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Abstract
The rise of drug resistance has led to attempts to the development of new herbal medicines. This study aimed to develop 
two types of nanocarriers containing Zingiber officinale essential oil. The oil’s components were identified using GC-MS 
analysis. Alginate and chitosan nanoparticles containing Z. officinale essential oil were prepared using the ionic gelation 
method. Particle size, zeta potential, and successful loading of the essential oil in the nanoparticles were investigated using 
DLS, Zetasizer, and ATR-FTIR analysis, respectively. Chitosan nanoparticles exhibited a significantly smaller particle size 
(102 ± 9 nm) and more positive zeta potential (12 ± 2 mV) compared to alginate counterparts (188 ± 7 nm, −19 ± 1.2 mV). 
ATR-FTIR analysis confirmed the successful encapsulation in both types of nanoparticles. Notably, chitosan nanoparticles 
with  IC50 values of 82 and 67 µg/mL against MCF-7 and MDA-MB-231, respectively, displayed superior potency compared 
to non-formulated essential oil and alginate nanoparticles. Likewise, the antibacterial efficacy of chitosan nanoparticles with 
 IC50 values of 661 and 462 µg/mL against Escherichia coli and Staphylococcus aureus, respectively, showed a significant 
potency compared to two other samples. Furthermore, chitosan nanoparticles demonstrated antifungal activity against 
Candida krusei (MIC 4.25 µg/mL) and Candida parapsilosis (MIC 8.5 µg/mL) while showing no significant antifungal 
activity against Aspergillus flavus (MIC > 1200). Considering their high potency and straightforward preparation, chitosan 
nanoparticles loaded with Z. officinale essential oil warrant further investigation in vivo.
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1 Introduction

Drug resistance is a major challenge for healthcare systems 
worldwide. Medicinal plants are a valuable resource for 
developing new drugs [1, 2]. For instance, Zingiber offici-
nale (ginger) belongs to the Zingiberaceae family and has 
been a widely used medicinal plant. It is grown in moist, 
tropical, subtropical regions [3, 4]. Its essential oil (EO) has 
been used in colds, nausea, emesis, and headaches [5, 6]. 
Z. officinale also showed anti-inflammatory, antioxidant, 
anticancer, antimicrobial, and anti-diabetic activities [7, 8]. 
Researchers demonstrated that the aqua-alcoholic extract of 
Z. officinale as an effective agent inhibited the growth of a 
multidrug-resistant strain of Pseudomonas aeruginosa [9]. 
In addition, a study showed that Z. officinale extract inhib-
its biofilm formation through reduced cellular c-di-GMP in 
P. aeruginosa [10]. Pseudomonas aeruginosa is a gram-
negative bacteria that can cause various human infections, 
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such as the skin, lungs, and urinary tract, increasing mor-
tality rates [11]. Moreover, its ethanol extracts could act as 
a potent antibiotic agent against Staphylococcus aureus, a 
gram-positive human pathogen bacteria that can cause a 
wide range of clinical diseases [12]. In vitro antibacterial 
activity showed that Z. officinale inhibited S. aureus due to 
inhibiting the activity of 6-hydroxymethyl-7,8-dihydropterin 
pyrophosphokinase in the pathogen [13]. Moreover, Can-
dida is a kind of yeast that is the most common cause of fun-
gal infections worldwide [14]. The genus Candida enfolds 
approximately 200 species, such as C. albicans, C. glabrata, 
C. rugosa, C. parapsilosis, C. tropicalis, and C. dubliniensis 
[15, 16]. Recently, it was reported that Z. officinale EO dis-
played antifungal activity toward C. albicans [17]. Another 
study confirmed that Z. officinale extract potently treats oral 
candidiasis [18]. Regarding the antibacterial and antifungal 
activities of Z. officinale, some studies have also shown its 
anticancer activity against several cancer types, including 
prostate, breast, colorectal, and cervical cancer [19, 20]. 
In vivo study in mice demonstrated that Z. officinale extract 
protected against breast cancer via activation of 5′adeno-
sine monophosphate–activated protein kinase (AMPK) and 
the downregulation of cyclin D1 [20]. Breast cancer, with 
2.26 million cases and 685,000 deaths in 2020, was one of 
the most dangerous cancers worldwide [21]. Z. officinale’s 
EO exhibits diverse biological properties, but developing a 
standardized drug faces three hurdles: poor solubility and 
bioavailability, limited efficacy, and short shelf life. Encap-
sulating the EO in nanocarriers holds promise to overcome 
these challenges [22]. Natural polymeric nanoparticles such 
as chitosan and alginates have attracted interest in drug 
delivery systems due to their biocompatibility, biodegrada-
bility, and low cytotoxicity [23, 24].

This study attempted to enhance the efficacy of Z. offici-
nale EO by preparing chitosan and alginate nanoparticles 
containing the EO. Their particle size and zeta potential 
were compared. Successful loading of the EO in chitosan 
and alginate nanoparticles was investigated. Their anti-
microbial, antifungal, and anticancer activities were also 
compared.

2  Materials and Methods

2.1  Materials

Zingiber officinale Roscoe EO was bought from Zardband 
Pharmaceuticals Co. (Iran). Staphylococcus aureus (ATCC 
25,923), Escherichia coli (ATCC 25,922), MCF-7 (ATCC: 
HTB-22), and MDA-MB-231 (ATCC: HTB-26) were pur-
chased for the Pasteur Institute of Iran. Itraconazole was 
obtained from the Janssen Research Foundation, Beerse, 
Belgium, and fluconazole from Pfizer, Groton, CT, USA. 

Standard fungi isolates containing Candida krusei (ATCC 
6258), Candida parapsilosis (ATCC22019), and Aspergillus 
flavus (ATCC 204,304) were obtained from collections of 
ATCC (American Type Culture Collection). M-morpholine 
propane sulfonic acid (MOPS) buffer was supplied from 
Merck Chemicals (Germany). l-Glutamine and tripolyphos-
phate (TPP) were bought from Sigma-Aldrich (USA).

2.2  Chemical Composition of Z. officinale EO

The phytochemical compounds of EO were identified using 
an Agilent GC-MS (Santa Clara, CA, USA) system with 
a BPX5 silica fused column (film thicknesses 0.25 mm, 
length 30 m, and internal diameter 0.25 µm). The EO is 
diluted with n-hexane, and the sample was injected into the 
GC-MS. Initially, the oven temperature was held at 50 °C 
(fixed for 5 min), then increased with a rate of 3 °C  min−1 
to 240 °C. The temperature was then raised to 300 °C and 
held for 3 min at this temperature, and the response time was 
52 min. The temperature of the injection port was fixed at 
250 °C, in split 1 to 35. The flow rate of helium (99.999%) 
as carrier gas was 0. 5 mL/min. For MS spectra, the ioniza-
tion conditions were full scan mode in 30–500 m/z, electron 
energy of 70 eV, and ion source temperature of 220 °C. For 
spectra analysis, Agilent ChemStation software was used. 
Finally, the final spectra identified compare chemical com-
pounds’ spectral data and retention index using papers, refer-
ence books, and the mass spectra of standard compounds.

2.3  Preparation of Alginate and Chitosan 
Nanoparticles Containing Z. officinale EO

The ionic gelation method was used to prepare alginate 
and chitosan nanoparticles containing Z. officinale EO. 
 CaCl2 (0.03% w/v) and TPP (0.07% w/v) were used as their 
crosslinkers, respectively [25, 26]. Fixed amounts of Z. 
officinale EO (0.24% w/v) and Tween 20 (0.15% w/v) were 
considered for both nanoformulations.

Alginate (0.25% w/v) and chitosan (0.25% w/v) powders 
were dissolved in acid acetic (1% w/v) and distilled water 
stirred overnight at 2000 rpm. After that, the obtained solu-
tions were filtered using 0.2 μm, and the preparation process 
was continued as follows. The EO and Tween 20 were mixed 
at 2000 rpm for 3 min; then, chitosan and alginate solution 
were added, dropped wisely, and stirred for 5 min, sepa-
rately. Afterward,  CaCl2 and TPP were added and stirred for 
40 min for crosslinking and stabilizing. The formed alginate 
and chitosan nanoparticles containing Z. officinale EO were 
named AlginateNPs-EO and ChitosanNPs-EO. By the way, 
nanoparticles without EO were prepared similarly and were 
named Alginate-Free and Chitosan-Free; their biological 
effects were investigated as negative control groups.
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2.4  Characterizations of AlginateNPs‑EO 
and ChitosanNPs‑EO

Particle size, polydispersity index (PDI), and zeta poten-
tials of Alginate-Free, AlginateNPs-EO, Chitosan-Free, 
and ChitosanNPs-EO were investigated using a DLS-type 
apparatus (Horiba, SZ100, Japan). ATR-FTIR analysis was 
used to investigate the successful loading of the EO in the 
nanoparticles. Spectra of Z. officinale EO, Alginate-Free, 
AlginateNPs-EO, Chitosan-Free, and ChitosanNPs-EO were 
recorded in the 400–4000  cm−1 range.

2.5  Antifungal Effects of Z. officinale EO, 
AlginateNPs‑EO, and ChitosanNPs‑EO

The samples’ minimal inhibitory concentrations (MICs) 
were determined by the micro broth dilution method in 
96-well microplates due to the CLSI-M27-A3 and M27-S4 
methods for fungi [27, 28]. Itraconazole and fluconazole 
were used as the positive control. The samples were serially 
diluted in the standard RPMI-1640 medium and buffered 
to pH 7.0 with 0.165 M-morpholine propane sulfonic acid 
(MOPS) buffer and l-glutamine without bicarbonate. Mean-
while, suspended colonies were added to microplates and 
incubated at 35 °C. All susceptibility testing was repeated 
in triplicates.

2.6  Antibacterial Effect of Z. officinale EO, 
AlginateNPs‑EO, and ChitosanNPs‑EO

The microdilution method in a 96-well plate was used to 
determine the antibacterial effect of samples against S. 
aureus and E. coli [29]. Suspended colonies in Mueller 
Hinton broth with 0.5 McFarland turbidity (1.5 ×  108 CFU/
mL) and serial dilutions of samples (dissolved in PBS solu-
tion) were added to plates (50:50 µL/well). By the way, 50 
µL/well of PBS solution (as control group) and 50 µL/well 
of Alginate-Free and Chitosan-Free (as negative control 
groups) were added to the plates instead of serial dilutions. 
After 24 h incubation, bacterial growth was calculated by 
dividing the optical density of samples to control at 630 nm 
using the plate reader. The test was repeated thrice, and the 
results are reported as mean and standard deviation. Besides, 
 IC50 values of samples were calculated using CalcuSyn soft-
ware (Free version, BIOSOFT, UK).

2.7  Investigation of Cytotoxic Effects of Z. officinale 
EO, AlginateNPs‑EO, and ChitosanNPs‑EO

As described in our previous study, the MTT assay was used 
to investigate the cytotoxic effects of samples against MCF-7 
and MDA-MB-231 cells [30]. The cells were cultured in 
RPMI perfect medium culture (supplemented with 10% FBS 

and 1% antibiotics);  104 cells/well seeded in 96-well plates. 
The plates incubated for 24 h at 37 °C and 5%  CO2 to the 
attachments reached 80% confluence. The liquid medium 
of the plates was then discarded. After that, 50 and 50 µL/
well of fresh RPMI perfect medium culture and serial dilu-
tions (dissolved in PBS solution) were added. By the way, 
50 µL/well of PBS solution (as control group) and 50 µL/
well of Alginate-Free and Chitosan-Free (as negative control 
groups) were added to the plates instead of serial dilutions. 
After 24 h incubation, liquid medium was replaced with 50 
µL/well of MTT solution (0.5 mg/mL dissolved in RPMI). 
After 4 h incubation, 100 µL/well of DMSO was added to 
dissolve formazan crystals. After that, cell viability was cal-
culated by dividing the optical density of samples to control 
at 570 nm using a plate reader (Synergy HTX Multi-Mode 
Reader, USA). The test was repeated thrice, and the results 
are reported as mean and standard deviation. Besides,  IC50 
values of samples were calculated using CalcuSyn software 
(Free version, BIOSOFT, UK).

3  Results

Identified compounds in Z. officinale EO are listed in 
Table 1. Zingiberene, β-sesquiphellandrene, α-curcumene, 
β-bisabolene, and camphene are five major components.

DLS diagrams of the prepared samples are depicted in 
Fig. 1. The particle size of Alginate-Free, AlginateNPs-
EO, Chitosan-Free, and ChitosanNPs-EO were obtained as 
166 ± 8, 188 ± 7, 77 ± 5, and 102 ± 9 nm. Besides, their PDI 
values were obtained as 0.6, 0.2, 0.4, and 0.3. Furthermore, 
zeta potential profiles of the samples, including Alginate-
Free (−16 ± 1 mV), AlginateNPs-EO (−19 ± 1.2 mV), Chi-
tosan-Free (17 ± 0.9 mV), and ChitosanNPs-EO (12 ± 2 mV) 
are shown in Fig. 2.

The ATR-FTIR spectrum of Z. officinale EO (Fig. 3(A)) 
showed that the peaks at 3077 and 3021  cm−1 are related to 
the stretching vibration of = C-H. The bands at 2959, 2923, 
and 2870  cm−1 displayed the CH stretching vibration of  sp3 
in alkanes. The characteristic band at 1722 and 1673  cm−1 
is allocated to EO’s carbonyl group stretching vibration. The 
bands at 1514 and 1450  cm−1 showed the C = C vibration of 
aromatic compounds in EO. The strong band at 985  cm−1 
corresponded to C-O stretching vibration.

ATR-FTIR spectrum of Alginate-Free is shown in 
Fig. 3(B). The stretching vibration of the O-H peak of algi-
nate is shown at 3200–3600  cm−1 due to hydrogen bonding, 
and the bands at 2913 and 2884  cm−1 can be related to C-H 
(stretching vibration). The spectra at 1731  cm−1 can cor-
respond to the carbonyl group’s stretching vibration. The 
characteristic spectra at about 1595 and 1406  cm−1 were 
attributed to carboxylate’s asymmetric and symmetric 
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stretching vibration, and the peaks at 1066 and 1028  cm−1 
were allocated to C-O stretching vibration.

ATR-FTIR spectrum of AlginateNPs-EO is shown in 
Fig. 3(C). The broad peak at about 3200–3600  cm−1 is 
attributed to OH vibration due to hydrogen bonding in 
Tween 20, EO, water, and alginate. The peaks displayed at 
3197 and 3040  cm−1 can be related to C = C-H stretching, 
and the peaks at 2925 and 2857  cm−1 are allocated to  CH2 
stretching vibration. The absorption at 1731  cm−1 can be 
allocated to the stretching vibration of the carbonyl group 

in Tween and EO. The bands at 1531 and 1461  cm−1 can 
be allocated to carboxylate’s asymmetric and symmetric 
stretching vibration. The 1352 and 1034  cm−1 peaks can 
be related to C-O stretching vibration. The bands shift to 
lower wavenumbers are shown by the increase in hydrogen 
bonding. The strong spectra at 1095  cm−1 can correspond 
to the reaction between the calcium ion and carboxyl (CO-
Ca-CO group structure), which enhanced C-O vibration. 
These spectra illustrated ionic crosslinking. The pres-
ence of other spectra in alginate nanoparticles and EO 

Table 1  Identified compounds 
in Z. officinale EO using 
GC-MS analysis

Retention time Compound Area % Retention index

9.46 α-Pinene 136,969,687 2.408 932
10.109 Camphene 383,028,771 6.735 954
13.687 1,8-Cineole 173,585,602 3.052 1026
13.784 β-Phellandrene 313,546,839 5.513 1029
20.12 Borneol 67,785,724 1.192 1169
30.111 β-Elemene 61,307,533 1.078 1390
33.997 α-Curcumene 660,313,772 11.611 1480
34.703 Zingiberene 1,722,333,976 30.285 1493
35.07 β-Bisabolene 607,823,161 10.688 1505
35.728 β-Sesquiphellandrene 703,494,850 12.370 1522

Fig. 1  DLS diagrams of A Algi-
nate-Free (166 8 nm, PDI 0.6), 
B AlginateNPs-EO (188 7 nm, 
PDI 0.2), C Chitosan-Free (77 
5 nm, PDI 0.4), D ChitosanNPs-
EO (102 9 nm, PDI 0.3)
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confirmed the successful loading of EOs in the prepared 
alginate nanoparticles.

The ATR-FTIR spectrum of Chitosan-Free (Fig. 3(D)) 
showed that the broadband between 3300 and 36,684  cm−1 
can be attributed to the stretching vibration of the hydroxyl 
group due to hydrogen bonding. The spectra at 2970  cm−1 
can be related to the stretching vibration of CH in  sp3 
groups. The strong band at 1731  cm−1 can be allocated to 
the carbonyl group. The characteristic band at 1639 cm −1 
can be related to N-acetyl groups. The band at 1549  cm−1 
can be assigned to N-H bending vibration, and the band at 
1279  cm−1 demonstrated the presence of P = O. The band 
at 1078  cm−1 and 1019 can be attributed to the stretching 
vibration of  PO2 and  PO3. The band at 889  cm−1 is related 
to the P-O-P bridge.

The ATR-FTIR spectrum of ChitosanNPs-EO (Fig. 3(E)) 
showed that the broad and characteristic peak between 
3325 and 3684  cm−1 can be related to OH stretching vibra-
tion due to hydrogen bonding. The band at 2985  cm−1 is 
ascribed to the stretching vibration of CH in alkane groups. 

The strong and characteristic spectra at 1711  cm−1 can be 
assigned to the carbonyl group. The spectra at 1549  cm−1 
can be attributed to N-H bending vibration. The spectra at 
1278  cm−1 illustrated the formation of an ionic crosslink 
between  NH3 in chitosan and TPP. The strong peaks at 1077 
and 1019  cm−1 can be related to the stretching vibration of 
 PO2 and  PO3. The band at 889  cm−1 is related to the P-O-P 
bridge. All other absorption appears in the spectra of EO and 
ChiNPs at the same wavenumber.

The antifungal activity of Z. officinale EO, AlginateNPs-
EO, ChitosanNPs-EO, and itraconazole and fluconazole 
against C. krusei, C. parapsilosis, and A. flavus are shown 
in Table 2. The lowest MIC is related to ChitosanNPs-EO: 
4.25 µg/mL for C. krusei and 8.5 µg/mL for C. parapsilosis. 
Besides, ChitosanNPs-EO against A. flavus displayed the 
MIC with > 1200 µg/mL. The in vitro MIC results obtained 
for itraconazole and fluconazole against the standard tested 
isolates were within the normal ranges for these strains [31].

The antibacterial effects of Z. officinale EO, AlginateNPs-
EO, and ChitosanNPs-EO against E. coli and S. aureus are 

Fig. 2  Zeta potential diagrams 
of A Alginate-Free (−16 1 mV), 
B AlginateNPs-EO (−19 1.2 
mV), C Chitosan-Free (17 0.9 
mV), D ChitosanNPs-EO (12 
2 mV)
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shown in Fig. 4A, B. The best efficacy is related to Chitosan-
NPs-EO; the growth of bacteria was reduced by about 60%. 
Besides, Alginate-Free and Chitosan-Free did not affect bac-
terial growth. Moreover,  IC50 values of the samples against 
bacteria are summarized in Table 3. ChitosanNPs-EO with 
 IC50 values of 661 and 462 µg/mL against E. coli and S. 
aureus, respectively, were significantly more potent than 
Z. officinale EO and AlginateNPs-EO. Their  IC50 values 
against E. coli were 9537 and 2050 µg/mL, respectively. 
Besides, their  IC50 values against S. aureus were obtained 
as 5486 and 1473 µg/mL, respectively.

Cytotoxicity of Z. officinale EO, AlginateNPs-EO, and 
ChitosanNPs-EO against MCF-7 and MDA-MB-231 cells 
are shown in Fig. 5A, B. Interestingly, 100% efficacy (cell 
viability 0%) at concentrations of 600 and 1200 µg/mL of 
ChitosanNPs-EO were observed. On the other hand, Algi-
nate-Free and Chitosan-Free showed negligible effects on 
the viability of cells (viability > 90%). Moreover,  IC50 values 
of the samples against cells are summarized in Table 3. Chi-
tosanNPs-EO with  IC50 values of 82 and 67 µg/mL against 
MCF-7 and MDA-MB-231 cells, respectively, were signifi-
cantly more potent than Z. officinale EO and AlginateNPs-
EO.  IC50 values of Z. officinale EO against MCF-7 and 
MDA-MB-231 cells were 699 and 566 µg/mL, respectively, 
and these values for AlginateNPs-EO were 590 and 218 µg/
mL, respectively.

4  Discussion

In recent years, in vitro and in vivo studies indicate a wide 
range of bioactivities of natural products, especially antimi-
crobial and anticancer activities [32, 33]. Nowadays, phy-
tomedicine researchers focus on applied research to develop 

Fig. 3   ATR-FTIR spectra of 
(A)  Z. officinale  EO, (B) Alg-
inate-Free, (C) AlginateNPs-
EO, (D) Chitosan-Free, (E) 
ChitosanNPs-EO

Table 2   Obtained MIC values of Z. officinale EO, AlginateNPs-EO, 
ChitosanNPs-EO, and itraconazole and fluconazole

Samples MIC (µg/mL)

C. krusei C. parapsilosis A. flavus

Z. officinale EO > 1200 > 1200 > 1200
AlginateNPs-EO > 1200 > 1200 > 1200
ChitosanNPs-EO 4.25 8.5 > 1200
Itraconazole 0.125 0.125 0. 25
Fluconazole 64 0.25 2
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new drugs based on nano-based drug delivery systems. This 
study investigated chitosan and alginate nanoparticles con-
taining Z. officinale EO as a model drug delivery system 
for their effects on fungal and bacterial growth and breast 
cancer cell viability.

A. flavus is a fungal species that can cause various health 
challenges. Sensitization was diagnosed through positive 
immunological tests [34]. A. flavus is also known for its 
ability to produce aflatoxins, which are highly carcinogenic 
mycotoxins. Also, C. krusei is a species of Candida that has 

gained importance in recent years as a cause of candidiasis, 
particularly in immunocompromised patients [35, 36]. The 
main challenges in treating C. krusei infections include its 
ability to develop resistance to antifungal drugs and evade 
the host’s immunity [37]. Studies have shown that C. krusei 
is resistant to fluconazole and other antifungal drugs [38, 
39]. The incidence of C. krusei infections has been increas-
ing, highlighting the need for effective treatment strate-
gies. Several studies have also highlighted the prevalence 
and antifungal susceptibility of C. parapsilosis in different 

Fig. 4  Bacterial growth after 
treatment with Z. officinale EO, 
AlginateNPs-EO, and Chitosan-
NPs-EO against A E. coli and 
B S. aureus 

Table 3   Obtained IC 50 
values of Z. officinale EO, 
AlginateNPs-EO, and 
ChitosanNPs-EO

Samples Parameter MCF-7 MDA-MB-231 E. coli S. aureus

Z. officinale EO IC50 699 566 9537 5484
LCL 244 348 1312 1589
UCL 2002 921 69,320 18,931

AlginateNPs-EO IC50 590 218 2050 1473
LCL 190 191 1010 910
UCL 1833 248 4158 2386

ChitosanNPs-EO IC50 82 67 661 462
LCL 37 30 554 401
UCL 183 149 789 532
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countries [40, 41]. The prevalence of C. parapsilosis has 
been associated with clinical settings, such as patients with 
cancer or cardiovascular diseases [42]. Additionally, C. par-
apsilosis candidemia has been associated with lower mor-
tality rates than C. albicans candidemia [43]. Interestingly, 
ChitosanNPs-EO in the current study showed promising 
effects on three examined fungi. Z. officinale Roscoe EO, 
as noted by Samuel et al., was capable of inhibiting growth 
and aflatoxin production in A. flavus [44]. This result con-
firms the previously published reports demonstrating that 
Z. officinale Roscoe EO inhibits the growth and aflatoxin 
production of A. flavus [45–47]. It has also been shown that 
Z. officinale (concentrations between 0.625 and 5 mg/mL) 
can inhibit biofilm formation by C. krusei and C. albicans 
[48]. These data are congruent with the results of other 
reports demonstrating that Z. officinale had an inhibitory 
effect on C. albicans [49]. There have been no studies on 
the antifungal effect of alginate and chitosan nanoparticles 
as carriers of Z. officinale EO on A. flavus, C. krusei, and C. 
parapsilosis; our findings indicated that chitosan nanoparti-
cles had a more significant antifungal compare with alginate 
nanoparticles. In agreement with our findings, it has been 
suggested that treatment with chitosan, a natural antifungal 

agent, reduced the growth and aflatoxin production of cer-
tain A. flavus strains [50]. Also, the antifungal activity of 
copper-chitosan nanocomposite hydrogels against A. flavus 
was reported to have decreased aflatoxin-producing ability 
[51]. This finding coincided with a study that demonstrated 
 MIC90 in chitosan solution was more than nanoparticles for 
the selected fungi species and concluded that nanoformu-
lation increased chitosan antifungal activity [52]. Previous 
studies also showed that alginate-based carriers can improve 
antifungal drugs’ bioavailability and dosing frequency [53]. 
For example, the antioxidant and antimicrobial activities of 
alginate microparticles containing Satureja hortensis EO 
were investigated; results showed that alginate micropar-
ticles could be used as an antioxidant and antimicrobial 
agent with a controlled release manner [54]. In addition, 
encapsulation of clove, thyme, and cinnamon oils in alginate 
microspheres can prolong antifungal activity by reducing 
evaporation of EOs [55].

Another finding has been spotted in our study: remarkably 
reduced (≈ 40%) E. coli and S. aureus growth in the Chi-
tosanNPs-EO (1200 µg/mL)-treated bacteria. Emerging evi-
dence suggests that chitosan nanoparticles of EOs increase 
broad-spectrum antibacterial activities. For example, 

Fig. 5  Cytotoxicity of Z. 
officinale EO, AlginateNPs-EO, 
and ChitosanNPs-EO against A 
MCF-7 and B MDA-MB-231 
cells
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chitosan nanoparticles loaded with clove EO against Listeria 
monocytogenes and S. aureus showed better antibacterial 
activity than clove EO [56]. In addition to the antibacterial 
properties of chitosan nanoparticles confirmed by previous 
studies, it can be assumed that chitosan nanoparticles con-
taining EO can trigger cell death by penetrating the bacterial 
cell membrane and changing the balance of internal osmo-
larity [57, 58].

In our study, GC-MS analysis showed that the main 
chemical composition of Z. officinale EO was zingiberene 
(30.28%). It has been shown that exposure to zingiberene 
can reduce cell viability in the MDA-MB-231 breast cancer 
cell line by a significant increase in apoptotic cell death [59]. 
Like breast cancer, zingiberene suppressed colon cancer cell 
growth by inducing autophagy and inhibiting cell signaling 
(PI3K/AKT/mTOR and caspase 2) pathways [60]. As well as 
the antibacterial activity of zingiberene against Streptococ-
cus mutans UA159 in biofilm formation was confirmed [61].

In addition to the anticancer properties of EOs and their 
main compounds, many studies have shown that nanofor-
mulation can dramatically increase the pharmacological and 
biological activities of EOs. For example, the Z. officinale 
EO was encapsulated in chitosan nanoparticles, improving 
its stability, solubility, antioxidant, and antibacterial prop-
erties [62]. Also, nanoemulsions containing Z. officinale 
extract had a potent ability to scavenge DPPH (2,2-diphenyl-
1-picrylhydrazyl) and ABTS (2,2-azino-bis-3-ethylbenzo-
thiazoline-6-sulfonic acid) free radicals, as well as had a 
toxicity effect against PC3 cancer cells [63]. Our data also 
indicated that the anticancer activity of nanoformulations of 
Z. officinale EO was more potent than non-formulated states 
on MDA-MB-231 and MCF-7 cell lines. It is important to 
note that ChitosanNPs-EO had more significant anticancer 
effects than AlginateNPs-EO. As well as, both nanoparticles 
induced 100% mortality in both cell lines at a concentration 
of 600 µg/mL, which confirmed the dose-dependent activ-
ity of nanoparticles. AlginateNPs-EO and ChitosanNPs-EO 
of Zingiber officinale EO reduced the MDA-MB-231 cell 
line by about 80% at 300 and 1200 µg/mL concentrations, 
respectively.

The  IC50 of ChitosanNPs-EO for MDA-MB-231 and 
MCF-7 cell lines were 67 and 82 µg/mL, respectively. Alg-
inate-based drug carriers could also reduce MDA-MB-231 
and MCF-7 cell proliferation. Still, the  IC50 of AlginateNPs-
EO (MDA-MB-231, 218 µg/mL; MCF-7, 590 µg/mL) was 
higher than  IC50 of ChitosanNPs-EO and demonstrated 
almost similar values with EO-treated cells. There is a con-
firmed improvement in the anticancer effect of Chitosan-
NPs-EO compared to AlginateNPs-EO and Z. officinale EO. 
These findings are congruent with other studies that reported 
a significant increase in the anticancer activity of loaded 
nanoparticles compared to free agents. For example, a report 
explored the incorporation of Zataria multiflora EO into 

chitosan biopolymer nanoparticles to improve its in vitro 
anticancer efficacy and conducted that treatment with NPs 
could alleviate the proliferation rate of breast cancer cells 
more than Z. multiflora EO [64]. In addition, the results of 
an in vitro cytotoxicity study on Hep-G2 (human liver can-
cer cell line) revealed that chitosan nanoparticles loaded by 
Boswellia sacra EO could upregulate apoptosis genes and 
reduce cancer cell migration and angiogenesis [65]. In addi-
tion, alginate nanoparticles containing Syzygium aromaticum 
EO caused cancer cell death, confirmed by an increase in the 
Bax/BCl-2 (apoptotic genes) ratio [66].

5  Conclusion

AlginateNPs-EO and ChitosanNPs-EO were successfully 
prepared and characterized. Results showed higher antifun-
gal, antibacterial, and anticancer effects of ChitosanNPs-EO 
than the AlginateNPs-EO and EO. It could thus be consid-
ered for in vivo studies.
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