
Vol.:(0123456789)

Discover Oncology          (2023) 14:150  | https://doi.org/10.1007/s12672-023-00770-8

1 3

Discover Oncology

Review

Classification and function of γδT cells and its research progress 
in anti‑glioblastoma

Yujuan Zhao1 · Renhong Zhu2 · Yashu Wang3 · Keqiang Wang4

Received: 18 May 2023 / Accepted: 14 August 2023

© The Author(s) 2023  OPEN

Abstract
Human peripheral blood T lymphocytes are classified into alpha–beta T (αβΤ) cells and gamma–delta T (γδΤ) cells based 
on the difference in T cell receptors (TCRs). αβT cells are crucial for the acquired immune response, while γδΤ cells, though 
only a small subset, can recognize antigenic substances. These antigens do not need to be processed and presented and 
are not restricted by MHC. This distinguishes γδΤ cells from αβT cells and highlights their distinct role in innate immunity. 
Despite their small number, γδΤ cells hold significant significance in anti-tumor, anti-infection and immune regulation. 
Glioblastoma (GBM) represents one of the most prevalent malignant tumors within the central nervous system (CNS). 
Surgical resection alone proves to be an ineffective method for curing this type of cancer. Even with the combination of 
surgical resection, radiotherapy, and chemotherapy, the prognosis of some individuals with glioblastoma is still poor, 
and the recurrence rate is high. In this research, the classification, biological, and immunological functions of γδT cells 
and their research progress in anti-glioblastoma were reviewed.
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1 Introduction

Human peripheral blood T lymphocytes are classified into alpha–beta T (αβΤ) cells and gamma–delta T (γδΤ) cells based 
on the difference in T cell receptors (TCRs). αβΤ cells are vital for the acquired immune response. Human γδΤ cells were 
discovered in the 1980s. Given their distribution and absence of MHC (major histocompatibility complex) restriction in 
their immune response, human γδΤ cells serve a distinct role in innate immunity. γδΤ cells are made up of γ and δ chains, 
and they originate from the thymus. However, the peripheral tissues and organs are mature, accounting for about 0.5% 
of lymphocytes in the peripheral blood of healthy adults [1–3]. Recent research has demonstrated that γδ cells are crucial 
for anti-tumor, anti-infection, and immune regulation [4–12]. Glioblastoma (GBM) is one of the most prevalent malignant 
tumors in the central nervous system (CNS). The treatment of glioblastoma is particularly challenging, and surgical resec-
tion alone is rarely curative. Despite the combination of surgical resection, radiotherapy, and chemotherapy, the prognosis 
remains unfavorable for some patients, with a high rate of recurrence [13]. In the 2021 World Health Organization (WHO) 
classification of CNS tumors, low-grade gliomas (LGG) encompassed grades 1 and 2, while high-grade gliomas (HGG), 
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which included certain types of CNS gliomas, were categorized into grades 3 and 4. Glioblastoma multiforme (GBM), 
classified as WHO grade 4, represents the most invasive and malignant primary brain tumor, with a mere 5% survival 
rate over 5 years [14]. Therefore, it is crucial to develop innovative strategies to effectively treat gliomas and significantly 
reduce mortality rates. The current article provides a review of the classification, biological and immunological functions 
of γδΤ cells, the expression characteristics of γδΤ cells in patients with GBM, and the progress of these cells against GBM.

2  Classification of γδT cells

2.1  Structural classification of γδT cells

Regulation of the delta chain of human γδT cells is carried out by three Vδ genes (1–3), which leads to their classification 
into Vδ1γδT cells, Vδ2γδT cells and Vδ3γδT cells based on the variation in their delta chains (Fig. 1) [15].

(1) Vδ1γδT cells: Vδ1γδT cells are primarily found in the thymus, mucosa, and subcutaneous tissues, representing the 
most abundant subgroup present on the mucosal surface. This subgroup is crucial for maintaining the integrity of 
epithelial tissue. Moreover, it also secretes perforin and granzyme by producing interferon-γ (IFN-γ), IL-10, and small 
amounts of IL-4, IL-2, and other cytokines. These chemical substances, along with the secretion and expression of 
chemokines, exert a cytotoxic effect, thereby participating in the anti-tumor response. Moreover, this subgroup 
has an inhibitory effect on a variety of epithelial-derived tumors and certain leukemias. Vδ1γδT cells can partici-
pate in the resistance to microbial infections by secreting IL-17 and the pro-inflammatory cytokine IFN-γ. Vδ1γδT 
cells express the helper stimulator CD8 on the cell surface, playing an essential role in activating helper T cells. The 
mucosa and epithelial tissues are the first barrier against pathogen invasion, and they are also common sites for 

Fig. 1  Classification and characteristics of human γδT cell subsets. A T cells are classified into αβT cells and γδT cells according to the dif-
ferences in the types of their cell receptors (T cell receptor, TCR). B γδT cells can be divided into Vδ1γδT cells, Vδ2γδT cells and Vδ3γδT cells 
according to the difference of their δ chains. They play an important role in infectious disease and/or cancer
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tumor development. The high proportion of γδT cells in these tissues suggests their crucial role in tumor immunity, 
as well as in protection against microbes and parasites [3, 8, 16].

(2) Vδ2γδT cells: Vδ2γδT cells are primarily found in peripheral blood. During the TCRγδ recombination process, the 
Vδ2 chain almost exclusively combines with Vγ9, resulting in the formation of Vγ9Vδ2T cells [17]. Vγ9Vδ2T cells, 
being the predominant circulating cells, comprise 0.5% to 5% of adult peripheral blood. These cells can be specifi-
cally activated by phosphorylated antigens that are produced either by microorganisms or by abnormally trans-
formed cells, causing exogenous infections and endogenous abnormal cell transformations [16, 18]. According to 
the different surface markers of Vγ9Vδ2γδT cells, they can be classified into four subgroups: CD45RA+CD27+ naive 
cells, CD45RA−CD27+ central memory cells, CD45RA−CD27-effector memory cells, and CD45RA+CD27-terminally 
differentiated cells. The first two types of cells are primarily located in secondary lymphoid tissues and proliferate 
under the stimulation of isopentenyl pyrophosphate. However, they typically do not exert direct effector functions. 
On the other hand, the last two types of cells are mainly distributed in infection and tumor sites, performing direct 
effector functions such as secretion of cytokine IFN-γ and tumor necrosis factor-α (TNF-α), as well as cytotoxicity 
[19].

(3) Vδ3γδT cells: Vδ3γδT cells are abundant in the liver and are the least abundant subgroup in the body, accounting 
for only 0.2% of circulating γδT cells. CD56, CD161, and NK cell surface activation receptor D are expressed on their 
surface. Studies have shown that Vδ3γδT cells can not only secrete IFN-γ, TNF-α, and IL-4 to enhance the immune 
function of the body but also enhance the recognition of CD1d to act on CD1d+ target cells and induce dendrites. 
Cells (DCs) are transformed into antigen-presenting cells (APCs), and they are constantly detected and identified 
as cancerous cells [20, 21].

2.2  Functional classification of γδT cells

The structural heterogeneity among γδT cell subgroups leads to a wide range of functional diversity. As a result, based 
on their distinct functions, they can be classified into γδT cells that secrete IFN-γ (IFN-γ+γδT cells), γδT cells that secrete 
IL-17 (γδT17 cells), and regulatory γδT cells (γδTreg cells) [22], among others.

(1) IFN-γ+γδT cells: IFN-γ+γδT cells are a type of γδT cells that highly express IFN-γ, which undergo functional differ-
entiation in the thymus. Various factors in the thymus microenvironment, such as γδTCR and transforming growth 
factor β receptors, lymphotoxin β receptors, CD2, skint-1, intracellular molecule B lymphokinase, and promyelocytic 
leukemia zinc finger genes are all involved in this process [23]. IFN-γ+γδT cells play a crucial role in autoimmune 
diseases, tumor surveillance, host defense, and incision healing. Studies have found that their number in hepatitis B 
patients has increased significantly, suggesting functional IFN-γ+γδT cells also play an important role in controlling 
infection caused by the hepatitis B virus [24].

(2) γδT17 cells: γδT17 cells belong to the subgroup of Vδ1γδT cells derived from thymus, which mainly secrete IL-17. 
They are capable of expressing aryl hydrocarbon receptors, retinoic acid-related nuclear orphan receptors γt, and 
IL-12 receptors such as Th17 cells, as well as CCR6 receptors. They can also directly act on pathogens through Toll-
like receptors [25]. Among them, γδT17 cells with a terminally differentiated phenotype of CD27−CD45 RA+ can 
express tumor necrosis factor-related apoptosis-inducing ligands, granzyme B, FasL, and CD161. However, they do 
not produce IL-22 and IFN-γ. In terms of antigen activation, γδT17 cells can quickly trigger IL-8-mediated neutrophil 
migration and phagocytosis. Additionally, epithelial cells rely on IL-17 for the production of β defensins [18]. IL-17A 
produced by γδT17 cells also holds significant significance in the infection caused by the Mycobacterium BCG vac-
cine in the lungs, as well as in the development of granulomatous immune response induced by the BCG vaccine 
[26]. The above studies show that γδT17 cells play an important role in inflammation caused by microorganisms. 
Furthermore, γδT17 cells have been found to exert tumor-promoting effects. The IL-17 secreted by these cells can 
induce tumor angiogenesis. Furthermore, tumor-infiltrated γδT17 cells secrete IL-17, IL-8, TNF, and GM-CSF, which 
promote the proliferation of PMN-MDSC, forming an immunosuppressive microenvironment, thereby promoting 
tumor growth [27–29].

(3) γδTreg cells: γδTreg cells mainly belong to the Vδ1 subgroup, with the Vδ1+CD27+CD25+ phenotype, and can 
express Foxp3 similar to the classic CD4 Treg cells. They mainly exert their inhibitory effect on the proliferation of 
CD4+ T cells through direct cell–cell contact. The cytokines secreted by γδTreg cells are mainly granulocyte–mac-
rophage colony-stimulating factors and IFN-γ [30]. Moreover, γδTreg cells have a crucial role in various aspects such 
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as anti-infection mechanisms, tumor immunotherapy, and graft-versus-host disease, among others. They exert these 
effects by regulating both innate and adaptive immune responses [31, 32].

3  The function of γδΤ cells

3.1  Biological function of γδΤ cells

Activated γδΤ cells exhibit various biological functions. Some of their notable functions include:

(1) Cytokine production [33]: During intracellular bacterial infection, γδΤ cells have the ability to produce interferon-
gamma (IFN-γ) and interleukin 2 (IL-2), exhibiting Th1-like effects similar to helper T lymphocyte type 1 cells. On the 
other hand, when infected by extracellular parasites, γδΤ cells produce IL-4, IL-5, and IL-10, which stimulate B cells 
and exhibit Th2-like effects similar to helper T lymphocyte type 2 cells. Additionally, the IL-10 produced during the 
aforementioned process can, in turn, inhibit the proliferation and secretion of cytokine IFN-γ by γδΤ cells [34].

(2) Direct lysis of target cells: Activated γδΤ cells possess the ability to directly cleave target cells via the granzyme-
perforin pathway. Moreover, they can trigger apoptosis of the target cells through Fas-FasL (transmembrane protein/
transmembrane protein cytokines) and IFN-γ [35].

(3) Recognition and killing of tumor cells: γδΤ cells are capable of recognizing stress-inducing molecules such as MICA, 
MICB, ULBP, and RAET1. Moreover, they can also recognize ectopic apolipoprotein A1 and Toll-like receptors present 
on the tumor surface [36]. MICA/B and ULBPs were expressed in various types of tumor epithelial cells. γδΤ cells, 
much like NK cells, recognize tumor cells unrestrictedly through NKG2D receptors. This suggests that even without 
the presence of human leukocyte antigen or tumor antigen, γδΤ cells retain their ability to eliminate target cells 
[37]. New immunotherapy strategies, such as chimeric antigen receptor (CAR) engineered γδT cells, can improve 
the efficacy of CAR-T cells, enhance anti-tumor effect and reduce its side effects [38–41].

(4) Promoting wound healing: γδΤ cells are capable of responding rapidly to skin damage, and an increased presence 
of these cells can be observed at the wound site at 4 h [42]. A small quantity of vascular endothelial growth factor 
and fibroblast growth factor 2 were produced [43]. Activated γδΤ cells stimulate the proliferation of epidermal cells 
and the re-epithelialization of wounds by expressing KGFs and IGF-1 [44]. They also have the capacity to repair 
intestinal injury [45].

(5) Mediate its recycling and homing: γδΤ cells, much like αβΤ cells, can bind to specific receptor molecules on endothe-
lial cells using CD44, CD11a (LFA21) and MEL-14 (mouse CD62L APC labeled fluorescent monoclonal antibody). This 
binding facilitates γδΤ cells to adhere to endothelial cells, thus mediating their recirculation and homing (Fig. 2) [10].

3.2  Immunological function of γδΤ cells

Activated γδΤ cells perform a wide range of immunological functions:

(1) Antigen presentation: Partially activated γδΤ cells can differentiate into antigen-presenting cells (APCs) and show 
high expression levels of MHC-class II molecules and CD80, CD86, and CCR7 (chemokine receptors) on their surface. 
Moreover, they can process antigens and present them to αβΤ cells, triggering a specific immune response [46].

(2) Non-specific immune response: In the absence of APCs, γδΤ cells can be directly activated via their TCR for recogniz-
ing a variety of antigenic components of bacteria and viruses. This process plays a significant role in non-specific 
immune responses [7].

(3) Immune surveillance: Memory γδΤ cells can prevent the spread of viruses, combat opportunistic infections, and 
perform immune surveillance by over-expressing CCR7 and CD161 on their surface [47]. Cytomegalovirus (CMV) 
infection is usually associated with the development of GBM [48]. Human non-Vδ2T cells can directly bind endothe-
lial protein C receptor (EPCR), which is a MHC-like molecule similar to antigen presentation molecule CD1d and can 
bind to lipid. Adrenergic receptor A2 (EphA2) is a stress-related molecule that also participates in the activation of 
non-Vδ2T cells. Both EPCR and EphA2 are expressed on endothelial cells infected by CMV and up-regulated dur-
ing the development of GBM tumor [49, 50]. GBM tumor cells express BTN-like protein BTN3A, which mediates the 
recognition of PAg by γδTCR and contributes to the antigenic response of Vγ9Vδ2 T cells [51, 52].



Vol.:(0123456789)

Discover Oncology          (2023) 14:150  | https://doi.org/10.1007/s12672-023-00770-8 Review

1 3

(4) Immunomodulatory function: Activated γδΤ cells have the ability to suppress the proliferation of Foxp3+Tregs 
(regulatory T cells) [53]. They can also generate IL-10 and TGF-β (transforming growth factor β) to perform an immu-
nomodulatory function [54].

(5) Stabilization of the internal immune environment: γδΤ cells can inhibit the overactivation of αβΤ cells, thus main-
taining the relative balance between αβΤ and γδΤ cells [55].

(6) Antibody-dependent cytotoxicity: Certain membrane receptors, such as FcγR (IgG Fc receptor), contribute to anti-
body-dependent cell-mediated cytotoxicity (ADCC) and enhance their cytotoxic effects through the secretion of 
IL-2 [56].

(7) Bidirectional action on B cells: The majority of γδΤ cells are directly activated by antigens to produce IL-4, which 
in turn stimulates B cell proliferation and secretion of immunoglobulin (Ig). However, certain subsets of γδΤ cells 
suppress the production of Ig by B cells.

(8) Immunological function: γδΤ cells play their immunological roles by activating, inhibiting, or recruiting other immune 
cells. Their interactions with immune cells, including dendritic cells, granulocytes, macrophages, Langerhans cells, 
αβΤ cells, and B cells, are closely related to their anti-infective function (Fig. 3) [57].

4  Characteristics of γδΤ cell expression in patients with GBM

The proportion of total γδΤ cells in the peripheral blood of individuals with GBM was found to be similar to that of 
healthy individuals, but the absolute count showed a decreasing trend. Specifically, there was a decrease in double 
negative (CD4−CD8−) T γδ cells, an increase in immature γδΤ cells, a decrease in the expression levels of CD25 and 
CD279 (PD-1), and a significant increase in the expression levels of costimulatory markers CD27 and CD28 [58]. 
The balance between the two primary subsets, Vδ1 T cells to Vδ2 T cells, was disrupted. In the peripheral blood of 

Fig. 2  The biological function of γδΤ cells. A Cytokine production. During infection, γδΤ cells can exhibiting Th1-like or Th2-like effects; in 
turn, the IL-10 can inhibit the proliferation and secretion of γδΤ cells. B γδΤ cells recognize and kill tumor cells through TCR and NKG2D 
receptors, or direct lysis of target cells. C Promoting wound healing: γδΤ cells stimulate the proliferation of epidermal cells and the re-epi-
thelialization of wounds by expressing VEGF,FGF-2, KGFs and IGF-1. D γδΤ cells bind to specific receptor molecules on endothelial cells using 
CD44, CD11a (LFA21) and MEL-14, thus mediating their recirculation and homing
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individuals with GBM, Vδ1 T cells became the dominant subset of γδΤ cells. In individuals with GBM, there was a 
substantial increase in the proportion of Vδ1T cells, the expression of molecules associated with immunosuppres-
sion (Foxp3, CTLA-4), and immunosuppressive function. Conversely, the proportion of Vδ2T cells, the expression 
of perforin and TNF-α, and the activation of cytotoxicity-related signal pathways considerably decreased. Conse-
quently, the lethality significantly decreased in these individuals. In terms of proliferation, γδΤ cells of untreated 
GBM patients still had a strong proliferative ability, while the proliferative ability of γδΤ cells decreased significantly 
after tumor resection or chemotherapy. Compared to healthy people, γδΤ cells in the peripheral blood of people 
with GBM displayed characteristics of cell depletion, functional impairment, reduced proliferation ability, and an 
imbalance between Vδ1T cells and Vδ2T cells. These characteristics might contribute to immunosuppression and 
enable tumors to evade immune surveillance, thus promoting the occurrence and development of tumors [59, 60]. 
Different researchers have different opinions on GBM-infiltrating γδΤ cells. Lee et al. found that γδΤ cells infiltrated 
in tumors, mainly Vγ9Vδ2T cell subtypes, and unique Vγ9Vδ2T cells controlled by Vγ9vγ2 sequence gave priority to 
infiltrating GBM. GBM infiltrating γδΤ cells exhibit high plasticity. Their activity is closely related to the activity of 
cytotoxic T lymphocytes and regulatory T cells, showing anti-tumor or pro-tumor activity. These findings, together 
with other studies, have confirmed that γδΤ cells can exhibit different phenotypes according to the surrounding 
microenvironment, including Th1 type, Th2 type, Th17 type, follicular Th2 type, or Treg characteristics [61–64]. 
However, Bryant et al. [60] found no infiltration of γδΤ cells in the tumor parenchyma. The emergence of these 
two different research outcomes may be linked to the timing of specimen selection, subtle differences in research 
methods, and other influencing factors. To sum up, γδT cells in peripheral blood of GBM patients are characterized 
by imbalance of Vδ1T cells and Vδ2T cells, decrease of cell killing function and proliferation ability, but activated 
GBM patients γδT cells still have cytotoxicity and dissolve GBM tumor cells in vitro [60]. GBM tumor infiltrating γδT 
cells have high plasticity. Their existence may be strongly associated with the onset and progression of gliomas 
(Table 1, Fig. 4).

Fig. 3  Immunological function of γδT cells. A Antibody-dependent cytotoxicity; B immunomodulatory function; C antigen presentation; 
stabilization of the internal immune environment; D immunesurveillance; E non-specific immune response; F γδΤ cells play their immuno-
logical roles by activating, inhibiting, or recruiting other immune cells. G Bidirectional action on B cells
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5  Anti‑GBM effect of γδΤ cells

Numerous reports have highlighted that γδΤ cells exhibit certain cytotoxic effects on GBM, although these effects 
vary across GBM cell lines. γδΤ cells display cytotoxicity towards GBM cell lines U87, U138, T70, U373, U251. Moreo-
ver, local injection of expanded γδΤ cells in vitro can slow down the tumor progression and improve the survival 
rate of human U251MG tumor xenografted non-thymic nude mice. However, it showed almost no cytotoxic effect 
on A172 cells. This difference might be associated with the expression of MICA/B, UL-16 binding protein (ULBP), 
intercellular adhesion molecule (ICAM-1), and PVR on the surface of tumor cells [62, 65, 66]. γδΤ cells have a broad 
capacity to recognize and immediately respond to various MHC-like stress-induced autoantigens. The majority of 
these autoantigens exhibit expression in human GBM cells but not in adjacent normal brain tissues [67–69]. When 
the expanded γδΤ cells were co-cultured with glioma cells, γδΤ cells recognized the related antigens expressed on 
the tumor cell surface through their surface TCR or natural killer receptor NKG2D and differentiated memory cells. 
These γδΤ cells then induced the tumor cells to undergo apoptosis by releasing substances such as perforin and 
granzyme B and by secreting Th1 cytokines IFN-γ and TNF-α [66, 70–75]. These provide a theoretical basis for adop-
tive immunotherapy of GBM with γδT cells [52, 76]. Nonetheless, the ability of γδΤ cells to suppress GBM tumor cells 
is limited and occurs in a dose-dependent manner [60, 66]. Research has demonstrated that nitrogen-containing 
phosphonates, including zoledronic acid (ZOL), minopronate (MDA), and chemotherapeutic drugs, can effectively 
improve the anti-GBM activity of γδΤ cells. ZOL and MDA can not only directly induce apoptosis of glioma cells but 

Fig. 4  Characteristics of γδΤ cells in the peripheral blood of patients with GBM. A Phenotypic characteristics, a decrease in CD4−CD8−T 
γδ cells, CD25 and CD279 (PD-1); a significant increase in CD27 and CD28; an increase in immature γδΤ cells. B In terms of proliferation, 
γδΤ cells of untreated GBM patients have strong proliferative ability, while the proliferative ability of γδΤ cells decreased significantly after 
tumor resection or chemotherapy. C The peripheral blood γδΤ cells of GBM displayed characteristics of cell depletion, functional impair-
ment, reduced proliferation ability, and an imbalance between Vδ1T cells and Vδ2T cell, thus promoting the occurrence and development of 
tumors
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also enhance the production of IFN-γ and TNF-α by γδΤ cells and lead to the accumulation of intracellular IPP by 
interfering with the metabolic pathway of methoxylphosphonate. Additionally, γδΤ cells recognize and kill these 
cells containing phosphonate antigens through TCR γδ receptors [9, 18, 77].

Low-dose ZOL treatment not only significantly increased the cytotoxicity of γδΤ cells to GBM-sensitive strains but 
also strongly triggered the killing of γδΤ cells to resistant strain A172 cells. γδΤ cells recognized GBM cells that had 
been pretreated with ZOL using specific membrane surface receptors, and they killed these cells through a direct 
cytotoxicity mechanism. This enhanced cell-killing effect may be mediated by the expression of PVR on GBM cells 
and the existence of NK cell-activated receptor molecule (DNAM-1) on γδΤ cells [65]. Jarry et al. further confirmed 
the sensitizing effect of ZOL on GBM cells. Using 51Cr release assay, it was found that allogeneic Vγ9Vδ2T cells had 
no natural response to U-87MG cells and primary GBM-10 cells, while zoledronate pretreatment of GBM cells trig-
gered significant dose-dependent antigen activation of Vγ9Vδ2T cells [51]. By stereotactic administration, they 
found that zoledronate or Vγ9Vδ2T cells alone did not significantly increase the median survival time of orthotopic 
implanted U-87MG or BMG-10 NSG mice. However, single and double administration of zoledronate and Vγ9Vδ2T 
cells significantly increased the survival rate of mice [51]. Primary GBM-10 is a kind of tumor cells that express 
high-level “stemness” markers CD133, CD90 and CD44, which are disseminated and invasive, and can reproduce the 
physiological characteristics of human GBM. The above results show that stereotactic administration of allogeneic 
human Vγ9Vδ2T cells combined with zoledronate can effectively eliminate not only low invasive tumors but also 
heterogeneous primary human GBM tumors characterized by “stemness” and invasive [51, 78].

The combination of MDA and γδΤ cells not only effectively induced the apoptosis of GBM cells in vitro but also 
significantly inhibited the growth of U87MG-derived tumors in NOG mice in vivo. Nakazawa et al. implanted U87MG 
cells subcutaneously into high immunodeficiency (NOG) mice and injected MDA/GDT intraperitoneally. It was found 
that MDA combined with GDT could inhibit the growth of unestablished U87MG-derived subcutaneous tumors, and 
NOG mice had good tolerance to systemic MDA/GDT therapy [75]. γδΤ cells are activated by TCR to recognize IPP 
metabolites in GBM cells exposed to MDA and induce apoptosis by releasing granzyme B and TNF-α in a cysteine 
protease (caspase) dependent manner. Therefore, the combination of ZOL or MDA and γδΤ cells produced in vitro 
may be an effective treatment for patients with GBM [51, 65, 74, 75].

IL-21, a nodular cytokine, is a sensitizing factor of Vγ9Vδ2T cells. It enhances their cytolytic activity by elevating 
the levels of granzyme B within Vγ9Vδ2T cells. The sensitization of IL-21 can last for at least 24 h in the absence 
of this factor, and does not affect the migration rate of Vγ9Vδ2T cells in vivo [79]. Joalland et al. established an 
invasive in situ GBM mouse model by stereotactic implantation of GBM-1 cells into NSG mice. After stereotactic 
administration, it was found that IL-21-sensitized Vγ9Vδ2T cells could eradicate GBM and significantly improve the 
survival rate of mice. These results show that IL-21-sensitized allogeneic Vγ9Vδ2T cells have natural cytotoxicity to 
heterogeneous invasive primary human GBM tumors [79].

Temozolomide (TMZ) is the main chemotherapeutic drug used in the treatment of GBM. It can temporarily 
upregulate a variety of emergency-induced NKG2D ligands, improve the immunogenicity of GBM, and make GBM 
cells sensitive to γδΤ cell-mediated lysis [80]. NKG2D ligand was also expressed in glioma stem cells, and its expres-
sion was significantly upregulated under the stimulation of TMZ [81]. However, TMZ also has a high cytotoxic effect 
on γδΤ cells. γδΤ cells modified by methylguanine DNA methyltransferase (MGMT) produce O6-alkylguanine DNA 
alkyltransferase (AGT), which allows γδΤ lymphocytes to play a role in the therapeutic concentration of TMZ and 
empowers them with resistance to TMZ. MGMT modified γδΤ cells were mainly effective memory phenotype, and 
gene modification did not change the proliferative ability and cytotoxicity of γδΤ cells. The combination of MGMT-
modified γδΤ cells and TMZ can effectively improve the survival rate of primary GBM tumor xenotransplantation 
mice [82, 83]. γδΤ cells are genetically modified to resist the toxicity of chemotherapeutic drugs in order to realize 
the combined application of chemotherapy and immunotherapy. INB-200 is a genetically modified autologous γδT 
cell immunotherapy developed by IN8bio for the treatment of glioblastoma (GBM). Currently, an ongoing phase I 
clinical trial (NCT04165941) is testing the safety and tolerability of this therapy in combination with temozolomide 
(TMZ) in patients with newly diagnosed glioblastoma. Chauvin et al. [84] reported that allogeneic human Vγ9Vδ2T 
cells possess the ability to spontaneously recognize and clear human GBM mesenchymal cells without any treat-
ment and significantly prolong the life span of tumor-bearing mice. This effect is mediated by γδΤCR and regulated 
by the stress-related NKG2D pathway (Table2, Fig. 5).
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6  Concluding remarks

To sum up, γδΤ cells have the ability to suppress and kill GBM cells. Consequently, immunotherapy strategies based on 
γδΤ cells could potentially become a novel approach for treating GBM. It might be worthwhile to consider the develop-
ment of drugs that can expand, activate and promote the function of γδΤ cells in targeting GBM. In summary, increasing 
the number of γδΤ cells and enhancing their functioning within the GBM microenvironment is crucial for GBM treatment 
strategies that are based on γδΤ. It is believed that with the deepening of the study, γδT cells will achieve ideal results 
in anti-GBM therapy.
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Fig. 5  Killing effect of γδΤ cells on glioma cells. A γδΤ cells recognized the related antigens expressed on GBM cell surface through their 
surface TCR or NKG2D and differentiated memory cells. These γδΤ cells then induced the tumor cells to undergo apoptosis by releasing sub-
stances such as perforin and granzyme B and by secreting Th1 cytokines IFN-γ and TNF-α. B IL-21, ZOL, MDA and chemotherapeutic drugs, 
can effectively improve the anti-GBM activity of γδΤ cells
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