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Abstract
The present work is focused on the development of a potential novel heterogeneous catalyst for biodiesel production. A novel 
catalyst based on  TiO2 modified of 3d elements such as Fe and Ni metal (Fe/TiO2-Ni). A series of Fe/TiO2-Ni nanocom-
posites was prepared using a sol-gel method and calcined at 500 °C. The catalyst’s surface morphology, structural crystal, 
and molecular structure were examined using a scanning electron microscope (SEM), using X-ray diffraction (XRD), and 
Fourier transform infrared (FTIR) analysis. The mean particle size of the Fe/TiO2-Ni nanocomposite was estimated to be 
9.16 nm. The results of nanocomposite analysis represented that the distribution of Fe and Ni elements in the lattice of  TiO2 
nanoparticles has been successfully synthesized. The GC-MS analysis indicated that the main component of methyl ester for 
coconut oil contains methyl laurate  (C13H26O2) at 51.38%, methyl octanoate  (C9H18O2) at 18.75%, methyl caprate  (C11H22O2) 
at 10.21, and methyl myristate  (C14H28O2) at 8.80%. A catalyst examination was conducted following ASTM standards for 
coconut oil biodiesel production and was discovered to be within standards. Therefore, a catalyst based on  TiO2 modified of 
3d elements (such as Fe and Ni metal) became a promising candidate for biodiesel production in the future.
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1 Introduction

Currently, the increasing energy demand, depleting fossil 
fuel reserves, and several environmental issues have search 
lead for a renewable, eco-friendly alternative resource [1–3]. 
Among sundry renewable energy, biodiesel was considered a 

promising energy solution to the energy problem. Moreover, 
biodiesel proposes several excesses compared with diesel 
fuel such as non-toxic, renewable, and biodegradable 
[4–6]. Biodiesel, also familiar as fatty acid methyl ester, 
is generated through the transesterification reaction of 
vegetable oil/animal fats with an alcohol (methanol/ethanol) 
in the existence of a catalyst support [7–9]. In this stage, the 
catalyst becomes a very crucial part of biodiesel production. 
The catalyst utilized in the transesterification process can be 
either homogeneous or heterogeneous [10–12].

Nowadays, heterogeneous catalysts are preferred and 
more considerably used for biodiesel production than 
homogeneous catalysts. This is due to several reasons 
such as the homogeneous catalyst’s lower biodiesel yield, 
difficult separation, non-reusability, and can pollute the 
environment [13–15]. These deficiencies of homogeneous 
catalysts could be overcome using heterogeneous catalysts 
because the catalysts could be recovered, easy to separate, 
environmentally friendly, as well as recycled [16–18]. 
Several heterogeneous catalysts that have been widely 
reported for biodiesel production include carbon-based 
[19], agricultural wastes [20], graphene-based metal oxide 
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[21], modified resin [22], rare-earth metal [23], and shell 
waste [24]. Among the most examined heterogeneous 
catalyst, transition metal oxides such as titanium dioxide 
 (TiO2) have unique advantages in biodiesel production due 
to their higher basicity, easier to obtain, and inexpensive.

TiO2 is one of the superior transition metal oxides that can be 
applied for biodiesel production as it is non-toxic and eco-friendly 
[25–29]. However, undoped  TiO2 has various limitations in its 
wide application. Furthermore, the selection of dopants also 
greatly affects the performance of  TiO2. Doping with 3d elements 
such as Fe and Ni metal can enhance the surface area, reduce 
the bandgap, increase the catalytic activity, and also reduce the 

particle size. The choice of Fe metal is caused by its stability at high 
temperatures, multivalent, and effectively reduces the band gap 
energy [30, 31]. Moreover, Fe metal is a magnetic oxide owning 
the ability to transesterify free fatty acid to achieve biodiesel 
products. The presence of Ni metal is also expected to increase the 
efficiency of  TiO2 photocatalysts in the visible region [32–34]. In 
addition to creating a new band gap, Ni doping can also accelerate 
photocatalytic activity and improve the transesterification process 
for biodiesel production [35]. The catalyst was synthesized by 
the sol-gel method and its catalytic performance was studied. At 
present, there are no studies reported that combined co-doped  TiO2 
using 3d elements (Fe and Ni metal).

Fig. 1  SEM image of Fe/TiO2-
Ni nanocomposite (a) 1000 
times, (b) 7500 times magnifi-
cations, and (c) EDX spectra of 
Fe/TiO2-Ni
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In the present work, we investigated Fe/TiO2–Ni mixed 
nanocomposite as a heterogeneous catalyst for transesteri-
fication reaction that was efficiently utilized in biodiesel 
production from coconut oil. We also evaluated the effect 
of co-doped Fe and Ni against catalyst performance. Scan-
ning electron microscopy (SEM), X-ray diffraction (XRD), 
Fourier transform infrared (FTIR) spectroscopy, scanning 
electron microscopy-energy dispersive X-ray (SEM-EDX), 
and gas chromatography and mass spectroscopy (GCMS) 
were conducted for the characterization of prepared cata-
lysts and biodiesel product.

2  Materials and Method

2.1  Materials

The materials used in the present study were sodium hydroxide 
(NaOH) 0.1 N, ethanol  (C2H5OH), iron(III) nitrate (Fe(NO3)3) 
0.1 M, nickel(II) nitrate (Ni(NO3)2) 0.1 M, sodium thiosulfate 
 (Na2S2O3), titanium tetraisopropoxide (TTIP), iodide solution 
 (I2), chloroform  (CHCl3), acetyl acetonate  (C5H8O2), methanol 
 (CH3OH), distilled water, sulfate acid  (H2SO4) (97 %), acetic 
acid  (CH3COOH) 0.5 M, phenolphthalein (PP) indicator, starch 

Fig. 2  XRD pattern of the (a)  TiO2 pure and (b) Fe/TiO2-Ni catalyst

Fig. 3  FTIR spectra of (a) Fe-
TiO2 and (b) Fe/TiO2-Ni
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indicator, and n-hexane  (C6H14). The coconut oil was pretreated 
by separating the meat from the shell. Furthermore, the meat 
was grated and squeezed to get coconut milk. The coconut milk 
was silenced to remove the water content. After pretreatment, 
the coconut milk was heated at 45 °C and for 5 h with vigorous 
stirring. After heating was completed, the coconut milk was 
cooled and filtered to achieve oil.

2.2  Catalyst Preparation

Fe/TiO2-Ni nanocomposite was synthesized by the sol-gel 
method adapted from previous research: 4 mL of titanium 
tetraisopropoxide, 0.5 mL of acetyl acetonate, and 15 
mL of ethanol were put into a beaker glass as solution A. 
Solution B was prepared by mixing 15 mL of ethanol, 2 
mL distillate water, and 0.5 mL acetate acid. Furthermore, 
solutions A and B were refluxed for 3 h at 50 °C. Moreover, 
followed with added of 1 mL Fe(NO3)3 and Ni(NO3)2 0.1 
M and stirred using a magnetic stirrer for 1 h at 50 °C. 
Finally, the catalyst was calcined for 1 h at 400 °C.

2.3  Characterization

Fe/TiO2-Ni nanocomposite was characterized using 
SEM-EDX analysis to observe the surface morphology, 

compositions, and also the micropore. Crystal shape and 
pore size were also observed using XRD analysis. The 
averaged diameter of the nanocomposite was determined 
using the Scherrer equation at 2θ between 10 and 80 
°C. The crystal phases that exist in the samples were 
compared with the JCPDS database files. In addition, 
the structural composition and functional groups of the 
nanocomposite were also investigated using FTIR. FTIR 
studies for all the prepared samples were conducted in the 
400–4000  cm−1 region.

2.4  Transesterification Reaction Studies

The transesterification reaction was conducted at the 
reactor system equipped with a hotplate stirrer and beaker 
assembled. The transesterification condition was diverse 
including the catalyst concentration (0.5, 1.0, and 1.5 b/v), 
oil:methanol mol ratio (1:6 mol: mol), reaction time (3 h), 
and under UV light. After the reaction was completed, the 
mixture was separated into the two-phase (biodiesel and 
glycerol) by using centrifugation for 5 min at 1600 rpm. The 
biodiesel obtained was placed in a bottle for methyl ester 
analysis. In the final stage, the methyl ester component was 
characterized using gas chromatography-mass spectroscopy.

3  Results and Discussion

3.1  SEM‑EDX Analysis

SEM images at different magnifications (1000 and 7500 
times) of the Fe/TiO2-Ni nanocomposite are displayed in 
Fig. 1. The preparation of the catalyst for the SEM analysis 
was conducted by the sol-gel method and calcined at  400°C 
for 1 h. SEM images (Fig. 1a) present the formation of 
agglomeration on the catalyst. The agglomeration suspectly 
originated from the calcination temperature and the 
existence of dopant ions distributed on the  TiO2 surface. 
Figure 1b illustrates the SEM images of the Fe/TiO2-TiO2 
nanocomposite with magnification 7500 times. The catalyst 
exhibits  TiO2 nanoparticles on the surface material.  TiO2 
particles are grainy in shape and irregular. In general, Fe/

Fig. 4  Chromatogram of methyl ester

Table 1  Composition of 
biodiesel conforming to the 
result of GC-MS analysis

Peak R. time (min) Compounds identified Molecular formula Composition (%)

1 3.44 Methyl caproate C7H14O2 1.44
2 5.49 Methyl octanoate C9H18O2 18.75
3 8.12 Methyl caprate C11H22O2 10.21
4 10.77 Methyl laurate C13H26O2 51.38
5 13.14 Methyl myristate C14H28O2 8.80
6 15.40 Methyl palmitate C17H34O2 2.02
7 17.19 Methyl oleate C19H36O2 1.44
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TiO2-Ni catalysts own an average size of 9.16 nm (colors 
of gray), suitable with Scherrer assessment. Therefore, 
the Fe/TiO2-Ni nanocomposite could be classified as a 
heterogeneous catalyst reason the particles on a nano-
size. The Fe/TiO2-Ni composite also analyzed by EDX 
(Fig. 1c) indicates that it presents compositions such as 
Ti, O, Ni, and Fe elements. This result was supported by 
XRD and FTIR analyses and become an excuse for why 
the Fe/TiO2-Ni catalyst showed the most excellent activity 
during the experiment.

3.2  XRD Analysis

The X-ray diffraction patterns of  TiO2 pure and Fe/TiO2-Ni 
nanocomposite are shown in Fig. 2. Specifically, the pattern 
exhibits different peaks at 2θ of 21,43° and 45,69° was 
associated with the [101] and (004) fields of Fe-TiO2 bond, 
correspond JCPDS No. 96-900-6336 [30]. The peaks at 2θ of 
35,12° and 64,48° were associated with the [110] and [300] 
fields of the Ni-TiO2 bond. These results are in accordance 
with the report by Gabal et al. [36]. Moreover, the peaks 
at 2θ of 25,24°; 37,79°; 47,48°; and 54,21°, 62,46°, and 
69,70° are also visible and associated with the  TiO2 structure 
(JCPDS file no. 00-21-1272) with the crystal plane [101], 
[200], [004], [105], [211], and [220] [37]. The Fe/TiO2-Ni 

nanocomposite crystalline size determined using Scherrer’s 
equation was discovered approximately 9.16 nm.

3.3  FTIR Analysis

The FTIR spectrum of both Fe-TiO2 and Fe/TiO2-Ni nano-
composites is exhibited in Fig. 3. The wide band around 3417 
 cm−1 is associated with O–H group stretching and bending 
vibration, which is pertained to  H2O molecules. Moreover, 
the IR band is visible from 400 to 800  cm−1 according to 
the Ti–O stretching vibrations [38]. The absorption band at 
636.51  cm−1–659.66  cm−1, typical for the Ni-O stretching 
vibration, ensures due to the presence of nickel oxide. The 
identical band at 600  cm−1–700  cm−1 was also investigated 
by Ahmed et al. [39], which is shown that the  (NO3

−) group 
was always present when  (NaNO3) are utilized as precursor. 
Furthermore, the absorption band at 1039,62  cm−1 and 578,64 
 cm−1 was characterized as a vibration of Fe-O, which more 
convinces the existence of Fe in nanocomposite [40].

3.4  GC‑MS Analysis

GC-MS analysis was determined to observe the presence of 
several kinds of fatty acid methyl ester from biodiesel products. 
The fatty acid methyl esters analysis characterized by GC-MS 

Fig. 5  GC-MS chromatogram 
of (a) methyl laurate and (b) 
methyl caprate
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is displayed in Fig. 4 and visible in Table 1. The primary com-
ponent discovers in biodiesel products such as methyl laurate 
 (C13H26O2), methyl octanoate  (C9H18O2), methyl caprate 
 (C11H22O2), and methyl myristate  (C14H28O2). The high peak 
at a retention time of 10.77 min in Fig. 4 and Table 1 presents 
the existence of methyl laurate with 51.38% of total content.

Figure 5a shows the primary peak in all the mass spectra 
of saturated methyl ester was observed at m/z 74 which is 
a rearrangement of McLafferty the well-known [41]. Three 

other peaks i.e., a peak at m/z 171, m/z 143, and m/z 129 due 
to the removal of a propyl radical (carbon 2 to 4). Moreover, 
methyl ester identified in coconut oil has characteristic 
fragmentation pattern peaks at m/z 55, [M-]+ due to the 
removal of  C3H6O2. Figure 5b shows the mass spectrum of 
methyl caprate with a retention time of 8.127 min providing 
peaks with m/z of 43, 55, 74, and 101 respectively. Peaks at 
m/z 143 is due to the deletion of  C8H15O2

+. The other peaks 
at m/z 43, 101, and 143 are fragmentation patterns due to the 

Fig. 6  The photocatalytic reac-
tion mechanism using Fe/TiO2-
Ni heterogeneous catalyst in 
transesterification reaction

Table 2  Comparison of 
various feedstock in biodiesel 
production using heterogeneous 
catalysts

No. Feedstock Heterogeneous catalyst Method Reference

1 Canola oil Li/TiO2 Transesterification [43]
2 Waste cooking oil S–TiO2/SBA-15 Esterification [44]
3 Palm oil Cu/TiO2 Transesterification [45]
4 Palm fatty acid SO3H-GO@TiO2 Esterification [46]
5 Coconut oil Fe/TiO2-Ni Transesterification In this work
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cleavage of each C-C bond and are known as fragmentation 
patterns of the  CnH2n-1O2

+ ion series [42].
The transesterification reaction using the Fe/TiO2-Ni 

heterogeneous catalyst was performed in a UV reactor 
system. The mechanism of the Fe/TiO2-Ni photocatalyst 
reaction was initiated with the process of transferring 
methanol and triglycerides to the surface of  TiO2. This 
process was accelerated through vigorous stirring. 
Methanol and triglycerides will be adsorbed on the surface 
of the photocatalyst. The proposed photocatalytic reaction 
mechanism can be seen in Fig. 6 (scheme 1). Based on 
Fig. 6 (scheme 1), electrons will react with triglycerides 
and produce RCO•OR radicals while holes react with 
methanol to form  CH3O• radicals. The two radicals 
produced will react to form methyl ester, as can be seen in 
Fig. 6 (scheme 2).

Moreover, numerous studies have previously documented 
a variety of comparisons involving the various feedstock in 
biodiesel production. These studies examined various het-
erogeneous catalysts, and their findings have been compiled 
and presented in Table 2.

4  Conclusions

The purpose of the present study was to increase the per-
formance of  TiO2 in biodiesel production by adding 3d 
elements (such as Fe and Ni) using the sol-gel method and 
calcining at 500 °C. The surface morphology of nanocom-
posite depicted the grainy shape and irregular with an aver-
age size of 9.16 nm. The study indicated that the addition 
of 3d elements (Fe and Ni) has enhanced the  TiO2 surface 
area and activity against biodiesel production. GC-MS 
analysis of methyl ester for coconut oil revealed the exist-
ence of diverse compounds containing carbon atoms from 
C7 to C19. Its main components include methyl laurate 
(51.38%), methyl octanoate (18.75%), methyl caprate 
(10.21%), and methyl myristate (8.80%). On the whole, the 
 TiO2 modified of 3d elements (such as Fe and Ni) became 
a promising candidate as the heterogeneous catalyst for 
biodiesel production from coconut oil.
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