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Abstract
In the present work, combustion synthesis of ZnO nanoparticles using lemon juice and citric acid as fuels has been carried out. A
comparative analysis of the obtained powders has been conducted to understand the strategic advantages of using lemon juice
over citric acid as the combustion fuel for the synthesis of ZnO nanopartilcles. The X-ray diffractograms of both the samples
revealed the presence of wurtzite hexagonal structure with the standard JCPDS pattern of zincite [36-1451] with varying
crystallite sizes. Surface morphology of the samples was studied by scanning electron microscopy. Particle shapes and sizes
were determined by transmission electron microscopy. Although wurtzite hexagonal structures were seen in both the synthesis
methods, their morphology and sizes differed significantly with samples prepared by lemon juice presenting smaller size. The
band gap energy value determined by Wood-Tauc method was found to be ~ 3.2 eV for both the samples. DPPH assay revealed
the antioxidant activity of the samples at varied concentrations. Further, antimicrobial studies were greater for those prepared by
lemon juice. Furthermore, trypan blue andMTTassay evaluation of nanoparticles against PC-3, HCT116, A549, andMDA-MB-
231 cancer cell lines indicated enhanced anticancer activity of ZnO nanoparticles prepared by lemon juice. It was found that the
sample prepared using lemon juice exhibited IC50 values of 78.80 μg/mL, 28.75 μg/mL, and 10.7 μg/mL, whereas the sample
prepared using citric acid as fuel exhibited IC50 values of 103.6 μg/mL, 41.52 μg/mL, and 20.06 μg/mL, towards PC-3, HCT
116, and MDA-MB-231 respectively.
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1 Introduction

Nature has elegant and ingenious ways of creating the
most efficient miniaturized functional materials. An in-
creasing awareness towards green chemistry and use of
green route for synthesis of metal nanoparticles (NPs)
lead a desire to develop environment-friendly techniques.
Self-propagating high temperature solution combustion
synthesis (SCS) is a simple yet reliable technique for
the preparation of NPs. Conventionally, organic com-
pounds such as citric acid, urea, and glycine have been
used as fuels for the preparation of NPs [1–4]. Recently,
the use of naturally available organic materials as fuels
has seen upswing owing to the innovative, cheaper, and
environmentally neutral implications as opposed to their
conventional (chemical) counterparts. Furthermore, natu-
rally extracted entities serve as both reducing and stabi-
lizing agents during the synthesis of NPs [5]. The use of
environmentally benign materials, namely, plant extracts,
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microorganisms, and enzymes for the synthesis of NPs,
offers plentiful benefits such as eco friendliness, biocom-
patibility, non-toxicity, and cost effectiveness [6–9]. In
the present scenario, plants provide a better platform
for NPs synthesis as they are non-toxic chemicals [10].
The use of plants as the production assembly of NPs has
drawn attention because of its rapid, eco-friendly, eco-
nomical protocol, providing a single step technique for
the biosynthetic processes. Among various plant extracts,
phytochemicals are emerging as a useful natural resource
for the synthesis of metal/metal oxide NPs. Although
phytochemicals are considered non-nutritive, their role
as reducing and the stabilizing agents for the synthesis
of metal/metal oxide NPs has seen an upsurge in the past
decade [11].

ZnO is considered a magic material owing to a plethora of
applications: flexibility in preparation, manifestation of vari-
ous morphologies, and associated properties. Furthermore,
ZnO NPs have shown wide variety of applications in the field
of textiles [12], catalysis [13], solar cells [14, 15], nano gen-
erators [16], food packaging materials [17], gas sensors [18],
cosmetics [19], antimicrobials [20], drug delivery [21], cancer
therapy [22], etc. Anti diabetic and anti-tubercular activities of
ZnO NPs have also been reported recently [23, 24].
Previously, many studies have reported the synthesis of ZnO
NPs by conventional fuels such as oxalyl dihydrazide [25],
sucrose [26], polyethylene glycol [27], citric acid, glycine, and
urea [28]. Also, many studies have reported the use of plant
extracts as fuels, such asGarcinia xanthochymus [29], Punica
granatum and Tamarindus indica [30], Cassia fistula [31],
lemon juice [24, 32], Prunus japonica [33], Couroupita
guianensis [34],Borago officinalis [35], Ziziphus nummularia
[36], Abutilon indicum, Melia azedarach, and Indigofera
tinctoria [37], in the preparation of metal oxide nanoparrticles
by SCS. In our previous work, we have shown the higher
anticancer activity of ZnO NPs prepared using bio-fuels as
reducing agents over ZnO NPs prepared using a chemical as
a reducing agent [37].

Hence, with the above background, in the present
work, the potential of lemon juice (over its conventional
chemical reagent) as a fuel for the preparation of ZnO
NPs using SCS method has been discussed. In this con-
text, our current study emphasizes on the preparation, ma-
terial characterization, and further antimicrobial, antioxi-
dant, and anticancer activity of ZnO NPs prepared by
lemon juice bio-fueled SCS. Samples prepared using both
fuels have been compared extensively for their structural,
morphological, antimicrobial, antioxidant, and anticancer
activities. The objective of this study was to move away
from citric acid–based synthesis to a more natural/green
synthesis method while comparing the preparation meth-
odology and biological properties of thus synthesized par-
ticles with the former.

2 Experimental

2.1 Materials

Zinc nitrate hexahydrate [Zn(NO3)2·6H2O, AR 99% SD
Fine], citric acid [C6H8O7, AR 99% SD Fine], potato dextrose
agar [3.9% w/v aqueous solution, Himedia], nutrient agar
[2.8% w/v aqueous solution, Himedia], Dulbecco’s Modified
Eagle’s medium [DMEM-High Glucose-Himedia], 3-[4, 5-di-
methylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide [MTT,
C18H16BrN5S, 97.5%, Sigma Aldrich], dimethyl sulfoxide
[DMSO, C2H6SO, AR 99% Merck], 2,2-diphenyl-1-
picrylhydrazyl hydrate [DPPH, C18H12N5O6, > 90% Merck],
ascorbic acid [C6H8O6, 98% Sigma Aldrich], fetal bovine
s e r um [FBS , H imed i a ] , ( 3Z , 3 ′Z ) - 3 , 3 ′ - [ ( 3 , 3 ′ -
dimethylbiphenyl-4,4′-diyl) di (1Z) hydrazin-2-yl-1-ylidene]
bis (5-amino-4-oxo-3,4-dihydronaphthalene-2,7-disulfonic
acid) [Trypan blue, 0.4–0.5% dye concentration, Himedia],
phosphate-buffered saline [PBS, 0.86% w/v aqueous solution,
Himedia], Amphotericin B [C47H73NO17, ~ 80% Sigma
Aldrich], and Ofloxacin [C18H20FN3O4, ≥ 98% Sigma
Aldrich] were used as such without further purification and
fresh lemons from the local market were purchased off the
shelf.

2.2 Synthesis of ZnO NPs

ZnO NPs were prepared by SCS as explained in our recent
work [24]. The synthesis involves the combustion of redox
mixture in which [Zn(NO3)2·6H2O] acts as an oxidizing agent
and lemon juice acts as a reducing agent. 4.0 g of Zn(NO3)2·
6H2O was dissolved in 40 mL of double-distilled water in a
crystalline dish. 9.0 mL of raw lemon juice (filtered) was
added to it. The crystalline dish containing the homogeneous
mixture was placed in a preheated muffle furnace (375 ±
10 °C). The solution initially underwent dehydration and the
resulted viscous liquid caught fire, auto ignited with flames on
the surface, which rapidly proceeded throughout the entire
volume forming a white powdered product. The sample was
calcined at 600 °C for 3 h. The synthesized ZnO was labeled
as ZnO (LJ).

Similar method was followed using citric acid (1.57 g) as
fuel. The stoichiometry of the redox mixture for combustion
was calculated based on the total oxidizing and reducing
valencies of the oxidizer and the fuel using the concept of
propellant chemistry [2]. The amounts of metal nitrates to fuel
ratios for the synthesis of the nanoparticles are based on the
following equation:

Oxidizer=fuel ratio

¼ ∑Valencies of all oxidizing and reducing elements in oxidizer

−1ð Þ Valencies of all oxidizing and reducing elements in fuel
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ZnO thus synthesized was labeled as ZnO (CA). Both the
above reactions yielded white and porous powders within 5–
10 min.

2.3 Characterization Techniques

In order to identify the phase purity and crystalline struc-
ture of synthesized ZnO NPs, the XRD patterns were re-
corded with a powder X-ray diffractometer (X’PERT-PRO,
Cu-Kα radiation, λ = 1.54 Å). The formation of ZnO and
the absence of any other functional groups from the precur-
sors were confirmed using Fourier-transform infrared spec-
troscopy (FTIR) by KBr disc method using IRAffinity-1
Shimadzu within the range of 400–3500 cm−1. The UV-
Vis absorption spectrum was recorded on JASCO (V-670)
at room temperature. The data were analyzed using Origin
8.1 software (Origin Lab Corporation, USA). Morphology
of the samples was investigated by Ultra 55, Carl Zeiss,
GmbH, field emission scanning electron microscopy (FE-
SEM). The shapes and particle size were investigated by
high-resolution transmission electron microscopy
(HRTEM) carried out on JEOL 3010 instrument with a
UHR pole piece. Brunauer-Emmett-Teller (BET) surface
area measurements were carried out on Micromeritics
ASAP 2020. Average diameter was measured on
Brookhaven ZetaPALS. To understand which components
of lemon juice are responsible for combustion, a detailed
qualitative phytochemical examination was carried out for
lemon juice as per the standard methods [38–40].
Estimation of citric acid in lemon juice was carried out by
acetic anhydride-pyridine method [41]. In brief, different
quantities of citric acid standards (25 to 200 μg) were pre-
pared in clean test tubes and made up the volume into 1 mL
with double-distilled water. Eight milliliters of acetic anhy-
dride was added into each test tube and kept in water bath
for 10 min at 60 °C. After that, 1 mL of pyridine was
added, and allowed to remain in water bath for 40 min at
60 °C. The reaction of acetic anhydride and pyridine gave
yellow color to the solution. Following this, they were
transferred to an ice-water bath for 5 min. Finally, they
were wiped dry and the color intensity was recorded at
420 nm. Fresh lemon juice was centrifuged. One hundred
microliters supernatant (filtrate) was taken in a clean test
tube and made up the volume to 1 mL with double-distilled
water. Eight milliliters of acetic anhydride was added to it
and kept in water bath for 10 min at 60 °C. After that, 1 mL
of pyridine was added, and again kept in water bath for
40 min at 60 °C. The blank was also maintained containing
1 mL double-distilled water, 8 mL acetic anhydride, and
1 mL pyridine. Citric acid standard was plotted on ordinate
and the OD values were plotted on abscissa to determine
the concentration of citric acid in lemon juice.

2.4 Evaluation of Antimicrobial Activity by Well
Diffusion Method

The antifungal activity of ZnO NPs was carried out by well
diffusion method in potato dextrose agar (PDA) media. Petri
plates containing 20 mL PDAwere seeded with 48–72 h culture
of fungal strains Candida albicans (C. albicans) and Fusarium
oxysporum (F. oxysporum) (107 cells/mL, OD 660 nm).
Homogeneous dispersions of NPs with different concentrations
ranging from 500 to 62.5 μg/mL were prepared by
ultrasonication. Wells were cut and the dispersions of ZnO NPs
were loaded. The plates were then incubated at 22 °C for 48 h.

The antibacterial activity of ZnO NPs was carried out by
well diffusion method in nutrient agar media as explained in
our recent report [42]. In brief, 20 mL of sterilized, molten,
and cooled nutrient agar media was poured in the sterilized
petri dishes. The bacteria Clostridium perfringens
(C. perfringens) and Salmonella enterica (S. enterica) were
cultured overnight at 37 °C in nutrient agar and adjusted to a
final density of 107 CFU/mL by 0.5 McFarland standards.
One hundred microliters of the pathogenic bacteria cultures
was transferred onto plate and made culture lawn by using
sterile L-rod spreader. Wells were cut and dispersions of
ZnONPs (of different concentrations) were loaded. The plates
were then incubated at 37 °C for 24 h. The antimicrobial
activity was determined bymeasuring the diameter of the zone
of inhibition (ZOI) formed around the wells. Amphotericin B
and Ofloxacin were used as positive controls in antifungal and
antibacterial studies respectively.

2.5 Assessment of Antioxidant Activity by DPPH Assay

DPPH radical has a deep-violet color in solution and gradually
becomes colorless or pale yellow in the presence of ZnO NPs.
This property allows visual monitoring of the reaction and the
concentration of radicals is monitored from the change in per-
centage of absorption [43]. The antioxidant activity of ZnO
NPs was measured by DPPH method as reported in the liter-
ature with certain modifications [44–53]. A 0.1 mM solution
of DPPH in methanol was prepared. One milliliters of this
solution was added to 3 mL of the ZnO NPs solution in meth-
anol at different concentrations of 1.0, 0.5, and 0.25 mg/mL.
The mixture was shaken vigorously and allowed to stand at
room temperature for 30 min in the dark. Absorbance was
measured after 30 min at 517 nm using a spectrophotometer.
A control reaction was carried out without the test sample.
Decrease in the absorbance of DPPH solution indicates an
increase in DPPH radical scavenging activity. The percentage
of the radical scavenging activity of DPPH was calculated
using the following equation:

Percentage of radical scavenging activity = [(Ac − As)/Ac] ×
100, where Ac and As are the absorbance of control and sample
respectively. Ascorbic acid was used as the reference standard.
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2.6 Determination of Cytotoxicity of ZnO NPs
by Trypan Blue Exclusion Assay

To measure the cytotoxicity of the NPs, trypan blue dye was
employed to stain the cells that do not have intact membrane.
In this test, a cell suspension is simply mixed with dye and
then visually examined to determine whether cells take up or
exclude dye. In the protocol presented here, a viable cell will
have a clear cytoplasm, whereas a nonviable cell will have a
blue cytoplasm [54]. Cell suspension of 200 μLwas seeded in
a 96-well plate at required cell density (20,000 cells/well),
without the test agent. The cells were allowed to grow for
about 12 h. Dispersions of ZnO NPs of 50 μg/mL and
100 μg/mL were added and the plates were incubated for
24 h at 37 °C in a 5% CO2 atmosphere. After the incubation
period, the plates were taken out from the incubator and the
spent media was removed. Twenty microliters of 0.4% trypan
blue was added and the images were taken on inverted micro-
scope (Biolink). The tests were carried out in triplicate. The
viable cells and dead cells were counted in each image and
percentage of viability was calculated as follows:

Total viable cells

Totals cell counted
� 100

2.7 Evaluation of Anticancer Activity by MTT Assay

The cell viability was measured of ZnO NPs by MTT
assay as reported in our previous studies [55, 56]. PC-3
is a human prostate cancer cell line, HCT116 is a human
colon cancer cell line, A549 cells are adenocarcinomic
human alveolar basal epithelial cells, and MDA-MB-231
is a human Caucasian breast adenocarcinoma. These cell
lines were chosen given their regular use in tumorigenic-
ity studies. Cytotoxicity of the samples was tested on
normal cell line 3T3-L1 (obtained from embryo).
Briefly, the cells were seeded in a 96-well plate at a den-
sity of 20,000 cells/well. The cells grew for 24 h at 37 °C,
5% CO2 incubator, and were treated with ZnO NPs in
Dulbecco’s Modified Eagle’s Medium without fetal bo-
vine serum at designed doses from 0 to 300 μg/mL with
twofold dilution, for 24 h at 37 °C. One hundred micro-
liters of MTT solution was added to each well and incu-
bated for 3–4 h after removing ZnO NPs containing cul-
ture media. Finally, all media were removed and 100 μL
of DMSO was added to each well to rapidly solubilize
formazan and absorbance was measured at 590 nm.
MTT assay was carried out in triplicate. The percent of
inhibition was calculated as [100 − (As/Ac) × 100] and cell
viability was calculated as [As× 100/Ac], where As and Ac

are the absorbance values of sample and control
respectively.

3 Results and Discussions

3.1 Analysis of Lemon Juice

The results of qualitative phytochemical analysis of lemon
juice are summarized in Table 1. The phytochemical results
indicate the presence of alkaloids, carbohydrates, reducing
sugars, flavanoids, tannins and phenolic compounds, proteins
and amino acids, triterpenoids, steroids, and carboxylic acids.
These results are in good agreement with previous reports [57,
58]. Carbohydrates, reducing sugars, and carboxylic acids
which are present in lemon juice might be responsible for
the combustion process in SCS.

Citric acid composition in lemon juice by the standard
method followed was found to be 40.12 mg/mL. It would be
interesting to note that 9 mL of LJ was used in this combustion
process which points towards a ball point amount of 360 mg
of CA in LJ. However, 1.57 g of purified CAwas used in the
complimentary process.

3.2 Pricing Advantage of Lemon Juice over Citric Acid

The cost of purified analytical-grade citric acid is close to Rs.
1.5 per gram when bought from a local supplier in India. In
contrast, one lemon in the general market vicinity of
Bengaluru (Class A city in India) costs Rs.2 per lemon. We
have seen that, on an average, 10–15 mL of LJ can be isolated
from a single lemon giving an advantage of price favoring
lemon juice over citric acid. Bulk citric acid from Alibaba.
com is available at $850/metric ton as opposed to Karnataka
trading commission price of Rs.10,000/metric ton of lemon.
Taking into account that the average lemon weighs 50 g, one
would get close to 20,000 lemons per metric ton. Either way,
the pricing is way cheaper for lemon juice when compared
with citric acid.

3.3 Crystal Structure

The XRD patterns of ZnO (CA) and ZnO (LJ) are presented in
Fig. 1a–b respectively. All the diffraction peaks of XRD pat-
tern could be indexed to pure hexagonal wurtzite type of ZnO
[with the standard Joint Committee on Powder Diffraction
Standards (JCPDS) No. 36-1451]. As no diffraction peaks
were observed from other impurities in the XRD pattern, it
was confirmed that pure hexagonal phase ZnO NPs were syn-
thesized through this fast and simple SCS method. The crys-
tallite size is calculated from the full width at half maximum
(FWHM) of the diffraction peaks using Scherer’s method
using the following equation:

d = kλ/β Cos θ where “d” is the average crystalline dimen-
sion perpendicular to the reflecting phases, λ is the X-ray
wavelength, “k” is Scherer’s constant (0.92), β is the full width
at half maximum (FWHM) intensity of a Bragg reflection
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excluding instrumental broadening, and θ is the Bragg’s angle.
The average crystallite sizes of ZnO (CA), ZnO (LJ) NPs were
found to be ~ 31 and ~ 26 nm respectively which shows that
fuel plays a vital role in the reduction of crystallite size.

3.4 FTIR Analysis

FTIR spectra of ZnO (CA) and ZnO (LJ) NPs are shown in
Fig. 1c–d respectively. The peak located at 460–560 cm−1 is
correlated to the stretching mode of ZnO [59]. The transmit-
tance bands at 1400–1515 cm−1 were likely related to absorp-
tion of atmospheric CO2 on the metallic cations; 3450 cm−1

indicates the presence of hydroxyl group of water adsorbed on
the surface of ZnO NPs [60, 61]. No additional peaks were
observed indicating complete reduction.

3.5 Evaluation of Band Gap Energy

A plot of (αEg)1/2 Vs Eg of ZnO (CA) and ZnO (LJ) is shown
in Fig. 1e–f respectively. The band gap energy value was
determined by Wood-Tauc method [62] as ~ 3.2 eV for both
the samples. This is in good agreement with the literature [63].

3.6 Morphological Studies

The surface morphology of ZnO NPs was studied using SEM.
The FE-SEM micrographs of ZnO (CA) and ZnO (LJ) are
shown in Fig. 1g–h respectively. These micrographs reveal
that besides the spherical crystals, the powders also contain
several voids or holes; the reason for which can be attributed
to the release of hot gases that escape out of the reaction
mixture during combustion [26]. It is through pores of various
sizes and shapes that the crystallites are interlinked to one
another [26]. SEM micrograph of ZnO (LJ) shows that the
particles are highly agglomerated with spongy cave-like struc-
tures. It also indicates that sinterable tendency might have
increased to form the partially sintered agglomerates. This

tendency might be due to increase in surface energy which
is the driving force for sintering in combustion process [64].

The HRTEM images of ZnO (CA) and ZnO (LJ) are shown
in Fig. 1i–j respectively. Figure 1i shows that the particles are
spherical. Figure 1j indicates that the particles are spherical
and cubic shaped. The mean particle sizes by histogram
were found to be 53 nm and 33 nm for ZnO (CA) and ZnO
(LJ) respectively.

3.7 Surface Area Measurements

The surface area of ZnO NPs was measured by the standard
BET technique with N2 adsorption-desorption isotherms on
Micromeritics ASAP 2020. The BET surface area values of
ZnO (CA) and ZnO (LJ) were found to be 8.191 m2/g and
10.2373m2/g respectively. It was observed that as particle size
decreases, the surface area per unit volume or mass increases.

3.8 Particle Size Measurements

Homogeneous dispersions of ZnO NPs were prepared by
ultrasonication. Particle size was measured using the dynamic
light scattering (DLS) method. The average diameter (mean
value of five runs) was found to be 56 nm and 34 nm for ZnO
(CA) and ZnO (LJ) respectively. These values are almost sim-
ilar to the ones calculated from TEM analyses.

Table 2 shows the comparison of particle size measure-
ments by TEM, DLS, and surface area values of ZnO NPs.

3.9 Antimicrobial Activity

The effect of ZnO NPs on different organisms is shown in
Fig. 2. The antifungal and antibacterial results on ZnO NPs
are presented in Table 3. As observed from the results, the
zone of inhibition is maximum at 500 μg/mL indicating that
at higher concentrations, the ZnO NPs are exhibiting anti-
microbial properties. The results show that the zone of

Table 1 Results of
phytochemical screening of
lemon juice

Constituent Test Result Constituent Test Result

Alkaloids Mayer’s reagent test + Tannins and Lead acetate test +

Wagner’s reagent test + Phenolic Killer-Killiani test +

Hager’s reagent test + compounds Ferric chloride test +

Carbohydrates Molish’s test + Saponins Froth test −
Barfoed’s test + Proteins and Ninhydrin test +

Reducing sugars Fehling’s test + Amino acids Biuret test +

Benedict’s test + Triterpenoids Salwonski test +

Flavanoids Alkaline reagent test + and Libermann and

Lead acetate test + Steroids Burchard’s test +

Glycoside Legal’s test – Carboxylic acids Sodium bicarbonate test +

Bomtrager’s test – Ester test +

Note: + indicates presence of phytochemical, - indicates absence of phytochemical
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inhibition is maximum for ZnO (LJ) against all the organ-
isms than ZnO (CA). Antifungal results indicate that the
effect of ZnO NPs is more on C. albicans than
F. oxysporum at all the concentration employed in our stud-
ies. Yeasts of C. albicans require lower doses of antibiotics
and metal NPs such as Ag, Fe2O3, and ZnO (6–500 μg/
mL), whereas filamentous fungi and the other mold require
relatively higher doses (reached 20 mg/mL) of antibiotics
and metal NPs. The reason could be attributed as follows:
the profuse mycelia mass of the treated molds requires
higher dosage for mycelia and spore damage, whereas, the
cells of yeast isolates require lower dosage to cause intra-
cellular contents leakage, rupture of cell wall, and finally
death of cells leading to loss of microbial cells function
[65–68]. As can be visualized from antibacterial results,
the zone of inhibition is maximum for ZnO NPs against

Gram-positive bacterium C. perfringens than the Gram-
negative bacterium S. enteric as reported previously [69, 70].

The detailed mechanism of the antimicrobial activity of
ZnO is still under discussion. Many mechanisms have been
proposed related to this: (a) one of the possible mechanisms is
based on the abrasive surface texture of ZnO-binding of ZnO
NPs to the bacterial surface which is due to electrostatic forces
that directly kill bacteria [71], (b) mechanical destruction of
the cell membrane caused by penetration of the NPs [72], (c)
release of Zn2+ ions from the NPs [73], and (d) active oxygen
generated from the powder [74–77].

Antimicrobial activity depends on the surface area. This
factor has been often claimed relevant [78–82]. In our present
studies, ZnO (LJ) showed better antimicrobial activity than
ZnO (CA). This might be due to high surface area of ZnO
(LJ) than ZnO (CA).

Fig. 1 Powder XRD patterns of
(a) ZnO (CA) (b), ZnO (LJ),
FTIR spectra of (c) ZnO (CA) (d),
ZnO (LJ), evaluation of band gap
energy of (e) ZnO (CA) (f), ZnO
(LJ), FE-SEM images of (g) ZnO
(CA) (h), ZnO (LJ), HRTEM
images of (i) ZnO (CA), and
(j) ZnO (LJ)
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3.10 Antioxidant Activity

The color of DPPH solution gradually changes from deep-
violet to pale yellow in the presence of ZnO NPs. The per-
centage of DPPH scavenging was estimated from the decrease
of absorption at 570 nm, which represents the amount of
DPPH in the solution. DPPH free radical scavenging activity
of ZnO NPs and ascorbic acid with their different concentra-
tions is presented in Fig. 3. The antioxidant activity of ZnO
NPs might be due to the transfer of electron density located at
oxygen to the odd electron located at nitrogen atom in DPPH
resulting the decrease in intensity of n→ π* transition [43].
These results indicate the higher antioxidant capability of ZnO
(LJ) compared with ZnO (CA).

3.11 Trypan Blue Exclusion Assay

In the trypan blue exclusion assay, dead cells with leaky mem-
branes are stained with trypan blue dye, while living cells
exclude the blue dye and are not stained. The results showed
that the NPs concentration determined the cell survival rate as
shown in Fig. 4. Results of cell viability using (a) PC-3, (b)
HCT116, (c) A549, and (d) MDA-MB-231 cell lines by
trypan blue assay after 24 h of incubation with ZnO NPs are
presented in Fig. 5. The results indicate the dissimilar toxicity
of ZnO (LJ) and ZnO (CA) on PC-3, HCT116, A549, and
MDA-MB-231. Furthermore, the results indicate the higher
cytotoxicity of ZnO (LJ) over ZnO (CA) at both the concen-
trations on all the four cell lines.

3.12 MTT Assay

Cytotoxic effect of ZnONPs on PC-3, HCT116, A549,MDA-
MB-231, and 3T3-L1 cell lines carried out by MTT assay is
shown in Fig. 6a–e respectively. Results indicate anti-
proliferative response with exposure to ZnO NPs prepared
by both lemon juice and citric acid. A typical dose-

Table 2 Particle size and surface area values of ZnO NPs

Sample by Mean particle size (nm) BET surface area

TEM by DLS (m2/g)

ZnO (LJ) 33 34 10.2373

ZnO (CA) 53 56 8.191

Fig. 2 Zone of inhibition produced by (a-b) ZnO (LJ) and ZnO (CA)
against C. albicans respectively (c-d) ZnO (LJ) and ZnO (CA) against F.
oxysporum respectively, (e-f) ZnO (LJ) and ZnO (CA) against C.

perfringens respectively, (g-h) ZnO (LJ) and ZnO (CA) against S.
enterica respectively, (i-l) standard antibiotic against C. albicans, F.
oxysporum, C. perfringens, and S. enterica respectively
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dependent response showing increased cell mortality with in-
crease in NPs concentration was clearly observed. Among the
four cell lines, both the samples induced dissimilar toxicity
with greater toxicity in MDA-MB-231 > PC-3 > A-549 >
HCT-116. Previous studies have shown that ZnO NPs illicit
different cytotoxic response in a cell-specific and
proliferation-dependent manner by rapidly dividing cancer
cells being the most susceptible and quiescent cells being the
least sensitive [69, 83].

The mechanisms of cytotoxicity from ZnO NPs are not
completely understood, but generation of reactive oxygen spe-
cies (ROS) is believed to be a major component. When NPs
interact with cells, cellular defense mechanisms are activated
to minimize damage. However, if ROS production exceeds
the antioxidative defensive capacity of the cell, it results in
oxidative damage of biomolecules which can lead to cell death
[84, 85]. ROS is produced inside the cell during various cel-
lular processes, including mitochondrial respiration,

inflammatory response, microsome activity, and peroxisome
activity [86]. It acts as a biomolecule and plays an important
role in cell signaling and homeostasis. Exogenously, ROS is
induced in response to various stimuli including
nanomaterials [87]. ROS is induced by ZnO NPs in two ways.
One is due to the proinflammatory response of the cell against
nanoparticles and the other is due to the characteristic surface
property of ZnONPs that makes them a redox reaction system
producing ROS [88, 89]. ZnO NPs selectively induce apopto-
sis in cancer cells, which is likely to be mediated ROS via p53
pathway, through which most of the anticancer drugs trigger
apoptosis, where tumor suppressor gene p53 is regarded as the
master guardian of the cell and is able to activate cell-cycle
checkpoints, DNA repair, and apoptosis to maintain genomic
stability [90, 91]. Studies indicate that a primary mechanism
of ZnO NPs cytotoxicity might proceed by inducing the gen-
eration of ROS, which then are responsible for the induction
of apoptosis [69].

Table 3 Results of antimicrobial
activity of ZnO NPs (zone of
inhibition in mm)

Concentration of ZnO suspensions

Sample 500 μg/mL 250 μg/mL 125 μg/mL 62.5 μg/mL Positive control 100 μg/
mL

ZnO (LJ) 16.00 ± 0.816 13.75 ± 1.50 12.50 ± 1.291 0.00 ± 0.00 C. albicans

ZnO
(CA)

14.50 ± 1.291 12.00 ± 2.160 9.25 ± 1.258 2.25 ± 4.50 36.25 ± 0.957

ZnO (LJ) 14.75 ± 1.258 12.00 ± 1.414 9.75 ± 0.957 7.25 ± 0.957 F. oxysporum

ZnO
(CA)

13.50 ± 0.577 11.25 ± 0.957 8.50 ± 0.577 0.00 ± 0.00 36.75 ± 1.258

ZnO (LJ) 34.00 ± 0.816 29.25 ± 0.957 25.50 ± 0.577 21.25 ± 0.957 C. perfringens

ZnO
(CA)

23.75 ± 0.957 21.25 ± 0.957 17.25 ± 0.957 13.75 ± 0.957 40.75 ± 1.258

ZnO (LJ) 27.25 ± 0.957 24.25 ± 0.957 20.50 ± 1.291 16.75 ± 1.258 S. enterica

ZnO
(CA)

23.25 ± 1.50 18.75 ± 0.957 15.75 ± 0.957 12.50 ± 1.291 38.00 ± 0.816

Values are the mean ± SE of inhibition zone in mm

Fig. 3 DPPH free radical
scavenging activity of ZnO NPs
[data represent mean ± SD
(standard deviation)]
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Fig. 4 Cytotoxicity of (a-d) ZnO
(LJ) of 50 μg/mL on PC-3,
HCT116, A549, and MDA-MB-
231 respectively, (e-h) ZnO (LJ) of
100 μg/mL on PC-3, HCT116,
A549, and MDA-MB-231 respec-
tively, (i-l) ZnO (CA) of 50 μg/mL
on PC-3, HCT116, A549, and
MDA-MB-231 respectively,
(m-p) ZnO (CA) of 100 μg/mL on
PC-3, HCT116, A549, MDA-MB-
231 respectively, (q-t) positive con-
trol Camptothecin (50 μM) on PC-
3, HCT116, A549, and MDA-MB-
231 respectively, and (u-x) negative
control (medium with cells without
ZnO (NPs) on PC-3, HCT116,
A549, and MDA-MB-231 respec-
tively after 24 h of incubation at
37 °C using trypan blue exclusion
assay. The trypan blue exclusion as-
say directly determines the cell
death. The tests were carried out in
triplicate and the data are presented
with mean percentage

Fig. 5 Results of trypan blue cell
viability assay using (a) PC-3 (b),
HCT116 (c), A549, and
(d) MDA-MB-231 cell lines after
24 h of incubation with ZnO NPs
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IC50 value, the concentration of ZnO NPs needed to
inhibit cell growth by 50% for cytotoxicity test on PC-3,
HCT-116, MDA-MB-231, and 3T3-L1 were derived from
nonlinear regression analysis (curve fit) based on sig-
moid dose response curve (variable) and computed using
Graph Pad Prism 5 (Graphpad, San Diego, CA, USA). It
is shown in Fig. 7a–d respectively. The IC50 values are
presented in Table 4 and statistical significance of ZnO
(LJ) Vs ZnO (CA) on different cells is shown in Fig. 8.
The analysis used was unpaired t test with Welch’s cor-
rection using Graph Pad Prism 5. The MTT test was
performed three times which has been used for all the
graphs and the standard deviation has been shown in Fig.
8. Though these results confirm that ZnO NPs prepared
employing lemon juice as fuel showed slightly better
anticancer activity than ZnO NPs prepared using citric
acid as fuel, it also indicates that there were no statisti-
cally significant results between ZnO (LJ) and ZnO
(CA).

Interestingly, IC50 values of ZnO (LJ) and ZnO (CA) to-
wards normal cells 3T3-L1 were quite high, i.e., 172.1 μg/mL
and 230.6 μg/mL respectively. ZnO NPs exhibited a prefer-
ential ability to kill cancerous cells PC-3, HCT-116, and
MDA-MB-231 as compared with normal cells 3T3-L1.

Literature survey indicates that ZnO NPs have distinct effects
on mammalian cell viability via killing cancer cells (while
posing no effect on normal cells) [89]. Earlier studies have
shown that ZnO NPs are more toxic to cancer cell and less
toxic to normal cells [69, 92–94]. Our results confirm that
ZnO NPs showed preferential killing ability to cancer cells
PC-3, HCT-116, and MDA-MB-231 compared with non-
cancer 3T3-L1 cells. Further, these results with ZnONPs dem-
onstrate the role of fuels in their synthesis by combustion route
and the higher bioactivity of ZnO NPs synthesized using a
bio-fuel as reducing agent. As the results of ZnO NPs on
MDA-MB-231, HCT-116, and PC-3 are promising, the inter-
nal mechanism needs to be discovered in the longer run.

4 Conclusions

The present work was conducted for the evaluation of biolog-
ical activities of ZnO NPs prepared using two different fuels
as reducing agents. Thus prepared NPs were evaluated for
their physiochemical, structural, and biological properties
and compared with each other to understand the extent of
advantage presented by lemon juice over citric acid as a
SCS fuel. The samples were characterized by PXRD, FTIR,
SEM, HRTEM, DLS, and BET surface area. An estimation of
their costs with respect to bench scale and industrial scale
production was also done and the results revealed that lemon
juice would not only be environmentally benign but also fi-
nancially advantageous when it comes to large-scale produc-
tion. Furthermore, it was found that lemon juice contained far
lower concentration of citric acid than the quantity used in
citric acid synthesis revealing an advantage in terms of

Fig. 6 Cytotoxic effect of ZnO NPs in (a) PC-3 (b), HCT116 (c), A549
(d), MDA-MB-231, and (e) 3T3-L1 cell lines. Cells were treated with
various concentrations of ZnONPs for 24 h grown in a serum free media.

The tests were carried out in triplicate and the percentage of cell death
induced was determined using the MTTassay [data represent mean ± SD
(standard deviation)]

Table 4 IC50 values (μg/mL) of ZnO NPs in PC-3, MDA-MB-231
cells, and 3T3-L1 after 24 h

Sample PC-3 HCT116 MDA-MB-
231

3T3-
L1

ZnO (LJ) 78.80 28.75 10.7 172.1

ZnO (CA) 103.6 41.52 20.06 230.6
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effective volume to active fuel ratio. Both the samples present-
ed hexagonal wurtzite structure with a crystallite size of 25–
35 nm. However, it was observed that the sample prepared by
lemon juice exhibited lower particle size. Surface area mea-
surements showed higher value of the sample prepared using
lemon juice as fuel (10.2373 m2/g) compared with the sample
prepared using citric acid as fuel (8.191 m2/g). This in-turn
showed better bactericidal, antioxidant, and anticancer prop-
erties of ZnO NPs prepared by lemon juice. MTT assay and
trypan blue assay performed on four cancer cell lines indicated
that both the ZnO NPs possess anti-carcinogenic activity.
Among the four cell lines, both the samples induced dissimilar
toxicity with greater toxicity in MDA-MB-231 > PC-3 > A-
549 > HCT-116. Furthermore, it was found that the sample
prepared using lemon juice exhibited IC50 values of 78.80 μg/
mL, 28.75 μg/mL, and 10.7 μg/mL, whereas the sample

prepared using citric acid as fuel exhibited IC50 values of
103.6 μg/mL, 41.52 μg/mL, and 20.06 μg/mL, towards PC-
3, HCT 116, and MDA-MB-231 respectively. Further, suffi-
ciently higher IC50 values towards 3T3-L1 (172.1 μg/mL and
230.6 μg/mL) indicate that ZnONPs are non-toxic for healthy
mammalian (mouse) cells. This study concludes with a ques-
tion that “is lemon juice better than citric acid?” for the syn-
thesis of metal oxide NPs by SCS because, even if the phys-
iochemical, antibacterial, and anticancer properties are better/
similar in both cases, we believe that use of lemon juice would
be muchmore cost-effective and less environmentally impact-
ful if this technique is taken to the larger scale. The reason that
we think this might be green is because the amount of energy
spent on the preparation/purification of citric acid from vari-
ous sources would not be necessary if lemon juice is used
directly.

Fig. 7 Determination of IC50 (μg/
mL) in (a) PC-3 (b), HCT116 (c),
MDA-MB-231, and (d) 3T3-L1
cell lines [data represent mean ±
SD (standard deviation)]

Fig. 8 Statistical significance of
ZnO (LJ) Vs ZnO (CA) on PC-3,
HCT-116, MDA-MB-231, and
3T3-L1 cell lines. Cells were
treated with various
concentrations of ZnO NPs for
24 h grown in a serum free media
at 37 °C. The percentage of cell
death induced was determined
using the MTT assay. [The tests
were carried out in triplicate and
the data represent mean ± SD
(standard deviation)]. The
analysis used was “Unpaired t test
with Welch’s correction
(ns, not-significant)
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