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Abstract
Background  Long non-coding RNAs (LncRNAs) regulating the immune microenvironment of cancer is a hot spot. But little 
is known about the influence of the immune-related lncRNA (IRlncRs) on the chemotherapeutic responses and prognosis 
of cervical cancer (CC) patients. The purpose of the study was to identify an immune-related lncRNAs (IRlncRs)-based 
model for the prospective prediction of clinical outcomes in CC patients.
Methods  CC patients’ relevant data was acquired from The Cancer Genome Atlas (TCGA). Correlation analysis and Cox 
regression analyses were applied. A risk score formula was formulated. Prognostic factors were combined into a nomo-
gram, while sensitivity for chemotherapy drugs was analyzed using the OncoPredict algorithm.
Results  Eight optimal IRlncRs(ATP2A1-AS1, LINC01943, AL158166.1, LINC00963, AC009065.8, LIPE-AS1, AC105277.1, 
AC098613.1.) were incorporated in the IRlncRs model. The overall survival (OS) of the high-risk group of the model was 
inferior to those in the low-risk group. Further analysis demonstrated this eight-IRlncRs model as a useful prognostic 
marker. The Nomogram had a concordance index of survival prediction of 0.763(95% CI 0.746–0.780) and more robust 
predictive accuracy. Furthermore, patients in the low-risk group were found to be more sensitive to chemotherapy, 
including Paclitaxel, Rapamycin, Epirubicin, Vincristine, Docetaxel and Vinorelbine.
Conclusions  An eight-IRlncRs-based prediction model was identified that has the potential to be an important tool to 
predict chemotherapeutic responses and prognosis for CC patients.
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ncRNAs	� Noncoding RNAs
OS	� Overall survival
sIRlncRs	� Survival-related IRlncRNAs
TCGA​	� The Cancer Genome Atlas
TMM	� Trimmed mean of M-values
PCA	� Principal components analysis
GSEA	� Gene set enrichment analysis
ROC	� Receiver operating characteristic
AUC​	� Area under the curve
IC50	� Half-maximal inhibitory concentration

1  Introduction

Cervical cancer (CC) is still the common cause of disease-related mortalities in women, leading to nearly 300,000 deaths 
worldwide [1]. Cervical squamous cell carcinoma (CSCC) is the primary pathological subtype and comprises the most CC 
cases [2]. Despite the utilization of treatment modalities such as surgery, radiotherapy, and chemotherapy, these therapies 
have shown limited efficacy in patients with advanced-stage disease [3–5]. The International Federation of Gynaecology 
and Obstetrics (FIGO) stage is the primary prognostic indicator for CC. However, the FIGO stage cannot differentiate the 
various heterogeneity of CC in terms of clinical behavior. Patients with the same FIGO stage may often present obviously 
different clinical outcomes. Therefore, identifying new prognostic indicators reflecting the heterogeneity of CC is essential 
and can facilitate individualized treatments for patients with an otherwise poor prognosis.

Increasing evidence showed that immune system disruption might lead to tumour progression and metastasis [6, 7]. 
Malignant cells can escape immunosurveillance by reducing the expression of major histocompatibility complex class 
I molecules. Cervical adenocarcinoma has impaired recruitment of CDC1 and CD8 + T cells [8, 9]. Higher CCL22 + cell 
infiltration is negatively associated with prognosis in CC patients [9]. LINC00240 promotes natural killer T cell cytotoxic 
activity in CC and enhanced the growth, invasion, and migration of CC cells [10].

LncRNAs are a class of non-coding RNAs (ncRNAs) with longer than 200 nucleotides. With the development of tran-
scriptome sequencing, it is clear that over 70% of the genome is transcribed into RNA, and the majority of them are 
ncRNAs [11]. lncRNAs are involved in various transcriptional and post-transcriptional gene regulatory processes and play 
crucial roles in the tumour immune response, including immune recognition and immune infiltration [11]. Numerous 
tumor-associated lncRNAs have been recognized as tumor cell factors that regulate tumor cell escape of immunosur-
veillance. These immune-related lncRNAs (IRlncRs) may play essential parts in immunotherapy resistance and further 
impact the prognosis of cancer patients [12]. Specifically, a subset of lncRNAs act as immune-related lncRNAs (IRlncRs) 
by regulating immune responses in the tumor microenvironment. This subset of lncRNAs has been shown to play a key 
role in modulating tumor immunosurveillance, immune cell infiltration into the tumor microenvironment, and sensitiv-
ity of cancer cells to immunotherapy treatment [12, 13]. Cao et al. identified an immune-related five-lncRNAs signature 
positively correlated with tumour immune cell infiltration and the poor prognosis in bladder cancer patients. The asso-
ciation of IRlncRs expression and the clinical outcomes of CC patients is reported, but the results lack validation [12].

The development of new prognostic markers is essential considering the inherent heterogeneity of cervical cancer, 
guiding personalized treatment strategies. Reliable assessment of chemotherapy responses and determination of prog-
nostic risk would enable physicians to tailor more accurate treatment plans to improve outcomes. The IRlncRs signature 
holds strong potential in risk stratification and chemotherapy selection for cervical cancer patients. By evaluating prog-
nosis and chemotherapy sensitivity, the IRlncRs model can provide a basis for clinical decision-making, offering patients 
the most likely successful treatment strategies based on their molecular risk profiles. To achieve this, we developed an 
innovative IRlncRs model and performed preliminary in vitro validation, demonstrating its ability to distinguish high-
risk and low-risk cervical cancer patients with significant differences in overall survival. Further analysis confirmed the 
prognostic predictive capability of this model. Additionally, this model demonstrated utility in predicting chemotherapy 
response, with high-risk patients showing resistance to several commonly used drugs.
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2 � Materials and methods

2.1 � Patient datasets

CC transcriptome RNA-seq data in the format of Fragments Per Kilobase Million and the corresponding clinical data of 
The Cancer Genome Atlas (TCGA) (GDC, https://​gdc.​cancer.​gov/)​were downloaded.

2.2 � Data preprocessing and normalization

The raw RNA-sequencing count data from TCGA cervical cancer cohorts was preprocessed to ensure normalization 
and integrity for downstream analyses. Briefly, quality control was first performed using FastQC to assess attributes like 
guanine-cytosine content, overrepresented sequences, and duplication levels. Reads were then trimmed and filtered 
to remove adapters and low-quality bases using Trimmomatic.

The RNA-seq pre-processed data was quantified and normalized using the Trinity pipeline (https://​github.​com/​
NCIP/​Trini​ty_​CTAT) to generate normalized gene-level count data. This pipeline maps reads, assembles transcripts, 
estimates abundances, and extracts differentially expressed features. Normalization was conducted using the trimmed 
mean of M-values (TMM) method to account for differences in sequencing depth between samples using the EdgeR R/
Bioconductor package. TMM normalization controls for library size variability via scaling based on the ratio of read counts 
between samples. Normalized expression data is represented as counts per million (CPM).

Samples with > 50% missing lncRNA expression data were excluded from analysis to avoid technical bias. For the 
remaining samples, missing values were imputed using a k-nearest neighbor algorithm with k = 10 neighbors. Imputation 
was conducted using the Bioconductor impute package. This allowed retention of samples with some missing data 
rather than complete exclusion.

Additional filtering of lncRNAs was conducted to restrict analysis to those with evidence of abundance and variation 
across samples. LncRNAs expressed at ≥ 0.5 CPM in at least 10% of samples and with an interquartile range greater than 
0 were retained.

2.3 � LncRNA profile mining

Three gene sets, “immune response(M19817)”, “immune system development(M3457)”, and “immune system 
process(M13664)”, were acquired from the Molecular Signatures Database. LncRNAs with abundance lower than 0.5 
and lncRNAs of normal tissues were excluded. Then, immune-related genes were acquired from the above three gene 
sets. The Pearson correlation test analyses the correlation between the immune-related genes and lncRNAs. Absolute 
value of correlation coefficient > 0.5 and p < 0.001 were defined as IRlncRs.

2.4 � Real‑time quantitative PCR

Total RNA from cell lines (Hela cell and HCerEpiC cell) was isolated using Trizol reagent (Invitrogen, USA) according 
to the manufacturer’s instructions. cDNA Synthesis Kit (TaKaRa, Japan) was utilized to generate cDNA. 4.5 μL diluted 
cDNA (1:50) was used as the template in a 10 μL qPCR reaction using the ABI 7500 fast real-time PCR system (Applied 
Biosystems). GAPDH was used as a reference. The relative expression level was calculated by the 2−ΔCt method. Table 1 
shows the sequences of the forward and reverse primers of eight examined IRlncRs (ATP2A1-AS1, LINC01943, AL158166.1, 
LINC00963, AC009065.8, LIPE-AS1, AC105277.1, AC098613.1.).

2.5 � Model development

Univariate and multivariate Cox regression models were utilized to identify lncRNAs prognostic of overall survival and 
build a predictive risk score formula. The Cox proportional hazards regression model was selected because it allows 
assessment of the association between continuous gene expression data and censored survival outcomes while adjust-
ing for the effects of other covariates. Univariate Cox regression was carried out to extract IRlncRs correlated with the 
OS of patients with CC at p < 0.05. Next, only the IRlncRs with a statistical significance of p < 0.01 were further enrolled 
in the stepwise multivariate Cox regression analysis to extract optimal IRlncRs independently associated with prognosis 

https://gdc.cancer.gov/)were
https://github.com/NCIP/Trinity_CTAT
https://github.com/NCIP/Trinity_CTAT
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at p < 0.05. Finally, the survival‑related IRlncRs(sIRlncRs) model (risk score) was constructed according to the regression 
coefficients with lncRNA expression. In other words, the prognostic risk score was formulated based on a linear combi-
nation of the expression level of theses IRlncRs multiplied by the regression coefficients derived from the multivariate 
Cox regression analysis, as mentioned above [14]. Patients were grouped into a high- and low-risk group according to 
the median value of risk scores.

Kaplan–Meier analysis was employed to validate survival differences between the high-risk and low-risk groups 
stratified by the risk score formula. This non-parametric analysis was chosen because it is well-suited for estimating 
group survival functions over time while accounting for censoring, which was essential for the overall survival endpoint 
that had censored observations (patients still alive at last follow-up). The Kaplan–Meier estimator also provides median 
survival times and key quantified survival statistics for each risk group. Using this method enabled validation of the risk 
score by verifying poorer survival prognosis in the high-risk group compared to the low-risk group in a time-to-event 
analysis context.

2.6 � Independent prognostic analysis

We applied both single and multifactorial analyses to validate the validity of the risk score being an independent 
prognostic marker for CC. The receiver operator characteristic (ROC) curve was utilized to assess whether the risk score’s 
predictive power was reliable. The relationship between clinical traits and sIRlncRs was also studied. We also employed 
the PCA (principal components analysis) method to demonstrate the distribution patterns between the low- and high-
risk groups. GSEA was applied to explore the distinct functional phenotypes between the high-risk and low-risk groups.

2.7 � Construction a predictive nomogram

A prognostic nomogram including risk scores and clinical features for predicting the likelihood of 3-, and 5-year OS was 
developed by R “rms” package. The calibration curves and C-index were used to evaluate the predictive accuracy of the 
nomogram [15].

2.8 � Prediction of chemotherapeutic response

The clinical response of each CC patient in high- and low-risk groups to chemotherapy was estimated based on 
the Genomics of Drug Sensitivity in Cancer (GDSC; https://​www.​cance​rrxge​ne.​org/) data. Twenty commonly used 
chemotherapy drugs of CC, were selected for the chemotherapeutic response prediction through the ridge regression 

Table 1   The forward and 
reverse primer sequences 
of eight examined IRlncRs 
(ATP2A1-AS1, LINC01943, 
AL158166.1, LINC00963, 
AC009065.8, LIPE-AS1, 
AC105277.1, AC098613.1.) 
for performing real-time PCR 
assay

Gene symbol Primer Primer Sequence (5′-3′)

ATP2A1-AS1 Primer_F GAG​GAG​AAT​CCG​CAC​CAG​GA
Primer_R TAG​CCA​CAA​AGT​CTT​GGG​TGT​

LINC01943 Primer-F CAG​GAA​GCG​TGA​GGA​CAG​AA
Primer-R AAC​CAG​ACT​GAT​GCC​ACA​GG

AL158166.1 Primer-F TGA​GCA​TAG​CCT​CCA​CTC​CT
Primer-R AGA​CAG​CAC​TGT​CAG​TCA​CG

LINC00963 Primer-F GAA​CTG​CCT​TTG​GAA​GCA​AG
Primer-R AGG​AGT​TCG​AGG​CTG​CAG​TA

AC009065.8 Primer-F TTA​GCT​GGG​CTG​CGT​TTA​CA
Primer-R CCA​CTC​TCC​CAC​CTC​CCT​TA

LIPE-AS1 Primer-F CTC​TGT​CTC​CGC​CCC​CTA​AT
Primer-R TTC​TCA​AGC​ATG​CGT​CGT​TC

AC105277.1 Primer-F GTG​ACC​AGG​TAC​TGG​GGA​AA
Primer-R AAT​GAG​GTT​CCA​CAC​CTG​CT

AC098613.1 Primer-F GGG​GAA​AAT​CAT​CTC​CCA​TT
Primer-R TCA​CAT​TGC​TCT​GCC​TCA​TC

https://www.cancerrxgene.org/
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using the “OncoPredict” R package [16]. The half-maximal inhibitory concentration (IC50) predicted of each CC patient 
was used to assess differential chemotherapeutic response.

2.9 � Statistical analysis

Statistical analyses were carried out by the R statistical programming environment (version 4.0.2). Correlations between 
the immune-related genes and lncRNAs were tested using the Pearson correlation test. Sensitivity and specificity of 
signature were determined by ROC curves representing its power to differentiate the different groups. The R package 
“survivalROC” was used to calculate the area under the curve [17], and the “survival” R package was loaded to figure 
survival analysis [18].

3 � Results

3.1 � The analysis process of this study

Figure 1 displays the analysis process of our study. We downloaded transcriptome RNA-seq data and corresponding 
clinical data of 289 cases of CC from the TCGA database. Among these cases, there were 253 CSCC patients, 33 cervical 
adenocarcinoma patients, and 3 healthy control patients (Additional file 3: Table S1). Then, the RNA-seq data were 

Fig. 1   Analysis of the work-
flow of this study
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divided into mRNA and lncRNAs data. LncRNAs with an abundance less than 0.5 and normal tissue lncRNAs were 
excluded. We identified 331 immune-related genes from gene sets of MSigDB, of which 255 lncRNAs were IRlncRs 
validated by correlation analysis (Additional file 1: Fig. S1). Next, we identified 28 IRlncRs that were associated with the 
prognosis of CC. We further optimized theses IRlncRs by stepwise multivariate Cox regression, and eight sIRlncRs were 
utlized to formulate the risk score model. Finally, we utilized the risk score model for a series of subsequent analyses, 
including survival analysis, risk score analysis, clinicopathological characteristics, ROC curve analysis, PCA, and GSEA.

3.2 � Construction of an IRlncRs‑based risk score model

Of the 28 IRlncRs related to the prognosis of CC (p < 0.01), 25 were low-risk factors, and 3 were high-risk factors 
(Additional file 3: Table S2). Eight sIRlncRs were finally incorporated to formulate the risk score model, including 
ATP2A1-AS1, LINC01943, AL158166.1, LINC00963, AC009065.8, LIPE-AS1, AC105277.1, AC098613.1 (Table 2). All CC 
samples were categorized into low-and the high-risk groups using the median risk score as a boundary (Fig. 2A). The 
vital status of each patient was plotted. The proportion of death events in different risk groups was also analyzed. The 
mortality rate increased faster in the high-risk group than in the low-risk group (Fig. 2B). The differentially expressed 
genes (DEGs) displayed that the expression levels of AL158166.1 and AC105277.1 had a positive coefficient and acted 
as risk factors. The other six sIRlncRs showed negative coefficients, including ATP2A1-AS1, LINC01943, LINC00963, 
AC009065.8, LIPE-AS1, AC098613.1, and served as protective factors (Fig. 2C).

To verify the clinical value of the selected sIRlncRs in predicting prognosis, we compared the expression levels of 
the eight sIRlncRs in cervical cancer cells to that in normal human cervical epithelial cells. As illustrated in Fig. 2D, 
five of the six sIRlncRs serving as protective factors showed a significant decrease in the cervical cancer cells. One of 
the two IRlncRs acting as risk factors showed a significant increase in the cervical cancer cells.

Moreover, Kaplan–Meier survival analysis was used to evaluate the above prognosis model’s impact on CC patients’ 
survival. Survival was inferior in the high-risk group than in the low-risk group (Fig. 3).

3.3 � Independent prognostic analysis

To explore the relationship between the selected IRlncRs and clinical features of CC, the potential association of 
the eight IRlncRs with the clinicopathological features, including T-stage, N-stage, and tumor grading, was investi-
gated. The results presented that the expression level of LINC00963 negatively correlated with the grading, while 
AL158166.1 was positively related to advanced grading (Fig. 4A). The expression of LINC00963 and AC105277.1 
decreased with progressive T-stages (Fig. 4B), and the expression of LIPE−AS1 increased with the progression of the 
N-stage (Fig. 4C). We then performed independent risk analysis, and it showed the risk score model, N-stage, and 
T-stage were negatively related to the OS in univariate analysis (p < 0.05) (Fig. 5A). The results were further confirmed 
in the multivariate analysis showing that the risk score model, N-stage, and T-stage were significantly associated with 
OS (p < 0.05) (Fig. 5B). The ROC (Receiver Operating Characteristic) curve analysis validated this finding, demonstrat-
ing the predictive accuracy of the model. The AUC values for grade, T-stage, N-stage and risk score model were 0.516, 
0.704, 0.633, and 0.710, respectively (Fig. 6). These results demonstrated the risk score model as an independently 
reliable prognostic factor.

Table 2   Eight immune-related 
lncRNAs identified from 
multivariate Cox regression 
analysis

Gene symbol Ensembl ID coef HR Low95 High95 p-value

ATP2A1-AS1 ENSG00000260442 − 0.36 0.7 0.48 1 0.05
LINC01943 ENSG00000280721 − 0.94 0.39 0.14 1.11 0.08
AL158166.1 ENSG00000227076 0.57 1.76 1.15 2.69 0.01
LINC00963 ENSG00000204054 − 0.48 0.62 0.39 0.98 0.04
AC009065.8 ENSG00000261532 − 0.56 0.57 0.3 1.07 0.08
LIPE-AS1 ENSG00000213904 − 0.58 0.56 0.29 1.09 0.09
AC105277.1 ENSG00000232453.7 0.83 2.29 1.36 3.85 0
AC098613.1 ENSG00000121797 − 0.85 0.43 0.14 1.3 0.14
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Fig. 2   Construction of an IRlncRs-based risk score model. A The eight IRlncRs-based risk score distribution; B The eight-IRlncRs-based risk 
score distribution for CC patient survival status. C Heatmap of the eight-IRlncRs expression profiles in the high-risk and low-risk subgroups; 
D Relative expression of the 8 IRlncRs
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3.4 � Construction of the nomogram

The factors of age, grade, T-stage, N-stage and risk score were further combined to construct a compound nomogram for 
predicting the OS of patients with CC at 3- and 5-year (Fig. 7A). The points for the factors indicated their corresponding 
contribution to the survival probability. The total points of each patient provided the estimated 3- and 5-year OS. The 
C-index of our nomogram was 0.763(95% CI 0.746–0.780, p < 0.05). The actual recurrence rate and nomogram-predicted 
survival rate matched well at 3 years (Fig. 7B) and 5 years (Fig. 7C), as shown by the calibration curves (Fig. 7B, C).

3.5 � The immune status of the low and high‑risk groups

We performed PCA to explore the dispersion of the low-and high-risk groups based on genome-wide expression sets 
and the immune gene sets. Considering the immune gene sets, the low-and high-risk groups showed clustering (Fig. 8A), 
although there was no significant separation of the two groups based on the genome-wide expression profiles (Fig. 8B). 
The GSEA further verified the differences in functional annotation. As shown in Fig. 8C, D, the low-risk group’s genes 
were predominantly mapped to the immune-related activities, such as immune response and immune system process. 
However, there was no gene enriched in the high-risk group (p > 0.05).

3.6 � Analysis of chemotherapeutic responses in high‑ and low‑risk groups

A total of 198 drugs were analyzed, and drug response to twenty commonly used chemotherapy drugs for CC were 
analyzed using the Wilcoxon rank-sum test. There were significantly lower IC50 levels for Paclitaxel, Rapamycin, Epiru-
bicin, Vincristine, Docetaxel, and Vinorelbine in the low-risk group compared with the high-risk group (Fig. 9, p < 0.05), 
indicating that the low-risk group was more sensitive to these drugs. Among the 20 drugs, only docetaxel and lapatinib 
showed no significant difference in IC50 values (Additional file 2: Fig. S2), which indicated that our IRlncRs-based risk 
model might act as a potential predictor for chemosensitivity.

4 � Discussion

Eight IRlncRs correlated with the overall survival of CC patients were identified. The risk score model based on these 
eight IRlncRs demonstrated a strong ability to distinguish CC patients into low- and high-risk groups, which exhibited 
significant differences in OS. Further multivariate analysis showed that the eight-IRlncRs model is a valid marker of OS 
when accounting for other clinical characteristics, including T-stage and N-stage. The prognostic factors were further 
analyzed and integrated into a well-designed nomogram that demonstrated high potential for clinical application. 

Fig. 3   Survival curve of 
CC patients. Kaplan–Meier 
survival curve of OS among 
CC patients from the low-risk 
groups and high-risk groups. 
The high-risk group show the 
poorer prognosis
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Therefore, the eight-lncRNA model demonstrated promising value as a prognostic predictor of chemotherapeutic 
responses in CC. PCA based on the immune gene sets demonstrated that the low- and high-risk groups exhibited 
distinct immune statuses, with more abundant immune-related processes and responses observed in the low-risk group. 
Finally, OncoPredict analysis revealed that the tissues from the high-risk group were resistant to six commonly used 
chemotherapy drugs for CC.

Patients in the low-risk group may possess a better immune status, making them more sensitive to chemotherapy 
drugs; conversely, patients in the high-risk group might exhibit an immunosuppressed state, leading to resistance 
against chemotherapy drugs. The low-risk group presented enhanced antitumor immune pathways in the tumor 

Fig. 4   The relationships between the sIRlncRs and clinical features. A grading; B T-stage; C N-stage
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microenvironment. Higher expression of immunostimulatory molecules promotes infiltration and activity of immune cells 
such as T cells and natural killer (NK) cells [19]. Robust immune activation better sensitizes tumor cells to chemotherapy 
through increased antigen presentation and vulnerability to immune-mediated killing [20]. In contrast, the high-
risk group exhibited an immunosuppressed state. Downregulation of critical immune modulators reduces tumor 
immunogenicity through diminished antigen presentation and a decreased presence of cytotoxic lymphocytes [21]. 
This allows for immune evasion and subsequent resistance against chemotherapy, which relies on the immune system 
recognizing and responding to cancer cells damaged by drug treatment [22].

Certain immune cell and mRNAs predictors have been studied to predict treatment outcomes of gynecological cancer. 
Several risk score models based on differentially expressed genes have been developed to assess the outcomes of women 
with female reproductive cancers. Pan et al. reported 149 genes that were correlated with the survival of CSCC patients, 
and most of these genes were closely related to T cell activation [23]. Mairinger et al. developed a predictive scoring 

Fig. 5   Cox regression. A Uni-
variate Cox regression showed 
that the T stage, N stage, and 
risk score model were corre-
lated with the prognosis of CC 
patients. B Multivariate Cox 
regression showed that the T 
stage, N stage, and risk score 
model were an independent 
risk factor for CC patients

Fig. 6   Receiver operating 
characteristic (ROC) curve. 
ROC curves demonstrated the 
prognostic value of the inde-
pendent prognostic factors
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system based on immune-related genes to predict the therapy response and prognosis of epithelial ovarian cancer; 
however, the system was not validated for OS prediction in two datasets [24]. Yang et al. utilized 11 immune-related 
genes to formulate an immune signature for predicting clinical outcomes and the response to immune checkpoint 
inhibitors in CC patients [25]. Although several prediction models based on immune-related genes have been previously 
developed [23, 24], they face challenges such as a large number of genes that affect their practical utility [23] or a lack of 
validation across multiple datasets [24]. Compared to other mRNA-based prediction models, the lncRNA-based model 
constructed in this study exhibits higher specificity and provides a more precise reflection of the actual tumor condition 
[26]. Moreover, this study goes beyond constructing a prediction model and delves into the differences in immune status 
and chemotherapy sensitivity between high-risk and low-risk groups, thereby supporting the clinical application of 
this model. The nomogram demonstrated excellent predictive performance (C-index of 0.763), highlighting its robust 
potential for clinical application. Additionally, among the eight immune-related lncRNAs identified in this study, only 
LINC00963 and AC098613.1 have been previously reported [27, 28], while the other six have not. The current study 
represents the first discovery of their association with cervical cancer prognosis.

Fig. 7   The Nomogram for predicting overall survival of CC patients. A The Nomogram integrating the signature risk score with the clinical 
characteristics for predicting OS. B The calibration curve for the Nomogram in TCGA cohort for predicting 3-year overall survival. C The cali-
bration curve for the Nomogram in TCGA cohort for predicting 5-year overall survival
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lncRNAs may have more specificity in presenting the actual tumor condition than other types of markers. A ten-lncRNA 
signature for predicting the survival of patients with CC showed potential value as a prognostic biomarker for CC patients 
(He et al. [27]). Compared to regular lncRNAs, immune-related lncRNAs (IRlncRs) are highly associated with the immune 
system and exhibit distinct functions in the development of tumors [29]. Regular lncRNAs primarily regulate biological 
processes such as tumor cell growth, proliferation, apoptosis, and migration, directly influencing tumor formation and 
progression. In contrast, the key role of IRlncRs lies in regulating the immune response in the tumor microenvironment 
and participating in the process of determining whether tumor cells can evade immune surveillance. Specifically, IRlncRs 
can impact antigen expression on tumor cell surfaces, alter the local immune microenvironment of tumors, and thereby 
affect whether tumor cells can be recognized and eliminated by immune cells. This is quite different from the direct effects 
of regular lncRNAs on the biological functions of tumor cells [12, 30]. Therefore, the expression levels of IRlncRs often 
correlate with clinical outcomes such as sensitivity to immunotherapy and prognosis [13], highlighting their advantage 
as tumor biomarkers.

LINC00963 participates in the progression of several types of cancers, including lung cancer [31], prostate cancer 
[28], and breast cancer [32]. LINC00963 can activate the oncogenic AKT/mTOR signaling pathway or EGFR signaling 
pathway to enhance cancer cell metastasis [28]. AC098613.1 was also included in a four-lncRNA risk score serving as 
an independent marker to predict the survival of bladder urothelial cancer patients [27]. However, the remaining six 

Fig. 8   Principal components analysis (PCA) and gene set enrichment analysis (GSEA). A PCA plot showing high-risk group and low-risk 
groups based on the immune-related gene sets. B PCA plot showing high-risk group and low-risk group based on the whole protein-coding 
gene sets. C, D GSEA implied remarkable enrichment of immune-related phenotype in the low-risk group;
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IRlncRs have not been reported in the literature to date, and GSEA was conducted to predict their potential functional 
annotations. The results showed more abundant immune-related processes in the low-risk group compared to the high-
risk group. Consistent infection by human papillomavirus (HPV), the primary etiology of CC, can lead to the shutdown 
of host immune detection and the establishment of a local immunosuppressive status in HPV-associated CC [33]. These 
six IRlncRs may play a significant role in regulating these immune-related processes, and their modes of action warrant 
further research.

This study primarily utilized bioinformatics analysis methods to establish the association between immune-related 
long non-coding RNAs (IRlncRs) and the prognosis of CC, based on the reported lncRNA expression profile data from TCGA 
database. The use of this large-scale database significantly reduces the experimental workload and allows for efficient 
identification of candidate biomarkers associated with prognosis. However, relying solely on bioinformatics predictions 
has certain limitations, including potential biases resulting from selective population sampling, the retrospective nature 
that may overlook important variables, and the absence of extensive external validation to ensure wider applicability. 
Furthermore, the investigation of IRlncRs as prognostic markers shows promise but is still in its early stages, requiring 
further research to understand their complex mechanisms and interactions in CC. The insufficient comprehensive 
metastasis data, the necessity for more rigorous experimental validation to confirm quantitative polymerase chain 
reaction (qPCR) results, and the evaluation of clinical usefulness comprise the limitations and constraints of this study, 
providing directions for future work.

Further studies could also consider validating the accuracy of this model in peripheral blood samples. Compared to 
tissue samples, peripheral blood samples are more readily accessible and provide a comprehensive reflection of the 
body’s immune status, potentially resulting in higher accuracy of the predictive model [34]. However, the consistency 
of lncRNA expression patterns between tumor tissue and peripheral blood may vary depending on the cancer type 
and specific lncRNA. Certain lncRNAs have been explored as potential blood-based biomarkers for various cancers. 

Fig. 9   Differential chemotherapeutic responses of 6 drugs in low- and high-risk CC patients (A–F)
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For example, HOTAIR and LINC00152 show high specificity in identifying colorectal and gastric cancers, respectively. 
However, it is notable that the diagnostic performance of many circulatory lncRNAs is still relatively poor when detected 
individually, suggesting differences in their expression patterns between blood and tumor tissue [34]. Despite the 
challenges, developing predictive models using circulatory immune-related lncRNAs should be feasible, and this requires 
a multidisciplinary approach involving molecular biology, bioinformatics, clinical research, and ethical considerations.

5 � Conclusion

In conclusion, we identified an eight-IRlncRs signature that has the potential to be an important prognostic tool for CC 
patients. We expect this IRlncRs model to be practical for forecasting clinical behaviour and guide precision medicine 
approaches.
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