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Abstract
The increasing incidence of thyroid cancer (TC) cannot be fully explained by overdiagnosis. Metabolic syndrome (Met 
S) is highly prevalent due to the modern lifestyle, which can lead to the development of tumors. This review expounds 
on the relationship between Met S and TC risk, prognosis and its possible biological mechanism. Met S and its compo-
nents were associated with an increased risk and aggressiveness of TC, and there were gender differences in most stud-
ies. Abnormal metabolism places the body in a state of chronic inflammation for a long time, and thyroid-stimulating 
hormones may initiate tumorigenesis. Insulin resistance has a central role assisted by adipokines, angiotensin II, and 
estrogen. Together, these factors contribute to the progression of TC. Therefore, direct predictors of metabolic disorders 
(e.g., central obesity, insulin resistance and apolipoprotein levels) are expected to become new markers for diagnosis 
and prognosis. cAMP, insulin-like growth factor axis, angiotensin II, and AMPK-related signaling pathways could provide 
new targets for TC treatment.

Highlights

• Met S and its components were associated with an increased risk and aggressiveness of thyroid cancer.
• The obese males have a tighter association with thyroid cancer, and females have a higher thyroid cancer risk among 

diabetes.
• Thyroid-stimulating hormones may be a switch for thyroid carcinogenesis.
• Insulin resistance plays a critical role in the development of thyroid cancer.
• Abnormal levels of adipocytokines and blood pressure related regulatory hormone assist in accelerating thyroid 

cancer progression.
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1 Introduction

The incidence of thyroid cancer (TC) has been on the rise in recent years. Most cases involve small papillary thyroid cancer 
(PTC) with a good prognosis [1, 2]. Some scholars believe that the use of ultrasound and fine-needle biopsy technologies 
enables the early detection and treatment of subclinical TC [3]. However, PTC with large sizes [4] and advanced stages 
[2] have also increased at diagnosis. The expert consensus in China points out that the rising numbers of TC patients not 
only result from the early screening, but may also be related to factors such as hormones and obesity [5]. Thus, other 
modifiable factors, such as lifestyle and environment, cannot be ignored. Metabolic syndrome (Met S), a group of revers-
ible and preventable disorders including central obesity, diabetes, hypertension, and dyslipidemia, has become a global 
problem due to the changes in people’s eating and leisure habits. Up to 15% of the people in China have metabolic 
disturbances [6]. In Western countries, the incidence rate is 20%- 25% among adults, and it increases with age reaching 
over 40% in those older than 60 years [7]. Met S itself changes the organism’s microenvironment and is accompanied by 
insulin resistance, both of which are related to  tumor formation. Thus, we reviewed the relationship between Met S and 
TC risk and prognosis, and its possible biological mechanism.

2  Metabolic syndrome, its components, and thyroid Cancer risk

2.1  Metabolic syndrome and thyroid cancer risk

Met S has been said to possibly increase the risk of disease, including carcinomas.  Studies have demonstrated that Met 
S increases the risk of various carcinogenesis apparatuses including the liver, colorectum, and mammary tissue [8], but 
the association between TC and Met S is inconsistent. In a prospective study by Almquist et al. [9], they investigated the 
possible impacts of all five Met S components on TC, but no significant association was observed using z-score calcula-
tion.  A recent large study found that Met S is a risk factor for TC after adjusting for age, sex, smoking status, alcohol 
consumption, physical activity, income, and affliction with chronic kidney disease. The risk of TC is related to the number 
of aberrant metabolic components [10]. In agreement with the results of this study, López-Jiménez then showed that the 
risk of TC was 1.29, 1.57, and 1.71 times, respectively, in participants with one, two, and three or more abnormal metabolic 
factors than in the metabolically healthy population [11]. However, Nguyen et al. [12] further showed that Women with 
Met S are at increased TC risk regardless of normal weight or obesity (BMI≥25 kg/m ), but this positive correlation was 
not found in men.

2.2  Obesity and thyroid cancer risk

Body mass index (BMI) is the most commonly used index to describe the degree of human obesity, and it is also the 
most frequent measure used to evaluate obesity and TC risk. Based on the World Health Organization (WHO) definition 
of obesity in Asians, Son et al. [13] concluded that obesity was positively correlated with the risk of TC after an average 
follow-up of 7 years in Koreans aged over 20 years. A meta-analysis including 22 prospective studies showed that the 
risk of TC increased by 6%, 13%, and 7%, respectively, for every 5 kg/m2 increase in total BMI, youth BMI, and middle-
aged and elderly BMI [14]. The results obtained by Kwon et al. [15] are consistent with those of this meta-analysis and 
showed that weight gain significantly increased the incidence of TC (hazard ratio [HR] = 1.15, 95% confidence interval 
[CI] 1.11–1.19), but weight loss was a protective factor for TC (HR = 0.89, 95% CI 0.86–0.93). While evaluating different TC 
histological subtypes, many studies found that obesity was positively correlated with the risk of PTC, follicular TC (FTC), 
and undifferentiated TC. However, obesity had a surprisingly negative correlation with the risk of medullary TC (MTC) 
(relative risk = 0.50, 95% CI:0.27–0.92) [16]. This reminds us of the differences in the origin and function of tumor cells. The 
first three types originate from thyroid epithelial cells, which secrete thyroid hormones and participate in the regulation 
of human metabolism. However, MTC comes from parafollicular C cells, which secrete calcitonin to maintain calcium 
balance. This may suggest the importance of thyroid hormones in metabolic disorders and tumorigenesis.

Most studies indicated that obesity significantly increased the risk of TC in male patients [13, 14, 17], whereas the 
correlation was stronger in female patients with BRAF-mutated PTC [18]. BMI, as a systemic index, reflects the amount 
of body fat. But the distribution of fat, especially that in the abdominal viscera, can better predict metabolic complica-
tions and neoplasia. Moreover, body composition changes with age; postmenopausal women experience shortened 



Vol.:(0123456789)

Discover Oncology           (2023) 14:23  | https://doi.org/10.1007/s12672-022-00599-7 Review

1 3

height, decreased skeletal muscle, and increased central fat, for example. And patient’s self-reported values were used 
to calculate their BMI in some studies. However, men tend to overestimate their height, and women are more likely to 
underestimate their weight [19]. The limited accuracy of BMI may explain why those studies failed to reveal the relation-
ship or the gender difference between BMI and TC risk. [20, 21]. The new diagnostic criteria for Met S further highlights 
the importance of central obesity. However, predicting the risk of TC is still controversial by using the waist, neck, or 
hip circumference or waist-hip ratio. Several studies showed that TC risk increased with the augment in the waist or hip 
circumferences and the waist-hip ratio [16, 22]. Kitahara et al. [23] found that after following nearly 200,000 people for 
an average of 10 years, the TC risk in males with abdominal obesity was higher than that in normal BMI, overweight, and 
obesity groups. Recalde et al. [20] suggested that in 19 kinds of cancer, changes (1 standard deviation increase) in BMI and 
waist circumference showed significant cancer risk consistency, whereas this increase failed to sign an increased TC risk.

Obesity is generally associated with an increased risk of TC, particularly in differentiated TC (DTC) and male patients. 
Weight control, especially in young adulthood, may reduce the risk of TC. However, the predictive value of different 
obesity indices needs to be further studied for TC risk.

2.3  Hyperglycemia and thyroid cancer risk

According to the latest results from the International Diabetes Federation Diabetes Atlas, about 463 million people 
(9.3%) live with diabetes in 2019 and this number has been continuously increasing up to 700 million (10.9%) in 2045. 
Simultaneously, about 7.5% of the global population has impaired glucose tolerance, and the figure is expected to  8.6% 
in 2045 [24]. High fasting blood glucose (≥ 6.1 mmol/L) or  diabetes mellitus suggests insulin resistance but its impact 
on TC risk is still controversial. A matched study showed that the history and duration of diabetes were not associated 
with TC risk , but women with diabetes fewer than 5 years have a reduced risk of TC [25]. However, up to 28% of Chinese 
cancer patients suffered from diabetes or impaired fasting glucose, both of which are associated with an increased risk 
of TC [26]. Lo et al. [27] analyzed the relationship between type 2 diabetes and cancer risk and found that diabetes was 
a risk factor for TC. Li et al. [28] included 16 cohort studies in their meta-analysis and confirmed this positive correlation. 
Subgroup analysis revealed that diabetes increased the risk of TC by 11% in females, but no significant TC risk was found 
in males with diabetes [28]. The gender disparity in risk could also be observed in another meta-analysis [29]. This rela-
tionship may vary from country to country, age, and course of diabetes [27].

Several studies have shown that drugs for diabetes at early stage have anti-tumor properties such as metformin and 
acarbose [30, 31]. This may partly explain the declined risk of TC in  women with short-course diabetes.

Insulin resistance is an important feature of type 2 diabetes. About 56% of PTC patients and 25% of FTC patients have 
insulin resistance. Moreover, insulin resistance was five times more common in DTC patients than in euthyroid individu-
als [32]. Directly assessing the TC risk posed by insulin resistance level may be more clinically significant. Heidar et al. 
[33] confirmed that the homeostatic model assessment of the insulin resistance model (HOMA-IR) was associated with 
TC occurrence (Odds Ratio [OR] = 2.43, 95% CI 1.35–5.51). A meta-analysis showed that TC risk was 1.40 times and 1.59 
times higher in patients with abnormal blood glucose and insulin resistance, respectively [17]. Bae et al. [34] excluded 
the effects of drugs and their results showed that elevated insulin, blood glucose level and HOMA-IR score were risk fac-
tors for TC females. Therefore, most studies suggest that hyperglycemia increases the risk of TC, especially in women, but 
several factors need to be further considered like age, insulin resistance, duration of diabetes, and antidiabetic agents.

2.4  Hypertension and thyroid Cancer risk 

Given the current prevalence of TC and hypertension, it is crucial to explore the relationship between these two diseases. 
In 2018, a meta-analysis first confirmed the link between hypertension and TC, showing a 14% increased risk of TC in 
hypertensive individuals [17]. Park et al. [10] showed that this positive correlation existed in both the obese (OR = 1.03, 
95% CI 1.01–1.06) and the non-obese (OR = 1.08, 95% CI 1.05–1.11).

Patients who have been diagnosed with high blood pressure take antihypertension drugs for life, a much longer time 
than that of the initial trial to test drug safety. It is worth mentioning that there are two opposing views on the impact of 
antihypertensive drugs on cancer: one is that the long-term use of certain antihypertensive drugs increases the risk of car-
cinoma. A multivariate analysis showed that ovarian cancer patients, who took calcium channel blockers before surgery, 
had an increased risk of death compared with those who did not take a such drug (HR: 1.49, 95% CI 1.13–1.96). However, 
no association was found between taking thiazide diuretics, beta-blockers, or angiotensin-converting enzyme inhibi-
tors (ACEI) and cancer risk [35]. A meta-analysis found similar results from 33 studies [36]. Of the four most commonly 
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used antihypertensive medicines, only calcium channel blockers were found to be weakly correlated with cancer risk 
(HR: 1.06, 95% CI 1.01–1.11).

The opposite views hold that antihypertensive drugs have no influence on cancer occurrence or even improve cancer 
prognosis. In a meta-analysis, Cancer patients had longer survival using AECI or angiotensin II (Ang II) receptor blocker 
(ARB) [37]. Biological mechanism of antihypertensive drugs may vary greatly on cancer risk and progression. A study on 
Swiss men with high systolic blood pressure (SBP) showed that the men had a 41% higher risk of malignant tumors after 
an adjustment for different agents [38]. Unfortunately, the study did not involve TC patients, but its results may suggest 
that SBP plays a larger role in tumorigenesis induced by hypertension.

2.5  Dyslipidemia and thyroid cancer risk

According to  Met S diagnostic criteria, dyslipidemia is regarded as an increase in serum triglyceride (TG) or a decrease in 
high-density lipoprotein cholesterol (HDL-C). In China, over 40% of adults have dyslipidemia [39].  The burden of dyslipi-
demia and its complications is continually worsening. The blood lipid profile of Chinese TC female patients showed higher 
TG and lower HDL-C levels compared to those with benign tumors (P < 0.05) [40]. Park et al. [10] showed that low HDL-C 
is an unfavorable factor for TC, whereas high TG is a protective factor. In a prospective study on cancer risk in Austria, 
the investigators enrolled 101 patients with TC and found that a high TG level was associated with an increased risk of 
TC (HR = 1.96, 95%CI 1.00–3.84) [41]. However, a recent meta-analysis of 42 studies showed no association between the 
risk of TC and dyslipidemia (neither high TG level [OR = 1.01, 95%CI 0.91–1.12] nor high total cholesterol level [OR = 1.09, 
95%CI 0.98–1.21]) [17].

Lipid physiological functions may lead to different tumorigenesis risks. HDL-C transports cholesterol from peripheral 
tissues to the liver for metabolism, limiting cholesterol deposition in the blood vessels and thereby reducing vascular 
endothelial damage. A rise in the TG level often reflects an increase in very low-density lipoprotein and its residual 
particles. These smaller particles cause direct damage to the blood vessels, and vascular injury accelerates cell invasion 
and metastasis. Fibrates are often used for the lipid-lowering treatment of patients with high TG levels, and may have 
protective functions in tumor progression in the breast, gastrointestinal tract, respiratory tract and urinary system [42, 
43]. However, the aforementioned studies lacked data on whether the patients took drugs, if they did, what drugs they 
took, and how they took these.

3  Metabolic syndrome, its components, and thyroid Cancer prognosis

3.1  Metabolic syndrome and thyroid cancer prognosis

Met S is a risk factor for the postoperative recurrence of breast cancer, prostate cancer, colorectal cancer, and other 
malignant tumors [44–46]. Our previous study first showed that PTC with Met S was related to tumor size  > 1 cm, lymph 
node metastasis, and later TNM stage [47]. Aggressive clinicopathological features are prognostic factors for TC, but major 
studies, including ours, lacked the long-term follow-up  to verify the effect of Met S on TC survival .

3.2  Obesity and thyroid cancer prognosis

Many studies have investigated the relationship between BMI and TC prognosis. In a large retrospective analysis by Li 
et al. [48], obesity was correlated with PTC diameter  > 1 cm, multifocal carcinoma, extrathyroidal extension (ETE), lymph 
node metastasis and metastatic number according to the WHO criteria or the BMI classification in China. A meta-analysis 
yielded similar results: PTC patients had an increased risk of invasive pathological features with a BMI increase [49]. TNM 
staging is clinically used to evaluate patients’ prognosis, Warakomski et al. [50] found that abdominal adiposity was a risk 
factor for TNM stage III-IV, while gender was adjusted only in the multivariate analysis. But most studies including ours 
failed to show that obesity is associated with later TNM stages [47, 49, 51]. Tumorigenesis is a long process of metabolic 
disorders where different components may be responsible for specific stages. The clinical role of obesity, especially central 
adiposity, needs to be confirmed after controlling the “interfering effect” in large samples.
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Wu et al. [52] conducted a matched retrospective analysis of 57 patients with recurrent TC and found that obesity 
was an independent risk factor for recurrence. Patients with normal weights had higher disease-free survival rates than 
those with underweight, overweight, or obesity. However, in the study by Kim et al. [51], 43 of the 2057 PTC patients had 
recurrences after a 7-year follow-up, and there was no statistically significant difference in recurrence between the obese 
group and the normal BMI group. Feng et al. [53] also did not find a relationship between obesity and local recurrence 
of PTC after median follow-up of 2.4 years in 417 PTC patients. Well differentiated PTC has a favorable prognosis, specifi-
cally its 10-year survival rate is more than 90%. Therefore, long-term follow-up is still needed to prove the relationship 
between obesity and  clinical prognosis of TC.

3.3  Hyperglycemia and thyroid cancer prognosis

In a study by Hu et al. [54], fasting blood glucose level increased the risk of PTC diameter  > 1 cm. Mele et al. [55] followed  
57 DTC patients who underwent total thyroidectomy for 3 years, and found that their insulin levels and HOMA-IR scores 
were associated with the recurrence of TC (p < 0.05). However, neither Chen et al. [56] nor Song et al. [47] demonstrated 
a relationship between hyperglycemia and the clinicopathological features of TC. This may be because a large proportion 
of the patients in the such study reported a history of diabetes by themselves. In a study involving 1687 DTC patients, 
122 of whom also had type 2 diabetes, their 5-, 10- and 20-year specific survival rates were 82.2%, 72.9%, and 36.5% 
respectively in the type 2 diabetes group and 94.9%, 91.4%, and 61.3% in the non-diabetes group. Multivariate analysis 
showed that type 2 diabetes was an independent risk factor for TC-specific death [56].

3.4  Hypertension and thyroid cancer prognosis

To date, no large-scale study has explored the relationship between hypertension and TC prognosis. In a cancer pro-
ject, cancer mortality increased in both men (OR = 1.12, 95% CI 1.08–1.15) and women (OR = 1.06, 95% CI 1.02–1.11) 
with every 10mmHg rise in mean arterial pressure [57]. However, this project only included a small amount of TC 
patients. The results of our previous study showed that hypertension was related to PTC diameter > 1 cm and TNM 
stages II-III [47].

3.5  Dyslipidemia and thyroid cancer prognosis

Li et al. [58] first analyzed the relationship between blood lipid levels and the clinicopathological features of PTC and 
found that a high TG level was a risk factor for ETE and distant metastasis in female PTC patients. Specifically, the risk of 
ETE increased by  1.35 times when the TG level rose from 0.90 mmol/L to1.93 mmol/L. Nevertheless, our study did not 
present the relationships between high TG level and tumor size, multifocal tumor, lymph node metastasis, and TNM 
stage in PTC patients [47]. In terms of HDL-C, some researchers observed higher levels in patients with PTC lymph node 
metastasis than in those without metastasis (P = 0.024), and there was no statistically significant difference in FTC and 
MTC [40]. However, Revilla et al. [59] indicated that the HDL-C levels in the invasive TC group (high-risk PTC, dedifferenti-
ated/undifferentiated TC) were similar to those in the benign tumor group. Our multivariate analysis showed that a low 
HDL-C level was a risk factor for tumor size > 1 cm and lymph node metastasis [47]. A meta-analysis of cancer survivors 
showed that patients with high HDL-C levels before a diagnosis of malignancy had a 37% lower risk of death and 35% 
lower risk of recurrence than those with low HDL-C levels [60].

In previous studies, there was a controversy over the relationship between dyslipidemia  and TC prognosis. HDL-C, a 
potential tumor inhibitor, plays anti-inflammatory and antioxidant roles mainly through apolipoprotein A1(ApoA1) and 
paraoxonase 1(PON1). Studies have shown that a preoperative decrease in  ApoA1 level is related to aggressive tumor 
features and shortened disease-free survival in solid tumors [61]. Therefore, the important structural fragment of HDL-C 
may be a guiding predictor for PTC patients with abnormal HDL-C metabolism.

Most studies held that Met S is related to the occurrence of TC, although this relationship is not conclusive (Table 1). 
Future research should explore more diagnostic indicators in depth after adjusting for age, gender, treatment time, and 
methods. The effects of  Met S components differ by gender on TC. Obese males have an increased TC risk, while women 
had a higher risk in patients with hyperglycemia.



Vol:.(1234567890)

Review Discover Oncology           (2023) 14:23  | https://doi.org/10.1007/s12672-022-00599-7

1 3

Similarly, it is not yet clear whether Met S affects the prognosis of TC. Most studies only explored the correlation 
between Met S and the clinicopathological features of TC patients, and their results showed that Met S is related to the 
aggressiveness of TC (Table 2). Further confirmation of the prognostic value of central obesity, insulin resistance, ApoA1, 
and PON1 must be obtained in  large sample size and after long-term follow-up .

Table 1  Relationship between metabolic disorders and thyroid cancer risk

PCS prospective cohort study, RCS retrospective cohort study, Met S metabolic syndrome, RR risk ratio, HR hazard ratio, OR odd ratio, HDL-C 
high-density lipoprotein cholesterol, NA not available, BMI body mass index, WC waist circumference, SD standard deviation, FSG fasting 
serum glucose, HOMA-IR homeostatic model assessment for insulin resistance, CI confidence interval

*The population in test group are metabolically unhealthy women with normal weight or obesity

Author Year Study design Metabolic status Total patients TC patients Measurement 95%CI

Almquist et al.[9] 2011 PCS Met S score 578,700 388 RR males=1.13 0.94–1.35
RR females=1.00 0.87–1.15

Park et al.[10] 2020 RCS Met S 9,890,917 77,133 HR = 1.15 1.13–1.17
Hypertension HR = 1.08 1.06–1.10
HDL-C HR = 1.17 1.15–1.19
Triglycerides HR = 0.96 0.95–0.98

López-Jiménez et al.[11] 2022 RCS Met S 13,626 2,709 OR = 1.71 1.50–1.95
Nguyen et al.[12] 2022 PCS Met S 160,650 471 HR normal weight =1.57* 1.02–2.40

HR obesity =1.71* 1.21–2.41
Son et al.[13] 2018 RCS Obesity 351,402 3,308 HR BMI =1.27 1.05–1.55
Kitahara et al.[14] 2016 Meta analysis Obesity 2,094,047 2,996 HR BMI per 5 kg/m =1.06 1.02–1.10

HR WC per 5 cm =1.03 1.01–1.05
Kwon et al.[15] 2019 RCS Obesity 11,323,006 50,464 HR BMI =1.52 1.45–1.59
Schmid et al.[16] 2015 Meta analysis Obesity NA 12,199 RR = 1.55 1.21–1.99
Yin et al.18 2018 Meta analysis Hyperglycemia 21,713 4,707 RR insulin resistance =1.59 1.12–2.27

RR diabetes =1.40 1.15–1.70
Hypertension RR = 1.34 1.22–1.47
Dyslipidemia RR = 1.05 0.97–1.13

Rahman et al.[18] 2020 RCS Obesity 2070 1013 OR = 1.72 1.37–2.16
Youssef et al.22 2020 Meta analysis Obesity 24,489,477 18,015 RR = 1.5 1.45–1.55
Recalde et al.21 2021 PCS Obesity 3, 658,417 2,688 RR BMI per 1SD =1.08 0.94–1.26

RR WC per 1SD =1.15 0.98–1.34
Kitahara et al.23 2011 PCS Obesity 197,710 210 HR WC male =1.79 1.21–2.63

HR WC female =1.54 1.05–2.26
Kitahara et al.[23] 2020 PCS Obesity 457,331 604 HR BMI =1.3 1.05–1.62
Wang et al.[25] 2021 Case-control Hyperglycemia 5874 2,937 OR diabetes =0.75 0.21–2.73
Zhan et al.[26] 2009 RCS Hyperglycemia 4,421 73 OR diabetes =14.32 1.56-131.49

OR FPG =1.49 1.09–2.02
Lo et al.[27] 2012 RCS Hyperglycemia 1,790,868 1,309 HR diabetes =1.17 1.05–1.31
Li et al.[28] 2017 Meta analysis Hyperglycemia 10,725,884 8,032 RR diabetes =1.2 1.09–1.33
Yeo et al.[29] 2014 Meta analysis Hyperglycemia NA 3566 RR diabetes =1.18 1.08–1.28
Heidar et al[33] 2017 Case-control Hyperglycemia 60 30 OR insulin resistance=4.95 1.27–17.6

OR HOMA−IR =2.43 1.35–5.51
Bae et al.[34] 2015 RCS Hyperglycemia 1,272 735 OR insulin=2.88 2.01–4.11

OR glucose = 9.32 2.81–5.89
OR HOMA−IR = 4.07 6.28–13.83

Ulmer et al.[41] 2009 PCS Triglyceride 156,153 101 HR = 1.96 1.00-3.84
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4  Mechanism of the relationship between metabolic syndrome and thyroid Cancer

4.1  Pathogenetic hypothesis

The current high incidence of Met S is accompanied by an increase in cancer cases worldwide. Whether there is a poten-
tial relationship between the two diseases, and if so, the mechanism of such a relationship needs to be futher explored. 
First, Met S may be an alternative marker for other cancer risk factors, such as reduced physical activity, high-calorie food 
intake, high dietary fat intake, low fiber intake, and oxidative stress. A healthy weight, regular physical activity, and a 
healthy diet can greatly reduce the lifetime risk of cancer and also affect the overall curative outcome and survival rate 
[62]. Second, the tumor may be the result of the long-term progression of Met S, as clinical evidence suggests that Met 
S is a risk factor for various cancers [8]. Finally, there may be shared a biology in the development of the two separate 
disease entities. For example, vascular endothelial injury can lead to the conducive increase of vascular endothelial 
growth factor (VEGF) for tumor angiogenesis.[63]

Undoubtedly, as metabolic changes occur in vivo, disorders occur at the related molecular level. These molecules lead 
to the proliferation, invasion, and metastasis of TC through various signaling pathways and target genes (Fig. 1). Thyroid 
hormones are involved in the body’s energy balance, regulate glucose and lipid metabolism, and stabilize blood pressure. 
Higher hormone levels pose  an increased risk of Met S [48]. Meanwhile, rich immune cells, epithelial cells, and adipocy-
tokines result in the formation of a favorable microenvironment for tumor growth in obese individuals [64]. Hyperglyce-
mia, especially type 2 diabetes, is often accompanied by insulin resistance, which in turn enhances the systemic effects 
of insulin-like growth factor (IGF). Moreover, the renin-angiotensin-aldosterone system (RAAS) is a major pathway for 
regulating blood pressure where the rise of Ang II can accelerate tumor progression. Additionally, lipids play an important 
role in cell membrane integrity and act as barriers for molecules entering and leaving cells. Cholesterol is a precursor 
of steroid hormones and tumor growth requires adequate cholesterol for the cell cycle and cell membrane formation.

Fig. 1  Mechanistic network of metabolic syndrome and thyroid cancer. TSH thyroid stimulating hormone, TSHR thyroid stimulating hor-
mone receptor, IR insulin receptor, IGF insulin-like growth factor
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4.2  Thyroid‑stimulating hormone (TSH)

A higher TSH level, even within the normal range, is currently considered as an independent risk factor for TC [65]. TSH acts 
on thyroid epithelial cells, which not only affects thyroid function but also stimulates cell proliferation. TSH is correlated 
with each Met S component even in normal thyroid status [66, 67]. This is demonstrated by the fact that the number of 
diabetes patients with elevated TSH levels is 3.5 times than that of non-diabetic patients [68].  TSH receptor is decreased 
in the adipose tissue of obese patients, and then the TSH level presents a compensatory increase [69]. TSH makes it easier 
for dividing epithelial cells to enter the G1 phase, maintain a high level of cAMP, and activate AC/cAMP/PKA pathway. 
Furthermore, cAMP can form a “signal network” of thyroid tumorigenesis by linking with the RAS/MAPK/ERK, PI3K/AKT, 
and Wnt pathways (Fig. 1). Thus, thyroid cells evolve into different tumor types and perform different biological behaviors 
[70, 71]. DTC cells retain their reactions to TSH, and TSH endocrine suppressive therapy is often used to control tumor 
progression after surgery. As described in the previous study [16], most TC cases related to Met S originated from thyroid 
epithelial cancer. Therefore, TSH may play a priming role in the development of Met S and TC.

4.3  Insulin resistance

IGF axis may be another key pathway for inducing TC. When glucose intake and utilization are weakened, the body pro-
duces a large amount of compensatory insulin. This is known as insulin resistance, which is often accompanied by hyper-
insulinemia and hyperglycemia. Insulin and IGF-1 are similar in structure and work together with TSH to promote DNA 
synthesis and cell proliferation. Meanwhile, insulin may inhibit the synthesis of IGF-binding proteins 1 and 2 (IGF-1 and 
IGF-2, respectively) and may promote the production of IGF-1 in the liver [72]. There is powerful evidence that cancerous 
thyroid cells often overexpress insulin receptors (IRs) and the IGF-1 receptor (IGF-1R) [71, 73]. IR exists in two subtypes: 
namely IR-A and IR-B. IR-A exists mainly in the fetus, and has an affinity with insulin and IGF-2, while IR-B binds only to 
insulin. Overexpression of IR may occur in the early stage of thyroid tumor formation and is key to the over-activation of 
the IGF system [73]. The two isoforms can hybridize with IGF-1R to form a hybrid IR/IGF-1R. This hybrid receptor binds 
to IGF-1 and further expands its action site. Cancerous thyroid cells can produce IGF-1 and IGF-2 locally: stromal cells 
secrete IGF-1, while IGF-2 is produced by tumor cells [73]. That IGF-2 regulates the IR-A excessive activation ultimately 
influences TC invasiveness, stem celllike characteristics, and response to treatment [71, 74, 75]. Thus, inhibiting IGF-2/
IR-A may become a new idea for targeted therapy [76, 77].

In addition, hyperglycemia provides sufficient energy for rapid tumor growth, while damaging mitochondrial function, 
enhancing oxidative stress, and aggravating DNA damage [78, 79]. Under high-glucose condition, cytoskeleton remod-
eling creates a good microenvironment and facilitates cell metastasis and epithelial-mesenchymal transformation [79]. 
Therefore, insulin resistance is the central part of Met S and enhances the effects of the TSH and IGF systems. Repairing 
insulin resistance condition  can inhibit tumor growth and proliferation, ameliorate the curative outcome of treatment, 
and uplift patients’ prognosis.

4.4  Adipocytokines

Fat accumulation induces insulin resistance and long-term chronic inflammation, thereby breaking the stability of sys-
temic metabolism. Leptin and adiponectin are the main hormones secreted by adipose tissue. The former binds receptors 
to suppress appetite and speed up energy metabolism. The latter is a protective factor with anti-inflammatory, insulin 
sensitization, and anti-arteriosclerosis actions. Obese people are prone to elevated leptin levels and decreased adiponec-
tin levels [80]. Meanwhile, the common fat cells around the tumor could undergo morphological and functional changes. 
These tumor-associated adipocytes are often located at the interlaced sites of the tumors and the surrounding fat. The 
neck is a common site for fat accumulation, and lymph nodes are closely connected to adipocytes. TC patients are more 
likely to suffer from lymph node metastasis, so the role of tumor-related adipocytes cannot be ignored. These cells can 
gradually exhibit delipidation and dedifferentiation, and can gradually become severe endocrine entities. They may start 
to secret adipokines and inflammatory factors, the most important of which are leptin, adiponectin, and Visfatin [81].
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4.4.1  Leptin

Siemińska et al. found that leptin levels were positively correlated with abnormal metabolic components in postmeno-
pausal women [82]. Studies have shown that leptin plays an important role in dysmetabolic conditions, immunological 
functions, and tumor progression [83]. The leptin levels of PTC patients increased before surgery and decreased after 
total thyroidectomy, but were still higher than those in the healthy controls [84]. Eighty percent of PTC overexpress 
leptin receptors known as long and short isoforms [85, 86]. Leptin binds its long receptor to increase cell proliferation 
and inhibit the apoptosis by activating PI3K/AKT pathway and phosphorylating JAK2. (Fig. 1) [85, 86]. In addition, leptin 
induces the phosphorylation of  ERK and then enhances the migration of malignant cells [87]. Studies have shown that 
leptin and its receptors are associated with the aggressiveness of DTC and that patients with high leptin have worse 
short prognoses  [88].

4.4.2  Adiponectin

Cheng et al. found that TC patients have lower levels of circulating adiponectin than the healthy population, and that 
the adiponectin receptor is expressed more highly in cancer tissues than that in normal thyroid tissues [89]. Adiponec-
tin working together with receptors can upregulate the LBK1 and AMPK levels [90]. AMPK activation is a crosstalk for 
adiponectin to exert its antitumor properties. Because it strengthens the body’s defense mechanism, but also inhibits 
the carcinogenic signal pathway. AMPK directly upregulates tumor suppressor genes (p27, p21, and p53) and prevents 
cell miosis and apoptosis via PP2A [91-93]. Cyclin D1 and mTOR, important cell proliferators to control cell cycles, are 
downregulated by AMPK [91, 94].   In addition, eEF2 kinase is activated by AMPK to induce cytotoxic autophagy and to 
reduce VEGF output [91, 95]. This makes tumors difficult to protein formation and angiogenesis. Nigro et al. [96] showed 
that adiponectin treatment can inhibit PTC growth and proliferation in a time- and dose-dependent manner. However, 
further verification is still needed in TC, even if adiponectin has been proven to play a protective role in multiple malig-
nancies through the aforementioned mechanisms.

4.4.3  Visfatin

Visfatin is a rate-limiting enzyme for ATP production that catalyzes the synthesis of nicotinamide adenine dinucleotide 
(NAD+). Visfatin is mainly produced by visceral fat and has been demonstrated to promote cell growth in a variety of tumors 
[97]. Visfatin can be involved in the glycolysis, DNA repair, and angiogenesis of tumor cells through NAD+. Compared with 
benign tissue, visfatin is largely secreted in well-differentiated thyroid carcinomas and is positively correlated with later tumor 
stages [98, 99]. Studies have shown that common PAX8/PPAR rearrangement, PTEN, and PI3K gene mutations upregulate 
the levels of HIF-1 and STAT3, which jointly promote the visfatin of TC in abundance [98]. STAT3 also adjusts the release of 
interleukin-6 (IL-6) and further exacerbates the inflammatory response.

Leptin, adiponectin, and visfatin indirectly participate in the tumor formation process through key molecules such as 
AMPK, STAT, and PI3K. They also improve insulin resistance and assist in secreting related inflammatory molecules. Adipokines 
may play a supporting role in the relationship between Met S and TC. However, more clinical evidence and basic experiments 
are still needed to verify their biological pathogenesis.

4.5  Angiotensin II

RAAS known for its role in BP regulation also play a considerable part in cancer progression. Angiotensin-converting enzymes 
(ACE and ACE2) regulates RAAS balance through producing respectively Ang II, a powerful vasoconstrictor and cell prolif-
erator, and its antagonist Ang - (1-7). Notably, the ACE2 levels were lower in samples with larger thyroid tumors and distant 
metastases [100]. Ang II is a commonly active peptide involved in blood pressure regulation and tumor formation. It has 
opposite effects upon binding with Ang II receptor 1 (AT1) and Ang II receptor 2, whereas only AT1 has been confirmed to 
be expressed in the thyroids of mice [88]. After binding to AT1, Ang II is directly activated to promote mitosis and induce cell 
proliferation through MAPK/STAT3 and PI3K/AKT pathways [101, 102]. Furthermore, AT1 interacts with nicotinamide adenine 
dinucleotide phosphate oxidase to produce a large number of reactive oxygen species, activate NF- κB, and inhibit apoptosis 
[101]. Activated AT1 participates in tumor angiogenesis by facilitating the expression of matrix metalloproteinases,  VEGF, 
and its receptors [101, 102]. Studies have shown that VEGF is overexpressed in PTC and is related to lymph node metastasis 
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[103]. The fact that the tumor size shrunk after treatment with AT1 antagonists supports the role of AT1 in tumor formation 
[104]. In addition, RAAS reshapes the extracellular matrix and establishes an inflammatory microenvironment conducive 
to tumor survival [102]. Ang II finally takes part in distant metastasis by regulating adhesion, migration, and invasion [105].

4.6  Others

The relationship between Met S and TC may also involve etiology such as inflammation, estrogen, and physical factors. 
Each Met S component could induce systemic chronic inflammation, produce reactive oxygen species, and cause cell 
damage [106]. A meta-analysis showed that the levels of inflammatory factor, such as TNF - α and IL-6, were significantly 
higher in TC patients than in healthy people [107]. Second, estrogen stimulates growth but inhibits the differentiation of 
thyroid stem cells [108]. It combines with receptor-β to counter swelling, whereas with receptor-α to promote cell growth 
and proliferation. Increased receptor-α levels in postmenopausal women may indicate their poor TC prognosis [109]. In 
addition, 27 hydroxycholesterols (27 HC), products of cholesterol metabolism, could interact with estrogen receptors and 
activate EGFR/AKT and EGFR/ERK signaling pathways. These events increase tumor angiogenesis and restrain apoptosis 
[110]. Revilla et al. showed that 27-HC increased and LDL-C decreased in patients with invasive TC, but there was no 
significant difference in HDL-C levels between these patients and those with well-differentiated TC and benign thyroid 
tumors [111]. However, as only 89 patients were included in this study, the role of cholesterol in TC needs to be further 
explored. Finally, thick adipose tissue delays the detection of TC through palpation, which increases surgical difficulty 
and length and ultimately leads to a poor prognosis.

5  Conclusion

To date, there is insufficient research on the relationship between Met S and TC risk and prognosis. Most studies suggested 
that Met S components increased the patient’s risk of TC with gender differences. There is a correlation between these 
metabolic factors and PTC aggressiveness, but the prognostic relationship is unclear. Abnormal metabolism keeps the 
body in a state of inflammation for a long time. TSH may trigger neoplastic transformation. Insulin resistance is the core 
component, supplemented by adipokines, Ang II, and estrogen. All of them together drive the development of TC. cAMP, 
IGF axis, Ang II, and AMPK-related signaling pathways may give new targets for TC therapy. Indicators directly reflecting 
the metabolism are expected to become new diagnostic markers. Hence, weight management and a healthy diet can 
perfect body metabolism, reduce TC risk, and ameliorate prognosis.
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