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Abstract
Magnetic nanoparticles are a class of nanoparticle that can be manipulated using magnetic fields. Such particles commonly 
consist of two components, a magnetic material, often iron, nickel, and cobalt, and a chemical component that has function-
ality. While nanoparticles are smaller than 1 µm in diameter (typically 1–100 nm), the larger microbeads are 0.5–500 µm 
in diameter. Magnetic nanoparticle clusters that are composed of a number of individual magnetic nanoparticles are known 
as magnetic nanobeads with a diameter of 50–200 nm. Magnetic nanoparticle clusters are a basis for their further magnetic 
assembly into magnetic nanochains. The magnetic nanoparticles have been the focus of much research recently because they 
possess attractive properties which could see potential use in catalysis including nanomaterial-based catalysts, biomedicine 
and tissue-specific targeting, magnetically tunable colloidal photonic crystals, microfluidics, magnetic resonance imaging, 
magnetic particle imaging, data storage, environmental remediation, nanofluids, optical filters, defect sensor, magnetic 
cooling, and cation sensors.

Keywords  Nanoparticles · Magnetic nanoparticles · Co-precipitation · Magnetic resonance imaging · Environmental 
remediation

1  Introduction

In recent years, many efforts have been made to prepare 
and synthesize magnetic nanoparticles for their application 
in various fields such as biotechnology, drug delivery, and 
computer. In general, the performance and application of 

these nanoparticles is influenced by their proper design and 
synthesis [1–5]. So far, various magnetic nanoparticles have 
been synthesized, including pure metal nanoparticles (Fe, 
Co, Ni), metal oxides (Fe3O4, γ-Fe2O3), ferrites (MFe2O4, 
M = Cu, Ni, Mn, Mg, etc.), and metal alloys (FePt, CoPt) 
[6–11]. During the synthesis of these nanoparticles, some 
key conditions such as intrinsic magnetic properties, size 
and shape of nanoparticles, surface coating and surface 
charge of nanoparticles [12–22], and stability in aqueous 
environment as well as their non-toxicity must be consid-
ered [23–28]. By choosing a suitable synthesis method, the 
size, shape, surface coating, and colloidal stability of mag-
netic nanoparticles can be optimally controlled [29–31]. In 
the choice of magnetic material, iron oxides usually play a 
key role [32–34]. On the one hand, these oxides have good 
magnetic properties compared to other magnetic nanoparti-
cles, and on the other hand, they show high stability against 
degradation [12–14, 35, 36]. These nanoparticles also have 
lower toxicity [15, 16]. To date, various methods for the syn-
thesis of magnetic NPS have been proposed and improved 
[17]. In the purpose of this study, magnetic nanoparticles 
(MNPs) have widespread attention because of their unique 
features [37–44]. For a few decades, growing development 
in chemical synthesis of nanomaterials and material surface 
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modification have been seen and performed in numerous 
applications including biomedicine, biotechnology, cataly-
sis, and magnetic chemistry thermoelectric materials. Vari-
ous methods for fabrication of MNPs which have a con-
trollable size, distribution, and surface modification have 
been reported [45–49]. In these methods, several techniques 
containing irradiation, microwave, ultra-sonication, vapor 
deposition, electrochemical, and microwave are applied to 
produce MNPs either in bottom-up or top-down processes. 
Generally, magnetic synthesis of nanoparticles is carried out 
by using these two processes. Nanomaterials with magnetic 
properties have wide applications in many fields such as 
biology, medicine, and engineering [50, 51]. In this paper, 
the recent developments in the structures, occurrences, most 
commonly used samples, and common areas of use of the 
MNPs are given.

2 � Synthesis of magnetic nanoparticles

2.1 � Synthesis in liquid phase

Methods of synthesis of magnetic nanoparticles in the liquid 
phase include precipitation, microemulsion, synthesis using 
ultrasound, and so on [12, 18–20]. Homogeneous prepara-
tion and deposition of high uniformity particles (monodis-
perses) can be justified by LaMer principles and diagrams 
(Fig. 1) [1–5]. Particle growth occurs through the penetra-
tion of particles on the surface of pre-formed nuclei and the 
irreversible accumulation of nuclei.

2.1.1 � Co‑precipitation

The co-precipitation method is the simple and the maximum 
effect chemic method for the synthesis of MNPS [24]. The 
main advantage of co-precipitation is its ability to synthesize 
large numbers of NPS. However, particle size repartition 
control is limited in this method, and kinetic factors control 
particle growth [25]. Figure 2 shows the schematic of syn-
thesis of Fe3O4 magnetic nanoparticles using co-precipita-
tion method; first, a solution of iron ions in hydrochloric acid 
is prepared and then this solution is poured on a solution of 
diisopropylamine (DIPA) which results in the formation of 
a precipitate of iron oxide nanoparticles [21, 22].

2.1.2 � Arc Discharge

This method is commonly used to synthesize magnetic 
nanoparticles enclosed in a carbon layer (carbon-encap-
sulated) or magnetic nanoparticles made of metal carbide. 
In this method, the metal precursor is placed in a cavity 
on a graphite electrode and evaporated by arc discharge 

Fig. 1   LaMer diagram [1]

Fig. 2   Schematic of synthesis of 
Fe3O4 magnetic nanoparticles 
using co-precipitation method; 
first, a solution of iron ions in 
hydrochloric acid is prepared 
and then this solution is poured 
on a solution of diisopro-
pylamine (DIPA) which results 
in the formation of a precipitate 
of iron oxide nanoparticles [2]
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[26]. This method can also be used to coat the surface 
of metal nanoparticles with boron nitride. Unfortunately, 
due to limitations such as low efficiency and difficulty in 
controlling the size and thickness of synthesized nanopar-
ticles, this method cannot be used on an industrial scale 
[2]. In addition to these methods, laser light can also be 
used to synthesize nanoparticles with a size distribution 
of less than 10 nm (Fig. 3) [4, 27, 52–54].

3 � Protection Methods

Although several methods have been proposed to improve 
the methods of synthesis of magnetic nanoparticles, the 
stability of these nanoparticles for a long time against 
their accumulation and deposition is an important issue. 
Because the stability of these nanoparticles is important 
in their application [28], magnetic nanoparticles are very 
sensitive to oxidation and accumulation as well as chemi-
cally reactive due to their large surface area. At normal 
temperature and pressure, the surface of the nanoparticles 
oxidizes rapidly, resulting in the formation of a thin layer 
of oxide on it, which drastically changes their proper-
ties [29]. Natural aggregation of nanoparticles is another 
problem that limits the dispread use of magnetic nanopar-
ticles (Fig. 4) [4, 30]. The following methods can be used 
to stabilize magnetic nanoparticles [31, 55, 56]:

i)	 Equilibrium between repulsive forces and gravity 
between nanoparticles

ii)	 Placing inorganic coatings on the surface of magnetic 
nanoparticles

3.1 � Organic Coating

Organic coatings are corrosion barriers between the under-
lying metal and the corrosive environment. They maintain 
durability of structures and provide resistance to weather, 
humidity, abrasion, chemical resistance, toughness, and 
aesthetic appearance. Organic coating efficiency depends 
on the mechanical properties of the coating system, type 
and concentration of suspended inhibitors [1, 2], pretreat-
ment of the metal surface [3], adhesion of the coating to 
the underlying metal base [4], and other additives that 
inhibit substrate corrosion. Coating formulation usually 
contains solvent, resin (binder), pigment, filler, and addi-
tives. When applied to the underlying metal, they provide 
a continuous, homogeneous coating that prevents cracking 
and structure breakdown during stress, water permeabil-
ity, and physical aging. Protective coatings should possess 
low permeability, good corrosion stability, and appear-
ance over a long period of time to justify the cost [57–59]. 
Organic coatings are classified according to the resin’s 
chemical composition. The resin is dissolved or suspended 
in the solvent. The content and density of the resin are 
critical for corrosion barrier properties and oxygen and 
water permeability. The common resins used to manufac-
ture single-component organic coatings are vinyls, acryl-
ics, chlorinated rubber, alkyd (oil base), modified alkyd-
silicon, amino-modified alkyd, phenolic alkyd, and epoxy 
ester [60–64]. Two component organic coating systems are 
manufactured using phenolic and polyurethanes. Coating 
properties such as color and opacity, mechanical, and bar-
rier properties and water transport depend on the chemical 
composition of the dispersed pigment, pigment volume 
concentration, and critical volume concentration. Besides 
color and opacity, the pigments protect the cured resin 
against UV radiation. Resins control coating properties 

Fig. 3   Arc discharge method 
synthesis of magnetic nanopar-
ticles [4]
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including toughness, flexibility, time of curing, service 
performance, exterior weathering, and adhesion [5]. 
Organic solvents perform several functions. They dissolve 
the resin, control coating viscosity and evaporation for film 
formation, and affect film adhesion and coating durabil-
ity. Other additives and fillers provide coating uniformity 
and improve coating flow, surface drying, or decrease the 
permeability of water and oxygen [65–67]. Metal surface 
preprinting treatments such as phosphate and chromium 
conversion coatings are applied to increase adhesion of the 
organic coating. Before applying the top coat, it may be 
necessary to apply a primer coat that possesses inhibitive 
properties and good surface adhesion [68–70]. More than 
one coat provides good mechanical properties, pleasant 
color and opacity, and good barrier properties (resistance 
to water and oxygen diffusion to the interface between the 
underlying meal and the coating). Metal corrosion rate 
should not exceed more than 1.2–5.0 mm/year with applied 
liquid coatings [6]. To date, most studies have focused on 
the development of coatings with surfactants, but today 
more attention has been focused on coating with poly-
mers due to the repulsion. Numerous methods have been 
proposed for the stability of magnetic nanoparticles using 
surfactants and polymers both during and after the synthe-
sis of nanoparticles [32, 33, 71–74]. As shown in Fig. 5, by 
creating one or two layers on it, they cause the magnetic 
nanoparticles to remain dispersed. To prevent oxidation 
of magnetic nanoparticles, the coating should be dense, 
because one or two thin layers in an acidic environment 

are easily separated from the surface of the nanoparticles 
and cause loss of magnetic property [1].

3.2 � Inorganic Coatings

Inorganic coatings can be produced by chemical action, with 
or without electrical assistance. The treatments change the 
immediate surface layer of metal into a film of metallic oxide 
or compound which has better corrosion resistance than the 
natural oxide film and provides an effective base or key for 
supplementary protection such as paints. In some instances, 
these treatments can also be a preparatory step prior to 
painting [13]. The surface of magnetic nanoparticles can be 
coated with mineral coatings (Fig. 6) such as metal oxides, 
silica, precious metals, and carbon [34]. A very simple way 
to protect magnetic nanoparticles is to use metal oxides dif-
ferent from the core as their coating [1, 75–77]. Precious 
metals such as gold, due to their low reactivity and ability 
to bridge with other functional groups, can also be used to 
protect magnetic cores [3]. In this field, the use of coatings 
made of silica and carbon due to issues such as low cost, 
low toxicity, good biocompatibility has attracted a lot of 
attention [2, 78–81].

3.3 � Green Synthesis of NPs

Recently, with the development of modern technologies of 
the nanomaterial synthesis, there was interest in studying 
the properties of metals at ultra-disperse range as a powder, 

Fig. 4   Protection methods synthesis of magnetic nanoparticles [4]
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solution, and suspension. As a rule, the nanoparticles (NPs) 
may easily form complexes with different substances due to 
their high chemical activity [14–16]. These complexes have 

new properties such as good solubility and high biological 
activity. In this regard, the water dispersion of metal NPs 
that was obtained by biochemical synthesis using plants 
shows the ability to absorb, accumulate, and restore inor-
ganic metal ions from the environment. The various organic 
components, particularly, secondary metabolites that are 
present in plant tissues, are able to act as stabilizing and 
reducing agents in the process of NPs synthesis [82–84]. 
Reduction and formation of NPs occur in the water core 
of micelles formed by surfactant molecules using natural 
biologically active substances such as plant pigments from 
the flavonoid group which ensures long-term stability of NPs 
and makes this process as safe as possible for the environ-
ment [17]. The highest activity and final morphology of NPs 
is ultimately reached in the last step of green NPs synthesis, 
when they are coated with plant metabolites (polyphenols, 
tannins, terpenoids, etc.). Many biological systems of plants 
can convert inorganic metal ions into metal NPs through the 
reductive abilities of secondary metabolites present in these 
organisms. The ability of plants to accumulate and detoxify 
heavy metals is well proved. Bioactive compounds of plants 
such as polyphenols, flavonoids, vitamin C, alkaloids, and 
terpenoids reduce silver (Ag) salts from positive oxidation 
state (Ag +) to zero oxidation state (Ag0); the mechanism 
for reduction of Ag + to Ag0 is shown (Fig. 7). Secondary 

Fig. 5   Some organic coatings used to ensure the stability of magnetic nanoparticles [5]

Fig. 6   TEM image of silica-coated magnetic nanoparticles [2]
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metabolites present in the plant extract affect the size and 
shape of metallic NPs [12, 18]. These biologically active 
compounds possess antioxidant activity and are of great 
interest in the biomedical field as alternative antibacterial 
agents.

3.4 � Chemical Vapor Deposition (CVD)

Chemical vapor deposition (CVD) is a deposition method 
used to produce high-quality, high-performance, solid mate-
rials, typically under vacuum. CVD is the process involving 
chemical reactions taking place between an organometallic 
or halide compounds to be deposited and the other gases to 
produce nonvolatile solid thin films on substrates [85–87]. 
The key distinguishing attribute of CVD is that the depo-
sition of material onto the substrate is a multidirectional 
type of deposition, whereas PVD is a line-of-site impinge-
ment type of deposition. Microfabrication processes widely 
use CVD to deposit materials in various forms, including 
monocrystalline, polycrystalline, amorphous, and epitaxial. 
In contrast with PVD, in CVD, there is an actual chemical 
interaction between a mixture of gases and the bulk surface 
of the material, which causes chemical decomposition of 
some of the specific gas constituents, forming a solid coat-
ing on the surface of the base material. CVD is employed 
in a wide range of industry applications, such as the deposi-
tion of refractory materials (nonmetallic materials that can 
withstand extremely high temperatures) on turbine blades 
to greatly increase the wear resistance and thermal shock 
resistances of the blades [88–90]. Some CVD techniques are 
atmospheric-pressure CVD, low-pressure CVD, ultrahigh 
vacuum CVD, plasma-enhanced CVD, microwave plasma-
assisted hot filament CVD, metal–organic CVD, photo-ini-
tiated CVD, atomic layer deposition, spray pyrolysis, liquid-
phase epitaxy, etc. [19]. Chemical vapor deposition (CVD) 

is a widely used material processing technology. The major-
ity of its applications involve applying solid thin-film coat-
ings to surfaces, but it is also used to produce high-purity 
bulk materials and powders, as well as fabricating compos-
ite materials via infiltration techniques. It has been used to 
deposit a very wide range of materials. In the late 1970s, it 
was first found [20] that CVD could deposit diamond films 
at a pressure lower than 1 atm. Since then, the research on 
the formation of thin films on different biomaterials by the 
CVD method has been deepened.

CVD has a number of advantages as a method for deposit-
ing thin films. One of the primary advantages is that CVD 
films are generally quite conformal, i.e., that the film thick-
ness on the sidewalls of features is comparable to the thick-
ness on the top. This means that films can be applied to 
elaborately shaped pieces, including the insides and under-
sides of features, and that high-aspect ratio holes and other 
features can be completely filled. In contrast, physical vapor 
deposition (PVD) techniques, such as sputtering or evapora-
tion, generally, require a line-of-sight between the surface 
to be coated and the source[91–94]. Another advantage of 
CVD is that, in addition to the wide variety of materials 
that can be deposited, they can be deposited with very high 
purity. This results from the relative ease with which impuri-
ties are removed from gaseous precursors using distillation 
techniques. Other advantages include relatively high depo-
sition rates and the fact that CVD often does not require as 
high a vacuum as PVD processes. CVD also has a number of 
disadvantages. One of the primary disadvantages lies in the 
properties of the precursors. Ideally, the precursors need to 
be volatile at near-room temperatures. This is non-trivial for 
a number of elements in the periodic table, although the use 
of metal–organic precursors has eased this situation. CVD 
precursors can also be highly toxic (Ni(CO)4), explosive (B2 
H6), or corrosive (SiCl4). The byproducts of CVD reactions 

Fig. 7   Pattern of green synthe-
sis. The chemical reaction of 
NPs synthesis includes several 
steps. Polyphenols convert 
positive Ag+ into the zero 
Ag0 valent metal, and in the 
last step of green synthesis, the 
polyphenols coat metal NPs and 
affect the morphology and size 
of NPs [18]
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can also be hazardous (CO, H2, or HF). Some of these pre-
cursors, especially the metal–organic precursors, can also 
be quite costly [95–98]. The other major disadvantage is 
the fact that the films are usually deposited at elevated tem-
peratures [99]. This puts some restrictions on the kind of 
substrates that can be coated. More importantly, it leads to 
stresses in films deposited on materials with different ther-
mal expansion coefficients, which can cause mechanical 
instabilities in the deposited films.

3.5 � Methods of Protection

Three basic methods of protection from chemical hazards 
exist: engineering controls, personal protective equipment, 
and administrative controls. Engineering controls are sys-
tems and equipment designed to prevent or decrease contact 
with a chemical. Examples include chemical fume hoods, 
ventilation fans, and secondary containers. Personal protec-
tive equipment (PPE) is protective clothing that is resist-
ant to specific chemicals and acts as a barrier between the 
wearer and the chemical he or she is handling. Adminis-
trative controls are limitations imposed by supervisors to 
ensure exposures are minimized or eliminated. The supervi-
sor is responsible for ensuring that appropriate controls are 
in place and used [37–41].

3.5.1 � Engineering Controls

Engineering controls are considered the most effective form 
of exposure control. Before beginning a process or proce-
dure, consider engineering controls that will decrease chemi-
cal exposure or risk of harm. Examples include grounding 
and bonding when transferring flammable liquids; using 
exhaust ventilation to decrease vapor concentration when 
using a volatile chemical; and storing hazardous chemicals 
in cabinets according to hazard class [42].

3.5.2 � Personal Protective Equipment

PPE should be worn for protection from hazardous chemi-
cals whenever contact is possible. PPE includes gloves, 
safety glasses, face shields, Tyvek suits, lab coats, etc. The 
use of powdered latex gloves is prohibited. A respirator 
should only be used while engineering controls are being 
installed or upgraded or when engineering controls are 
not a feasible option. If respirators are deemed necessary, 
EH&S must be contacted to determine the correct respira-
tor and provide fit testing, training, and medical screening 
for users. PPE must be selected according to the chemical 
hazard involved [100–104].

3.5.3 � Administrative Controls

Administrative controls should be used to limit exposure 
durations. The most common example of administrative con-
trol is rotation of workers to minimize the length of time a 
worker is exposed to a certain chemical. This form of control 
should only be used under well-documented conditions and 
after engineering controls have first been considered or used 
[47–49].

4 � Functionalization of Magnetic 
Nanoparticles

Interactions between NPS and their environment are strongly 
influenced by the surface groups of NPS [67, 68]. The devel-
opment of surface modification methods for magnetic NPS 
to chemically functionalize them and control their solubility 
is important and strongly influenced by the type of applica-
tion. For biological applications, for example, the surface of 
magnetic nanoparticles is often referred to as biomolecules 
such as proteins [34, 105–109]. Most applications of mag-
netic NPS require chemical stability, uniformity in size, and 
proper dispersion in a liquid medium [35, 110–114]. There-
fore, the surface of NPS must be modified with appropriate 
groups. Electrostatic chemical absorption (or addition of a 
ligand, in ligand chemistry is an ion or molecule that is able 
to attach to a particular metal or several metals to form a 
complex) and covalent bonding (ligand exchange) are some 
of the methods, which are used to change and modify the 
surface of NPS (Fig. 8) [5, 12, 36–39, 115–120].

5 � Conclusion

Biomedical applications like magnetic resonance imaging, 
magnetic cell separation, or magnetorelaxometry control 
the magnetic properties of the nanoparticles in magnetic 
fluids. Furthermore, these applications also depend on the 
hydrodynamic size. Therefore, in many cases, only a small 
portion of particles contributes to the desired effect. The 
relative amount of the particles with the desired properties 
can be increased by the fractionation of magnetic fluids. 
Common methods currently used for the fractionation of 
magnetic fluids are centrifugation and size-exclusion chro-
matography. All these methods separate the particles via 
nonmagnetic properties like density or size. The positive 
charge of the maghemite surface allows its dispersion in 
aqueous acidic solutions and the production of dispersions 
stabilized through electrostatic repulsions. By increasing 
the acid concentration (in the range 0.1 to 0.5 mol l−1), 
interparticle repulsions are screened, and phase transitions 
are induced. Using this principle, these authors describe a 
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two-step size sorting process in order to obtain significant 
amounts of nanometric monosized particles with diam-
eters between typically 6 and 13 nm. As the surface of the 
latter is not modified by the size sorting process, usual 
procedures are used to disperse them in several aqueous 
or oil-based media. Preference should be given, however, 
to partitions based on the properties of interest, in this 
case, the magnetic properties. So far, magnetic methods 
have been used only for the separation of magnetic fluids, 
for example, to remove aggregates by magnetic filtration. 
Recently, the fractionation of magnetic nanoparticles by 
flow field-flow fractionation was reported that field-flow 
fractionation is a family of analytical separation tech-
niques, in which the separation is carried out in a flow 
with a parabolic profile running through a thin channel. An 
external field is applied at a right angle to force the par-
ticles toward the so-called accumulation wall. Advances 
within the synthesis of magnetic NPS, especially within 
the last 20 years, have led to the event of a good range of 
those NPS, in numerous sizes and controllable. However, 
one amongst the unavoidable problems these related to 
NPS is their inherent instability over long periods of your 
time. On the opposite hand, issues like very high reactiv-
ity and toxicity to some magnetic NPS limit their use. 

Research during this field has shown well that to beat these 
problems, coating these NPS using organic and inorganic 
molecules is one amongst the foremost effective solutions. 
In recent years, the functionalization and modification of 
the surface of magnetic NPS has significantly increased 
the potential of using these NPS in several fields.
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Fig. 8   A Functionalization of 
magnetic nanoparticles with 
3-aminopropyl triethoxysi-
lane in toluene and ethanol, B 
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ment, and C Candida antarctica 
lipase B immobilization on 
3-aminopropyl triethoxysilane 
functionalized magnetic NPS 
after glutaraldehyde reticula-
tion [5]
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