E). Finally, the KEGG assays revealed that the 20 genes were enriched in inositol phosphate metabolism and 
axon guidance (Supplementary Figure S7F).

4.5  Depletion of MICAL1 suppresses the proliferation of AML cells

We then downloaded the mRNA expression data of the leukemia cell lines including ALL, CML, MM (multiple myeloma), 
chronic lymphoid leukemia), AML to investigate the mRNA expression levels of MICAL1 from CCLE database. The data 
suggested that MICAL1 expressed more highly in ALL, CLL and AML than that in CML and MM, though AML expressed 
diverse MICAL1 mRNA levels (Fig. 10A). Then, the MICAL1 mRNA levels in 34 AML cell lines were also investigated, and 
it was found that THP-1, OCI-AML2 and OCI-AML5 expressed the most highly MICAL1 mRNA levels (Fig. 10B). Next, The 
functions of MICAL1 in classical AML cell lines were something we wanted to investigate. We generated the siRNAs 
targeting MICAL1 in order to accomplish this goal. These siRNAs, together with control siRNAs, were respectively trans-
fected into AML cell lines TPH-1 and NB-4 cells. The results of qRT-PCR assays indicated that the MICAL1 siRNAs could 
obviously reduce the levels of MICAL1 in both TPH-1 and NB-4 cells (Fig. 10C). Thereafter, the CCK-8 assays were utilized 
for detecting the affection of MICAL1 siRNAs transfection on the cellular growth of TPH-1 and NB-4 cells, and the results 
demonstrated that decreased MICAL1 remarkably suppressed the AML cells proliferation (Fig. 10D).

4.6  MICAL1 is correlated with multiple cancer‑related pathways

Next, we attempted to investigate the relationships between MICAL1 and kinds of cancer-related pathways includ-
ing cellular response to hypoxia, tumor inflammation signature, MYC targets, Purine-metabolism, Drug-metabolism-
cytochrome-P450, DNA replication, Pentose-phosphate-pathway, G2M checkpoint, P53 pathway, Glutathione-metab-
olism, angiogenesis, collagen formation, degradation of ECM, DNA repair, genes up-regulated by ROS, IFNG signaling, 
PI3K/AKT/mTOR pathway, EMT markers, Pyrimidine-metabolism, apoptosis, TGFB signaling, Inflammatory-response, 
hallmark glycolysis, hypoxia signature and metabolism related pathways. The R software “GSVA” package was used to 
analyze, choosing parameter as method = “ssgsea”. Spearman’s correlation coefficient was used to investigate the rela-
tionship between MICAL1 and pathway scores. The results suggested that MICAL1 was significantly positively correlated 
with angiogenesis, Pyrimidine-metabolism, tumor inflammation signature, TGFB, Purine_metabolism, PI3K/AKT/mTOR 
pathway, Pentose-phosphate-pathway, DNA repair, Glutathione-metabolism, Inflammatory-response, etc. (Fig. 11A). 
And MICAL1 was significantly negatively correlated with EMT markers, Drug-metabolism-cytochrome-P450, and MYC 
targets (Fig. 11B).



Vol:.(1234567890)

Research Discover Oncology          (2024) 15:279  | https://doi.org/10.1007/s12672-024-01150-6

5  Discussion

Recently, there have been significant advancements in the research of diagnostic and prognostic markers for AML. 
These developments have contributed to a deeper understanding and improved management of this disease [27]. 
The discovery of molecular genetic markers has provided new tools for the diagnosis and prognostic assessment of 
AML. Markers such as FLT3, NPM1, CEBPA, IDH1, and IDH2 have been identified [14, 28]. These markers not only assist 
in confirming the diagnosis of AML but also have the capability to predict the disease prognosis, offering crucial 
guidance for treatment decisions. RNA sequencing have been widely employed in AML research. These technolo-
gies aid in distinguishing various AML subtypes, predicting disease progression and survival rates in patients, and 
providing valuable information for personalized treatment [29–31]. On the other hand, an increasing amount of 
research is concentrating on cellular and molecular markers within the AML microenvironment. These markers help 
elucidate the interactions between AML and the immune system, hematopoietic cells, and other components of the 
microenvironment, offering insights for developing novel immunotherapy strategies [32, 33]. However, more sensi-
tive prognostic markers are of paramount importance for AML patients. These markers can provide more accurate 
disease prognosis information, aiding both physicians and patients in better comprehending the disease’s progres-
sion and treatment outlook.

AML patients’ leukemia cells typically exhibit abnormal metabolic features. These include aberrant energy metabo-
lism, often characterized by a high reliance on the glycolytic pathway, a phenomenon known as the “Warburg effect.” 
The metabolic abnormalities in AML cells also manifest as disruptions in lipid metabolism, amino acid metabo-
lism, and nucleotide metabolism [34–36]. There is a mutual association between metabolic dysregulation and the 
pathogenesis of AML. Disruptions in certain metabolic pathways can lead to abnormal proliferation and differentia-
tion obstacles in hematopoietic stem cells of AML patients, ultimately resulting in the excessive proliferation and 

Fig. 10  Real-time PCR assays detect MICAL1 expression and CCK-8 assays examine the cell proliferation. A MICAL1 mRNA levels in leukemia 
cell lines based on CCLE datasets. B MICAL1 mRNA levels in AML cell lines based on CCLE datasets. C The qRT-PCR assays determined the 
MICAL1 mRNA levels in TPH-1 and NB-4 cells after transfecting MICAL1 siRNAs. D CCK-8 assays. ***P < 0.001; **P < 0.01; *P < 0.05
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accumulation of leukemia cells. In this study, we employed multiple data sources and analytical tools to systematically 
screen and identify differentially expressed genes in AML. As a result, we successfully identified 17 potential prognos-
tic markers. Then, we performed pan-cancer assays and the 17 overlapping MRGs exhibit varying expression patterns 
in different cancer types and may play crucial roles in the clinical progression and survival of cancer. Importantly, 

Fig. 11  MICAL1 was related with kinds of the cancer-related pathways. A Pathways positively correlated with MICAL1 expressions. B Path-
ways negatively correlated with MICAL1 expressions
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the majority of the 17 MRGs have a significant impact on OS or PFS in multiple cancer types, suggesting that these 
genes play crucial roles in the development and treatment of cancer, and their abnormal expression may be associ-
ated with cancer progression or treatment response. These MRGs may hold potential clinical value and could serve 
as significant factors for cancer patient prognosis assessment and treatment decisions.

GSVA is a method used to analyze gene expression data, aiming to assess the activity or enrichment level of gene 
sets (typically associated with biological functions, pathways, or phenotypes) between different samples [37, 38]. 
The primary objective of GSVA is to transform gene expression data into enrichment scores for gene sets, enabling 
a more comprehensive understanding of the activity level of gene sets across different samples or conditions [39]. 
We found that the 17 overlapping metabolic-related genes (MRGs) exhibit differential GSVA scores across various 
cancer types. Typically, these MRGs demonstrate higher GSVA scores in tumor samples compared to their correspond-
ing normal tissues, suggesting potential abnormal activity or enrichment in the majority of cancers. Additionally, 
the study reveals associations between GSVA scores and clinical stages as well as pathological grading, implying a 
correlation between the activity of these MRGs and cancer progression and grading. Further analysis uncovers cor-
relations between GSVA scores and the activity of multiple signaling pathways. GSVA scores positively correlate with 
apoptosis, EMT, and ER signaling pathways, while negatively correlating with cell cycle and DNA damage pathways 
in most cancer types. These findings underscore the potential roles and relevance of these 17 MRGs across multiple 
cancer types, which may facilitate further investigation into their biological functions and clinical significance.

The mechanism behind AML’s development is highly complex, involving multiple genetic factors and biological 
variables. Therefore, to better comprehend this complexity, researchers may choose to simultaneously consider mul-
tiple genes to conduct a more comprehensive analysis of the interactions among different factors. Using multiple 
genes for classification can enhance the accuracy of the classification. A single gene might not provide sufficient 
information to classify patients accurately, while a combination of multiple genes can better reflect the complexity 
of the disease. Then, we used 17 MRGs to divide the 150 AML samples into these 3 molecular subtypes. Ferroptosis, 
cuproptosis, and m6A are biological processes related to cell death and gene regulation, and they are associated 
with the occurrence and development of leukemia. Specifically, ferroptosis is a form of cell death that may be dys-
regulated in certain types of leukemia, particularly AML. Iron ion metabolism and lipid peroxidation may be linked 
to the survival and proliferation of AML cells. On the other hand, cuproptosis is a cell death process mediated by 
copper ions, and although its association with leukemia is not yet fully explored, recent research suggests that genes 
related to copper ion metabolism may play a role in leukemia [40, 41]. Additionally, m6A modification is a methyla-
tion modification on RNA that is crucial for RNA stability and translation regulation. In some types of leukemia, m6A 
modification may be dysregulated, potentially affecting the development and proliferation of leukemia cells [42, 43]. 
Then, we investigate the relative expression of genes related to ferroptosis, cuproptosis, and m6A processes in the 
three molecular subtypes of AML. Importantly, we observed that the expression of ferroptosis-related genes, cuprop-
tosis-related genes and m6A-related genes exhibited a dysregulated level in in the three AML molecular subtypes 
based on 17 MRGs. Our finding suggested that the expression patterns of these 17 genes in different AML subtypes 
are influenced by these cellular death and gene regulation processes, or they may play a certain role in regulating 
these processes. Othe other hand, we found diversity in the immune characteristics among different AML molecular 
subtypes, including variations in the composition of immune cells and the expression of immune checkpoints. This 
is significant for understanding the immune status of AML patients and potential treatment strategy considerations. 
Particularly, the third group of AML molecular subtypes appears to be more sensitive to immune checkpoint blockade 
therapy, providing valuable insights for personalized treatment approaches.

Multi-gene prognostic models have several advantages compared to single-gene prognostic models. Firstly, 
multi-gene models can provide more comprehensive information as they consider the expression of multiple genes, 
which better reflects the complexity and diversity of diseases. Secondly, multi-gene models are often more accurate 
because they rely on combinations of multiple genes for prediction, reducing the chance of random errors in pre-
dictions. Additionally, multi-gene models can take into account the interactions between genes, aiding in a deeper 
understanding of how gene networks influence diseases. Most importantly, multi-gene models provide a stronger 
basis for personalized treatment, allowing for the developments of more precise treatment strategies based on the 
expressions of multiple genes, thereby improving treatment outcomes. Previously, several studies have developed 
diagnostic models based on MRGs in several types of tumors, such as lung cancer, cervical cancer and rectal cancer. 
However, the prognostic model based on MRGs in AML was rarely reported. Then, we performed LASSO using the 17 
MRGs and developed a now prognostic model using GPX4, ITPR2, SLC24A3, MPO, ATIC, OAS2, SLC22A16, STAR and 
GALM. Patients diagnosed with AML who had a high risk score had a poorer overall survival rate, according to survival 
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tests. This was also suggested by the overall survival analysis. The possibility of the new model to be employed as an 
innovative prognostic model for patients with AML was brought to light by our findings.

Among the 17 MRGs, our attention focused on MICAL1. MICAL1 belongs to the MICAL (Molecule Interacting with 
CasL) protein family. It contains multiple domains, with the most significant being the C-terminal domain of MICAL 
protein [44]. This domain possesses monooxygenase activity, allowing it to oxidize hydrophilic amino acid tyrosine on 
actin filaments. This oxidation process, in turn, regulates the dynamic changes in the cell cytoskeleton. The monooxy-
genase activity of MICAL1 makes it a crucial regulatory factor in intracellular oxidative stress responses. Under certain 
cellular stress conditions [45, 46], MICAL1 can promote the depolymerization of actin filaments, leading to changes 
in the cell cytoskeleton. It is essential for the cell’s response to oxidative stress. Several studies have reported that 
MICAL1 was involved in the progression of several tumors. For instance, Cai et al. reported that knockdown of MICAL1 
inhibited pancreatic cancer cell proliferation, migration, and invasion by activating the WNT/-catenin pathway, which 
was significantly expressed in pancreatic cancer [47]. Deng et al. showed that in breast cancer, MICAL1 was overex-
pressed, and its effect on proliferation was seen through the maintenance of cyclin D expression via ROS-sensitive 
PI3K/Akt/ERK signaling [48]. However, expression of MICAL1 in AML as well as its function are not known due to a 
lack of research. In this study, we found that MICAL1 expression was distinctly increased in many types of tumors, 
including AML, suggesting it as a tumor promotor. In addition, we confirmed that high MICAL1 expression predicted 
a poor clinical prognosis. Moreover, our results suggest that MICAL1 may have a multifaceted function in immuno-
logical regulation in AML, with positive correlations to the infiltration and activity of some immune cell types and 
negative correlations to other immune cell types. Moreover, we found that MICAL1 expression is positively correlated 
with macrophage infiltration, infiltration score, exhausted infiltrate, and natural killer T cells (NKT) in AML, suggest-
ing that MICAL1 may influence AML progression by modulating the behavior and activity of these cells. Conversely, 
MICAL1 expression is negatively correlated with γδ T cells, natural regulatory T cells (nTreg), natural killer cells (NK), 
central memory T cells, and Th17 cell infiltration, which typically possess anti-tumor functions. Elevated MICAL1 
expression may suppress the infiltration or function of these cells, thereby promoting AML development. Overall, 
high expression of MICAL1 in AML may affect the infiltration and function of various immune cells, contributing to 
disease progression. Future studies should further explore the specific molecular mechanisms of MICAL1 in these 
processes to better understand its role in AML and evaluate its potential as a therapeutic target. Finally, we concluded 
our functional tests by showing that MICAL1 knockdown markedly reduced AML cell proliferation, providing further 
evidence for its role as a tumor promotor in AML.

6  Conclusions

We identified 17 deferentially expressed survival-related MRGs in AML and clarified the potential molecular subtypes 
of AML based on these 17 overlap MRGs. Then, we developed a prognostic model using 9 MRGs, which suggested 
a strong prognostic value for AML patients. In addition, we analyzed the association between 17 overlap MRGs and 
TME. Finally, we carried out functional investigations and established that MICAL1 was substantially expressed in 
AML cells. We also found that knocking down MICAL1 significantly inhibited the growth of AML cells. Our study has 
provided valuable insights into the molecular subtyping, prognosis assessment, and potential therapeutic strate-
gies for AML. It offers new hope for improving the survival and quality of life for AML patients. Future research will 
continue to delve into these directions, aiming to provide further scientific foundations for precision medicine and 
treatment of AML.
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