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Abstract Mindfulness can be conceptualized as either a state
or a trait, but currently, there is no reliable psychometric meth-
od to distinguish clearly between the two in psychological
measures. Notwithstanding the clinical effectiveness of mind-
fulness, any specific element of mindfulness treatment can
only be evaluated by comparing state and trait changes using
techniques that allow such changes to be measured.
Generalizability Theory (GT) is a suitable method to differen-
tiate between state and trait variance components, and its ap-
plication is illustrated here with an empirical example using
the Toronto Mindfulness Scale (TMS). Person × occasion in-
teraction is a marker of individual state changes and should
explain the largest amount of variance in a valid state measure.
To assess state variability, data were collected on three sepa-
rate occasions: (i) after a holiday, (ii) immediately after a
mindfulness exercise, and (iii) before a stressful event (i.e.,
exam). Generalizability analysis was applied to examine
sources of true and error variances. The TMS captured a larger
amount of variance attributed to a state and only a small
amount associated with trait mindfulness, which is consistent
with the purpose of the measure. This study has demonstrated
that Generalizability Theory can be usefully applied to distin-
guish between state and trait components in a measure, and it
is recommended as an appropriate psychometric meth-
od to validate state and trait measurement tools. These find-
ings have far-reaching implications to improve the accuracy of

the distinction between state and trait in mindfulness measure-
ment and other areas of psychological assessment.

Keywords State mindfulness . Torontomindfulness scale .

Measurement . Generalizability theory . Psychometrics .

Validation

Introduction

Mindfulness practice has become popular as a safe, non-
invasive method for the management of stress and emotional
problems and for the improvement of psychological and phys-
ical wellbeing (Baer 2003; Brown and Ryan 2003;
Rosenzweig et al. 2010). In the context of psychological treat-
ment, mindfulness can be described as Bthe non-judgmental
observation of the on-going stream of internal and external
stimuli as they arise^ (Baer 2003, p. 125). Recently, there
has been an explosion of interest in the application of mind-
fulness training to a wide range of psychological and health
conditions. There is a rapidly growing evidence base for the
clinical application of mindfulness practices for alleviating
symptoms and enhancing the coping abilities of people suf-
fering from anxiety, stress, depression, emotional instability,
substance abuse, post-traumatic stress disorder (PTSD), bor-
derline personality disorder, psychophysiological disorders,
suicidal/self-harm behavior, and chronic pain reduction
(Hofmann et al. 2010; Ivanovski and Malhi 2007;
Rosenzweig et al. 2010). With the increased application of
mindfulness-based interventions, the accurate measurement
of both a general tendency to be mindful (a trait) and an
individual’s degree of mindfulness at any particular point in
time (a state) has become an important clinical and research
issue. Also, reliable measurement of state and trait mindful-
ness is necessary during both therapeutic interventions and
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neurophysiological studies (e.g., EEG) on mindfulness (Cahn
and Polich 2006; Chiesa and Serretti 2010).

A trait refers to a relatively stable characteristic or enduring
behavioral pattern displayed by a person, while a state repre-
sents an individual’s experience in a given moment, situation,
or condition (Hamaker et al. 2007; Spielberger et al. 1970).
Essentially, a state is determined by interaction between per-
son and occasion and reflects an individual’s unique adapta-
tion to the present moment and environment (Buss 1989;
Epstein 1984). However, reliability and validity of psycholog-
ical measurements such as mindfulness may be compromised
through confounding of mindfulness as a state and a trait. It is
important to develop and apply reliable methods for
distinguishing between the two, otherwise, therapeutic inter-
ventions, for example, cannot be assessed for their effective-
ness over time. Mindfulness-based interventions aim at lasting
or trait changes, and if only state changes are achieved during
treatment, relapse is inevitable. This is because state can be
explained as more short-term experience (e.g., immediately
after a session), whereas trait refers to a pattern established
over the longer term (e.g., lasting beyond completion of a
mindfulness program).

Generalizability Theory (GT) is an analytical technique for
data acquired using psychometric instruments (e.g., rating
scales, performance tests). It is named GT because it estimates
the extent to which the influence of any specific source of
error variance can be generalized to all possible situations
and contexts as opposed to only a limited amount of data
obtained from a specific testing situation (Cronbach et al.
1963). GTassesses numerous sources of variance contributing
to the measurement error associated with the main variable of
interest (e.g., a mindfulness score) (Allal and Cardinet 1976).
It represents an extension of classical test theory (CTT), based
on the idea that every score consists of both true and error
values, but it goes beyond its limited assumption considering
error variance as a single factor (Allen and Yen 1979). In
naturally occurring environments, there are more factors in-
cluding personal (e.g., personality), methodological (e.g., psy-
chometric characteristics of the measure used), and situational
(e.g., time of the day) that might each independently contrib-
ute to measurement error. GT provides an advanced method
for assessing these factors and their interactions thus contrib-
uting to the improvement of methodology and precision of an
assessment instrument.

GT employs repeated measures factorial analysis of vari-
ance (ANOVA) to estimate the relative contribution of differ-
ent sources of variability to the overall measurement error,
which is also referred to as Bnoise^ (Brennan 2001). Every
such contribution can be expressed as an intra-class correla-
tion coefficient (ICC) ranging from 0 to 1. An ICC is a reli-
ability coefficient that expresses the ratio between the amount
of variance in scores attributed to the primary variable being
measured and the total amount of observed variance. For

instance, the amount of variance between mindfulness scores
that is explained by differences between the participants can
be represented as an ICC that reflects the discriminative ability
of the mindfulness questionnaire as follows (Bloch and
Norman 2012):

ICC ¼ variance participantsð Þ
variance participantsð Þ þ variance errorð Þ

Here, ICC depends on two factors: the actual ability of an
instrument to discriminate between participants and the
amount of noise due to other influencing factors. ICC was
originally introduced in CTT, represented by a slightly differ-
ent but essentially similar formula using the concept of Bsig-
nal-to-noise ratio^ (SNR) (Fisher 1925). SNR is math-
ematically equal to the square of the effect size (ES2), which
could be extracted from any ANOVA analysis and represents
a ratio between consistent change (variance) in the X variable
that refers toΔX and total variance (σ2) in the data (Bloch and
Norman 2012):

SNR ¼ ES2 ¼ ΔX2

σ2

Therefore, ICC based on SNR definition is expressed by
the following formula:

ICC ¼ SNR

1þ SNR

The larger the amount of variance in a variable of interest
(signal) compared to noise, the better are the chances to detect
these changes reliably. An ICC closer to 1 would indicate that
there is mainly a real difference related to signal and relatively
a low amount of noise, and an ICC close to 0 would indicate
that there was mainly noise or error in the data. ICC refers to a
G-coefficient in GT terminology and similarly expresses the
ratio of the observed (true) variance due to the object of mea-
surement (σ2p ) and the total variance of universe scores in-

cluding the observed (true) variance and the error variance
(σ2

error ) (Brennan 1992; Shavelson et al. 1989):

Gp ¼
σ2
p

σ2
p þ σ2

error

A G-coefficient is normally computed for the variable of
interest (e.g., trait mindfulness) but can also be computed for
every factor contributing to error variance, given that a re-
search design provides relevant data to assess variability due
to these contributions (Bloch and Norman 2012). In this case,
the G-coefficient expresses the generalizability of influence
attributed to specific factors to all possible situations and
contexts.

GT can be used to identify and compare the amount of
variance uniquely explained by the person, the item, and the
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occasion plus their respective interactions (Brennan 2001;
Bloch and Norman 2012). The variance due to person-
occasion interaction is a direct reflection of the Bstateness^ of
a latent construct, while person variance alone is a representa-
tive of a trait (Buss 1989; Chaplin et al. 1988; Epstein 1984).
Importantly, GT permits this analysis for the total test, sub-
scales, and even individual items. In other words, true Bstate
items^ can be distinguished from items that are not truly sensi-
tive to occasion. Estimation of variance associated with the
object of measurement (e.g., persons) and influencing facets
(e.g., occasions) is conducted in a G-study (generalizability
study). Variance components are estimated based on observed
values obtained from the universe of all possible (hypothetical)
observations. Scales and individual items measuring state
are expected to reflect a higher amount of variance at-
tributed to person-occasion interaction and low general-
izability across occasions (e.g., G < 0.70) as opposed to
reliable trait measures, which are expected to have G of
0.80 or higher (Arterberry et al. 2014; Gardinet et al.
2009). However, traits are the basic determinants of
states through interaction with situational factors for
the same latent construct, and a precise distinction be-
tween state and trait can only be estimated based on
their variance components (Hamaker et al. 2007;
Geiser et al. 2015). To date, there are no commonly
accepted bench marks for the relative proportions be-
tween state and trait components in a valid state mea-
sure, and we propose the state component index (SCI)
to estimate this relationship as follows:

SCI ¼ σ2
s

σ2
s þ σ2

t

In the above formula, the variance component of a state (σ2
s

=σ2
poÞ is essentially the noise or error variance due to person-

occasion interaction that affects trait scores. This reformula-
tion of the original ratio equation is essentially identifying the
ratio of state to trait including noise in both which we can
assume be equal because the trait (persons) component (σ2

t

=σ2
p Þ is the basic component of the state variance. To ensure

accuracy of measurement, the SCI calculation should use an
absolute value of variance due to person-occasion interaction
derived from G-analysis that accounts for all sources of error
variance identifiable in the data. SCI is developed in line with
GT logic and is easy to interpret. For instance, SCI = 1.00
would mean that there is no trait component and only individ-
ual state is measured, which appears unlikely because a trait is
a basic predictor of a state (Buss 1989; Epstein 1984).
SCI = 0.50 would mean that state and trait components are
the same, and a scale cannot be classified as either state or trait
measure. However, SCI > 0.60 can be considered as a charac-
teristic of a state measure with higher scores corresponding to

a better ability of an instrument to capture state changes.
Similarly, trait component index (TCI) can be used to validate
a trait measure using the same metric:

TCI ¼ σ2
t

σ2
t þ σ2

s

Therefore, more precise distinction between scales measur-
ing states and traits can be made based on G-study results. The
D-study (decision study) is based on G-study results and in-
volves experimenting with designs (e.g., fixed or random) in
an attempt to reduce measurement error (Brennan 2001;
Shavelson et al. 1989). It can be used to identify those items
that are not consistent with the purpose of the measure (e.g.,
items measuring trait in a state measure) and thus to improve
an instrument by removing them.

The traditional method for demonstrating distinct
state and trait components in a scale has been to exam-
ine test-retest reliability coefficients, which are expected
to be lower for a valid measure of state (e.g., <0.60)
and higher for a trait measure (e.g., >0.70) (Ramanaiah
et al. 1983; Spielberger et al. 1970, 1999). The main
limitation of this method that it is based entirely on the
total score correlations at Time 1 and Time 2. If rela-
tionships and distinctions between trait and state are to
be given a solid, systematic, and robust foundation,
there is a need to understand the different contributions
made by item effects, scale effects, person effects, and
occasion effects to changes in trait and state. Identifying
such effects will require a much deeper analysis of var-
iances found in the different dimensions of the research
study so that such variances can be identified and iso-
lated if necessary to provide a greater control in future
experimental studies. Most importantly, the test-retest
coefficient fails to account for variability due to inter-
action between person and occasion, which is an essen-
tial determinant of state changes in an individual (Buss
1989; Chaplin et al. 1988; Epstein 1984). Put simply,
we do not expect trait scores to vary a great deal across
situations. In contrast, the interaction between the per-
son and the occasion is a state by definition. To date,
the exploration of state and trait variability is limited to
structural equation modeling (SEM) approaches (e.g.,
Hamaker et al. 2007; Geiser et al. 2015; Kenny and
Zautra 2001) that are generally useful to study state-trait
relationships. However, none of the proposed SEM
methods account for various sources of variance (e.g., an
item) contributing to the measurement error associated
with state and trait variability, which limits their applica-
bility for validation of state and trait measures. Such dif-
ferences in variability require a more detailed study of how
factors or components that can affect state and trait, includ-
ing person and situation, can be quantified so that changes
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in state and trait can be predicted by knowing of changes in
person and situation, which is a true generalizability, in
other words.

While GTwas applied to assess reliability of trait measures
(e.g., Arterberry et al. 2014), we are not aware of any studies
to date that have used GT methods to distinguish between
state and trait components in a state measure. The aim of this
study is to demonstrate application of GT to investigate state-
and trait-related variance components in the Toronto
Mindfulness Scale (TMS) (Lau et al. 2006), the first and the
most frequently cited instrument designed exclusively to as-
sess state mindfulness. To increase state variability, data were
collected on three separate occasions: Bafter a University hol-
iday ,̂ Bafter a brief mindfulness exercise^, and Bbefore a
stressful event (class test)^. GT analysis was based on the
procedure described elsewhere (Bloch and Norman 2012;
Gardinet et al. 2009). Two-way repeated measures ANOVA
was used in the G-study design to assess the variance due to
object of measurement (persons) and sources of error variance
due to occasion, item, person-occasion, person-item, and
person-occasion-item interactions of the TMS subscales. We
expected a low generalizability of individual scores across
occasions (G < 0.70) (Arterberry et al. 2014) and a high
amount of variance due to person-occasion interactions
reflected by the proposed SCI above 0.60 as characteristics
of a valid state measure. The D-study was conducted to dem-
onstrate how the functioning of the TMS subscales and indi-
vidual items can be investigated and optimized by varying
facets designs.

Method

Participants

The sample size (n = 55) satisfied criteria for a reliability study
in medical research (Shoukri et al. 2004) and is adequate for
generalizability analysis because G-coefficients are essentially
similar to reliability coefficients (Bloch and Norman 2012).
Given the experimental nature of this study, where the focus is
on an initial measurement of the sample followed by an inter-
vention that is subsequently measured, no attempt was made
to set up a control group. Also, any biases introduced by the
convenience sampling method involved (all participants were
locally available and indicated willingness to participate) are
assumed to be distributed evenly throughout the sample. All
55 participants, who provided data at three different occa-
sions, were New Zealand university students, (78.2% females,
21.8%males) with a mean age of 23.44 (SD = 6.32) and range
of 18 to 44. Ethnic groups include Caucasians (49.1%),
Polynesians (16.4%), Asians (14.5%), and other ethnic-
ities (20%).

Procedure

Potential participants were approached in lectures and invited
to complete the survey on three different occasions and to
hand the survey directly back to the researchers or submit it
to a locked collection box at their respective faculty. Three
occasions were chosen to increase variability of state mindful-
ness, and data were collected Bafter a holiday ,̂ Bafter a mind-
fulness exercise^, and Bbefore a stressful event^. On the first
occasion, the first lecture after the summer holiday served as
the baseline. Here, students completed the questionnaire in
class before the lecture or during a short lecture break. The
second occasion occurred after a one-week interval, where
students completed the questionnaire at the beginning of lab-
oratory classes in a different environment and in smaller
groups. Prior to completing the questionnaire on occasion 2,
students participated in a 10-min guided mindfulness exercise
called Bbody scan^, which is a standard component of
Mindfulness-Based Cognitive Therapy (MBCT) (Segal et al.
2013). It was expected that the mindfulness exercise would
increase or at least influence mindfulness levels of the partic-
ipants. To ensure the same conditions across lab classes and to
minimize experimenter effects, the Bbody scan^ exercise in-
structions were played to the participants from the audio CD
included in the bookMindfulness: Finding Peace in a Frantic
World (Williams and Penman 2011). On the third occasion,
which occurred after a one-month interval after the first data
collection, students completed the questionnaire in the lecture
theater before the lecture. This occasion was a week before an
important class test, and the lecture included the test overview
and relevant discussion. It was expected that students would
have higher stress levels on this occasion, which might impact
on their mindfulness levels. The students were asked to create
a unique ID containing letters and number (e.g., ABC123),
which could not be used to identify them but to match the
questionnaires completed by the same person on three differ-
ent occasions. The authors’ university ethics committee had
approved this study.

Measure

The TMS (Lau et al. 2006) is a 13-item self-report question-
naire designed to measure two dimensions of state mindful-
ness: curiosity and decentering. The former is defined as
present-moment awareness with a quality of curiosity, while
the latter refers to awareness of one’s experience from a distant
observer perspective and thus without identifying oneself with
the content of one’s thoughts and feelings and getting carried
away by them (Lau et al. 2006). Meditators scored higher on
both TMS subscales compared to those without meditation
experience, and decentering scores were shown to reflect
meditation experience (Davis et al. 2009) and changes in psy-
chological symptoms (Lau et al. 2006). Both TMS subscales
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displayed increased scores after mindfulness training, which
provide support for their construct validity, although no test-
retest reliability scores were reported (Park et al. 2013). The
TMS includes a 6-item curiosity subscale (Cronbach’s alpha
0.86–0.91) and a 7-item decentering subscale (Cronbach’s
alpha 0.85–0.87) (Park et al. 2013). Both subscales use a 5-
point Likert-scale response format (0 = BNot at all^ to
4 = BVery much^). The total subscale scores are calculated
by adding responses to individual subscale items with higher
scores corresponding to higher levels of state mindfulness.

Data Analyses

Descriptive statistics together with Cronbach’s alpha coeffi-
cients and test-retest bivariate correlations for the curiosity and
decentering subscales of the TMS were computed using IBM
SPSS version 23 at each of the three assessment occasions.
Test-retest reliability scores for a state measure were expected
to be in the range from 0.16 to 0.57 (Ramanaiah et al. 1983;
Spielberger 1999).

GT analyses were conducted using EduG 6.1-e software
(Swiss Society for Research in Education Working Group
2006) that produces an extended output, which is easier to
interpret in practical terms. We employed a random effects
design with two crossed facets for both G and D-study: per-
sons (P), by occasion (O), by item (I), expressed as P × O × I,
where the P and O facets are infinite and the I facet is fixed.
The facets were defined from the trait perspective with per-
sons as the object of measurement, which is a facet of differ-
entiation, and items and occasions as instrumentation facets
(Gardinet et al. 2009). States are expected to vary across oc-
casions reflected by person-item interaction, but not across
items. Here, the error variance attributed to interaction be-
tween person and occasion (P × O) will be indicative of a state
component in a scale score, which is expected to be relatively
strong for a state measure.

Conventional ANOVA was used to compute the sums of
squares, mean squares, variance components, and variance
percentages associated with each facet including standard er-
rors. Variance components were estimated for each effect
based on their mean squares and samples to assess measure-
ment error due to each of the sources using formulas devel-
oped by Brennan (1977, 1992). Variance components are es-
timated by EduG after applying a Whimbey’s correction to
classical ANOVA estimates that accounts for facets, which
are not sampled from infinite universes (e.g., scale items)
(Gardinet et al. 2009). It is expressed as ((N(f)−1)/N(f)), where
N(f) is the universe size of the f facet in the G-study design and
has no effect on merely random facets.

Generalizability analysis was applied to estimate contribution
of each facet to variance of universe scores including relative
and absolute error variance and to calculate relative and absolute
G-coefficients for the object of measurement (persons). Relative

G-coefficient only accounts for variance directly influencing a
relative measurement tool (e.g., person-occasion and person-
item interactions) (Shavelson et al. 1989) and may express com-
monly used ρ2,ϖ2 or intermediate value by the virture of using
Wimberley’s correction (Gardinet et al. 2009):

Grelative ¼
σ2
p

σ2
p þ σ2

δ

Here, σ2
p is the variance due to the object of measurement

(persons) and σ2
δ ¼ σ2

po þ σ2
pi þ σ2

poi is the relative error var-

iance. Absolute G-coefficient (Gabsolute) is similar to the
comonly used Phi (Φ) coeff icient after applying
Wimberley’s correction. It accounts for an absolute error var-

iance (σ2
Δ =σ2

o þ σ2
i þ σ2

io þ σ
2
po þ σ2

pi þ σ2
poi ) that includes

other factors (e.g., items and occasions) influencing an abso-
lute measure (Gardinet et al. 2009):

Gabsolute≈Φ ¼ σ2
p

σ2
p þ σ2

Δ

Also, the SCI to estimate relationship between state and
trait variance components was computed using the formulae
proposed in the introduction. D-study included facets analyses
of every individual item to estimate variance components and
G-coefficients associatedwith the object of measurement (per-
sons or trait), and variance due to person-occasion interaction
as a state marker. It also involved testing various facet designs
by manipulating their levels to optimize the instrument.

Results

All data distributions met normality assumptions with skew-
ness and kurtosis values fairly close to zero and non-
significant Shapiro-Wilk normality tests. Repeated measures
ANOVA indicated that the effect of occasion was significant
for both facets of state mindfulness: curiosity (F(2, 54) = 6.88,
p = .002, η2 = .11) and decentering (F(2, 54) = 12.46,
p = .001, η2 = .19). Post-hoc tests showed that the mean
curiosity and decentering levels on occasion 2 (1 Week, after
mindfulness exercise) were significantly higher compared to
both other occasions. Table 1 presents descriptive statistics
together with Cronbach’s alpha coefficients and test-retest bi-
variate correlations for the curiosity and decentering subscales
of the TMS at each of the three assessment occasions. While
the curiosity subscale showed good internal consistency at all
three occasions, the decentering alpha coefficients varied but
in the acceptable range from .70 to .80. According to the
expectations for a state measure, test-retest reliability coeffi-
cients for both subscales at 1 week and 1 month intervals
ranged from .38 to .46 (Table 1).
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G-Study

ANOVA results for the TMS curiosity and decentering
subscales together with variance components attributed
to person (P), item (I), and occasion (O), and interac-
tions between them are included in Table 1 and provide
basic estimates for the G-study. Corrected variance com-
ponents included in columns 7 and 8 (in %) are com-
puted by applying Whimbey’s correction. Relative and
absolute contribution of the percentage values presented
in column 8 (Table 2) were estimated from a GT per-
spective and are presented in Table 3. The largest
amount of variance of both subscales scores was ex-
plained by person-occasion interactions, which is a
marker of individual state changes in domains of curi-
osity and decentering across three different occasions.

The results of a generalizability analysis of both curiosity
and decentering TMS subscales are presented in Table 3.
Components that cannot be computed (as they did not exist)
in the current design are represented as a row of dots. As
predicted for a valid state measure, person-occasion (P × O)
interaction is the main source of error variance for both sub-
scales explaining over 90% of relative and absolute error var-
iance. The final results are relative, and absolute G-
coefficients are both below the acceptable level of 0.80 rec-
ommended for the assessment of traits and in line with expec-
tations for a state measure. The proposed SCI values were
calculated based on differentiation variance of person (trait:
σ2
t = σ2

p Þ and absolute error variance of person-occasion in-

teraction (state: σ2
s =σ

2
poÞ for the curiosity (SCI = 0.70) and for

the decentering (SCI = 0.75) subscales. These values indicate
that, after accounting for all sources of error identifiable in the
data, both subscales mainly reflect variance associated with
state changes in line with expectations for a valid state
measure.

D-Study

Facets analysis was conducted first, to obtain variance esti-
mates for every individual item by excluding all other items.
The estimates for a differentiation facet of a person together
with estimates for person-item interaction and G-coefficients
are included in Table 4. In line with expectations for items
measuring state, most of the items show a high amount of
variance attributed to person-item interaction and typically
above 0.4 with the exception of items 1 and 11, which are just
below this benchmark. Low differentiation estimates (P) were
found for most of the items consistently reflected by the low
values of the G-coefficients in the right column, which are
both expected to be high for a trait measure (i.e., G-
coefficient above 0.80).

However, two items, 4 and 7 in the decentering subscale
did not reflect any variance attributed to a trait (person) and
consequently had generalizability coefficients of zero.
Therefore, we tested the relative contribution of these items
to the decentering subscale by removing them. After removing
those two items, the proportion of variance due to person-
occasion interaction decreased from 100% (Table 4) to
79.1% and produced an additional 19.80% error variance at-
tributed to person-occasion-item interaction, which is a threat
to scale reliability. Also, removing those items did not affect
the G-coefficients remaining at the same level of 0.24
(relative) and 0.23 (absolute). This illustrates that items 4
and 7 contribute to the overall reliability of the decentering
subscale in discriminating between state levels. Removing
individual items from each subscale did not result in an in-
crease but in some cases decreased the overall generalizability
coefficients. Finally, removing Occasion 3 (before the class
test) slightly increased G-coefficients in the curiosity subscale
up to 0.44 (absolute and relative) and removing occasion 1
(baseline, after the holiday) decreased the overall G-
coefficients of both subscales just below 0.1 (absolute and

Table 1 Means, standard
deviations (SD), internal and test-
retest reliability estimates for the
TMSa curiosity and decentering
subscales (n = 55)

Subscale/measurement Baseline (in lecture) 1 week (mindfulness exercise) 1 month (before test)

Curiosity

Mean (SD) 10.04 (5.08) 12.05* (5.73) 8.91 (5.36)

Cronbach’s alpha .83 .87 .88

Test-retest (r)b – .38 .34

Decentering

Mean (SD) 10.09 (4.80) 13.44a (5.62) 10.36 (5.12)

Cronbach’s alpha .70 .80 .79

Test-retest (r)b – .44 .46

*Mean is significantly different from two other means (p < .05); a TMS = The Toronto Mindfulness Scale;
b Test-retest bivariate correlations were computed between the baseline scores and scores after 1 week as well as
baseline scores with scores after a 1-month interval
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relative). Removing occasion 2 (1 week, mindfulness exer-
cise) did not result in any substantial changes of the overall
G-coefficients.

Discussion

The aim of this study was to demonstrate the application of
GT to distinguish between state and trait variance components
in a measure using the TMS as an example. This study has
demonstrated that GT can be applied to distinguish between
state and trait components in a measure, and it is recom-
mended as an appropriate psychometric method to validate
state and trait measurement tools. The method and the
sequence of analysis illustrated in the BResults^ section
allows researchers to assess the validity and reliability of
any psychometric measure of a state or a trait using GT.
Currently, the only statistical method used to distinguish
between state and trait measures is merely a correlation be-
tween total test scores at two different occasions (test-re-
test). The proposed GT method is based on an accurate es-
timation of variance components of both state and trait that
accounts for various sources of error variance and provides
an advanced method for validation of state and trait mea-
sures. It is particularly powerful in its ability to examine the
Bstateness^ or Btraitness^ of each individual item.

To demonstrate the application of GT, we used a state mea-
sure of mindfulness, the TMS (Lau et al. 2006). We chose this

measure because, while GT has already been used to assess
the reliability of trait measures (Arterberry et al. 2014), it has
not previously been used to distinguish between state and trait
mindfulness. Before using the TMS to illustrate the applica-
tion of GT methods, reliability and construct validity of the
instrument were tested using more traditional methods and
supported by the results (Table 1). Prior to GT analysis, we
also ensured that the data met assumptions of normality.
Although, not the main purpose of the study, the results pro-
vide a support for construct validity of the TMS as a state
measure as the scores followed predicted changes, namely,
increased mindfulness after a brief mindfulness exercise and
decreased mindfulness during a stressful pre-exam period.
These findings are consistent with Lau et al. (2006) who re-
ported an increase of the TMS scores following a
mindfulness-based intervention.

In this G-study, two-way repeated measures ANOVAwas
used first to extract the variance due to the object of measure-
ment (persons) reflecting a trait, person-occasion interaction
reflecting a state, and other sources of error variance such as
occasion, item, and interactions of the TMS subscales. Such
ANOVA results are important because they provide basic es-
timates for further analysis. In terms of a state-trait distinction,
a trait measure should have the largest amount of variance
explained by the person and a state measure, as in this case,
by the person-occasion interaction (Table 2). However, tradi-
tional ANOVA is not precise enough to identify such individ-
ual contributions. For instance, it can be seen that variances

Table 2 ANOVA for the
curiosity (above) and decentering
(below) subscales of the Toronto
Mindfulness Scale (TMS)
including the sum of squares (SS),
degrees of freedom (df), mean
squares (MS), variance
components (in %), and standard
errors (SE) for the Person
(P) × Occasion (O) × Item (I)
design including interactions
(n = 55)

Source SS df MS Curiosity variance components

Random Mixed Correcteda % SEb

P 341.44 54 6.32 0.10 0.10 0.10 6.70 0.07

O 1.53 2 0.76 0.00 0.00 0.00 0.00 0.00

I 11.97 5 2.39 0.01 0.01 0.01 0.70 0.01

P × O 489.80 108 4.54 0.64 0.69 0.69 46.50 0.10

P × I 179.20 270 0.66 0.00 0.00 0.00 0.00 0.02

O × I 6.79 10 0.68 0.00 0.00 0.00 0.00 0.01

P × O × I 371.88 540 0.69 0.69 0.69 0.69 46.10 0.04

Total 1402.61 989 100

Decentering variance components

P 267.87 54 4.96 0.06 0.06 0.06 3.70 0.05

O 1.28 2 0.64 0.00 0.00 0.00 0.00 0.00

I 105.89 6 17.65 0.10 0.10 0.09 6.10 0.05

P × O 408.63 108 3.78 0.41 0.54 0.54 31.60 0.07

P × I 280.02 324 0.86 0.00 0.00 0.00 0.00 0.03

O × I 11.34 12 0.94 0.00 0.00 0.00 0.10 0.01

P × O × I 576.76 648 0.89 0.89 0.89 0.89 58.40 0.05

Total 1651.78 1154 100

a Corrected components are calculated by applying Whimbey’s correction to the classical ANOVA estimates
b SE in the right column is related to the mixed effects presented in the column 6
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due to person-item and occasion-item interactions are close to
zero for both TMS subscales, suggesting that the variance due
to person-occasion-item interaction is mainly explained by
person-occasion interaction or a state. Therefore, subsequent
G-analysis is necessary to estimate the unique contribution of
each variance component available in the data together with
G-coefficients.

G-analysis estimates variance components and G-
coefficients in both relative and absolute terms. The essential
difference between them is that absolute estimates will ac-
count for all possible error variances assuming that all samples
are drawn from infinite populations but relative estimates will
account for finite populations in the G-study design (e.g.,
items). In other words, if all populations are considered as
drawn from infinite populations absolute and relative variance
estimates and G-coefficients will have the same values. In the
current analysis (Table 3), G-coefficients are the same because
error variance due to item, which is the only finite universe, is
close to zero. One of possible reasons why GT has not been

widely used to validate state measures is possibly because
person-occasion interaction is considered as a measurement
error in common G-designs with persons representing the im-
portant object of measurement. This common design was used
in the current study to demonstrate its limitations and the
advantages of introducing SCI to assess Bstateness^ of a state
scale along with TCI to assess Btraitness^ for a measure of a
trait. For instance, G-analysis (Table 3) shows error variance
estimates due to different sources after accounting for the per-
son (trait) variance. Here, error variance in both TMS sub-
scales was mainly attributed to person-occasion interaction
reflecting state changes, which is expected for a valid state
measure. In the current G-analyses, person (trait) variance is
assessed by G-coefficients showing values below 0.30 indi-
cating that the TMS scores were unstable across occasions,
which is consistent with expectations for a state measure. The
G-analysis results mirror the traditional test-retest reliability
findings and were consistent with those reported earlier for
other state measures, such as a range of r values from 0.34

Table 3 Estimated variance
components with standard errors
(SE) and G-coefficients and for
the G-study P × O × I design
including the TMS subscales
curiosity (above) and decentering
(below)

Source of
variance

Differentiation
variance

Relative error
variance

%
Relative

Absolute error
variance

%
Absolute

Curiosity TMS subscalea

P 0.10 – –

O – – 0.00 0.00

I – – 0.00 0.40

P × O – 0.23 91.20 0.23 90.90

P × I – 0.00 0.00 0.00 0.00

O × I – – – 0.00 0.00

P × O × I – 0.02 8.80 0.02 8.80

Sum of
variances

0.10 0.25 100 0.25 100

Standard
deviation

0.32 Relative SE: 0.50 Absolute SE: 0.50

G relative 0.28
G absolute 0.28

Decentering TMS subscaleb

P 0.06 – –

O – – 0.00 0.00

I – – 0.00 0.00

P × O – 0.18 100.00 0.18 100.00

P × I – 0.00 0.00 0.00 0.00

O × I – – – 0.00 0.00

P × O × I – 0.00 0.00 0.00 0.00

Sum of
variances

0.06 0.18 100 0.18 100

Standard
deviation

0.24 Relative SE: 0.43 Absolute SE: 0.43

G relative 0.24

G absolute 0.24

a Curiosity (n = 55, Grand mean: 1.72, SE of the grand mean: 0.09);
b Decentering (n = 55, Grand mean: 1.61, SE of the grand mean: 0.11)
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to 0.46 for the State-Trait Anxiety Inventory (Ramanaiah et al.
1983; Spielberger et al. 1970, 1999). In the case of a valid trait
measure, where persons (traits) explain the most variance and
show stability over time, G-coefficients of 0.80 and higher
would be expected (Arterberry et al. 2014).

The proposed SCI is particularly useful to assess the degree
of Bstateness^ of a measure especially if a common G-design
with persons as objects of measurement is used because
person-occasion interaction (state) is treated as a measurement
error in such designs. Similar to other G-estimates, the SCI
was calculated based on the corrected variance components
from the ANOVA (Table 2). The SCI for the curiosity subscale
was 0.70 and for the decentering 0.75, which is consistent
with the expectations for a valid state measure and arguably
provides the first bench mark to distinguish between instru-
ments measuring state and trait. An SCI below 0.60 would
suggest that there are items in a scale, which are not sensitive
to state changes (i.e., measuring a trait). In this case, modifi-
cations of an instrument should be undertaken using D-study.
Similarly, the TCI can be computed to assess validity of a trait
measure and modifications could be conducted if a value be-
low 0.60 is obtained.

Besides exploration of state and trait variance components,
GTanalysis is also useful to identify potential sources of mea-
surement error. In our example, the results show that error
variance due to items and person-item interaction did not ex-
ceed 1%. Overall, the error variances were close to zero with
the exception of interaction between person, occasion, and
item in the curiosity subscale, which constitute only 8.80%

with the other 92.20% explained by the state (person-
occasion) component. However, both person-item and
occasion-item errors were nearly zero suggesting that this er-
ror is due to state-item interaction only. If this GT method is
applied to other measures, identifying sources of measurement
errors can be useful especially if the values exceed 5% and
hence affect the precision of a measurement. In this case, a
source of measurement error (e.g., items) could be investigat-
ed in a D-study and necessary adjustments could be made to
resolve the issue.

AD-study can be used to improve measurement design and
to address potential issues contributing to measurement error,
which is especially useful at the individual item level. Our D-
study examined state and trait variance components of every
individual item (Table 4) and showed that all items displayed a
higher proportion of variance attributed to state compared to
trait and low generalizability of scores across occasions. These
findings are generally consistent with the G-study results for
the complete subscales. However, items 4 and 7 in the
decentering subscale showed no signs of differentiating be-
tween individual’s trait levels reflected by a lack of generaliz-
ability in measuring trait. Typically, a moderate or at least a
weak relationship between state and trait components is ex-
pected in a state measure (Ramanaiah et al. 1983; Spielberger
1970, 1999). Excluding those two items from the subscale
was associated with a decrease in state-related variance and
increase of the error variance affecting the reliability of the
subscale. Therefore, items 4 and 7 were found tomeasure state
changes only and contributed to the overall reliability of the

Table 4 Estimated person and
person × occasion (P × O)
interaction variance components
together with G-coefficients for
each individual item of the TMS
subscales curiosity (above) and
decentering (below)

TMS subscales and items P
variance

P × O
variancea

G-
coefficientsa

Curiosity subscale

3. Curious to learn about myself by noticing my reactions 0.06 0.51 0.11

5. Curious to see what my mind was up to from moment to
moment

0.04 0.41 0.09

6. Curious about each of the thoughts and feelings I was having 0.07 0.44 0.13

10. Curious about the nature of each experience as it arose 0.09 0.43 0.17

12. Curious about my reactions to things 0.09 0.41 0.19

13. Curious to learn about myself by noticing my attention focus 0.20 0.46 0.30

Decentering subscale

1. Experienced myself separate from thoughts and feelings 0.15 0.29 0.34

2. More concern with being open to experiences than controlling 0.12 0.52 0.19

4. Experienced my thoughts more as events than as reflection 0.00 0.49 0.00

7. Observing unpleasant thoughts and feelings without interfering 0.00 0.44 0.00

8. More invested in watching my experiences than analyzing
them

0.04 0.46 0.08

9. Trying to accept each experience, pleasant or unpleasant 0.04 0.48 0.08

11. Aware of thoughts and feelings without overidentifying with
them

0.03 0.35 0.07

a There is no difference between relative and absolute P × O variance components and G-coefficients in P × O
design because there are no finite populations
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decentering subscale. These findings challenge the assump-
tions that the trait component cannot be entirely excluded in
a state measure, because it is the basic predictor of a state
(Hamaker et al. 2007). Assessing variance components at
the individual item level could be useful because a measure
may include items measuring predominantly a trait, a state, or
both. In this case, state and trait items could be combined into
a state and a trait subscale respectively, and neutral items ex-
cluded from the measure, which will improve accuracy in
assessing state and trait.

A D-study is also useful to evaluate the appropriateness of a
G-study design and the individual contribution of occasions on
variability of states. For instance, removing the baseline (after
holiday condition) produced a decrease of generalizability of
both subscales across occasions below 0.10. This result is expect-
ed if state changes are manipulated at both occasions in the
opposite direction (mindfulness exercise vs class test) and sup-
ports the appropriateness of the G-study design. Finally, attempts
to optimize subscales by removing items did not yield any psy-
chometric benefits suggesting that the TMS is an adequate mea-
sure of state mindfulness in its present form.

Limitations

The following limitations have to be acknowledged. The pro-
posed SCI and TCI indices for validation of state and trait
measures are based on the results of this study and need to
be extensively tested with different instruments to establish
benchmarks and cut-off points. More accurate criteria for state
and trait distinctions might evolve as a result of further GT
analyses of other psychometric instruments. This study was
conducted with a sample of university students that has a
degree of homogeneity, and the results should be replicated
with larger and more diverse samples. Generalizing the results
of this study (state vs trait) to the rest of the population may be
limited without a truly representative sample.

In summary, the current study developed and introduced a
novel and promising method to distinguish between state and
trait measures using GT. The application of this method was
demonstrated by generalizability analysis of the TMS—state
measure of mindfulness—and provided supporting evidence
for reliability and validity of the instrument. The current ap-
plication of GT is recommended as an appropriate psy-
chometric method to validate state and trait measurement tools
and has the potential to open new avenues for future psycho-
metrics work.
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