
Memristor-Based Volistor Gates Compute Logic with Low
Power Consumption

Muayad Aljafar1 & Paul Long1 & Marek Perkowski1

Published online: 15 August 2016
# Springer Science+Business Media New York 2016

Abstract We introduce a novel volistor logic gate which uses
voltage as input and resistance as output. Volistors rely on the
diode-like behavior of rectifying memristors. We show how to
realize the first logic level, counted from the input, of any
Boolean function with volistor gates in a memristive crossbar
network. Unlike stateful logic, there is no need to store the
inputs as resistances, and computation is performed directly.
The fan-in and fan-out of volistor gates are large and different
from traditional memristor circuits. Compared to solely
memristive stateful logic, a combination of volistors and
stateful inhibition gates can significantly reduce the number
of operations required to calculate arbitrary multi-output
Boolean functions. The power consumption of volistor logic
is computed and compared with the power consumption of
stateful logic using the simulation results obtained by
LTspice—when implemented in a 1 × 8 or an 8 × 1 crosspoint
array, volistors consume significantly less power.

Keywords Memristive Crosspoint array . Logic
computation .Memristive crossbar array . Rectifying
memristor . Stateful inhibition . Volistor logic

1 Introduction

Stateful logic computation with memristors is an area of active
research. Borghetti et al. [1] proposed realizing stateful logic
via material implication (IMP). In classical stateful memristive
circuits, logic signals utilize resistances on inputs and outputs,
meaning, the previous resistance state of the memristor affects
the operations. In contrast, volistors do not use the previous
resistance state in calculations. Other stateful logic gates have
been proposed as well, e.g., inhibition (INH) [2] or AND [3].

INH gate implements Boolean function ab where a and b
are positive and negative inputs, respectively. In stateful
logic, the logic values are encoded by the resistance states
of memristors. Stateful logic is usually performed in a
generic structure called a crossbar array. Leakage path-
ways due to the half-select of memristors in a crossbar
row or column can be suppressed by using rectifying
memristors [4]. One key disadvantage of stateful logic is
that a long sequence of operations is required to imple-
ment an arbitrary Boolean function.

Memristor ratioed logic (MRL) [5] is another approach
to logic computation and is based on the resistive ratio of
non-rectifying memristors. In MRL, logic values are
voltage-based pulses and circuit structures are dependent
entirely on the Boolean function being implemented. The
output voltage depends only on input voltages regardless
of the resistance of the memristors; however, the resis-
tances affect the propagation delay of the gate. MRL gates
consume both dynamic and static power. Further, as it
lacks the inversion function, MRL is not logically com-
plete without CMOS inverters.

In this paper, we introduce a new concept in memristor
logic. We call it volistor gate (voltage-resistor gate) which
has voltage-based inputs and resistance-based outputs.
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Therefore, volistor gates can only be used in the first level of
logic implementation. This level can be composed of various
types of gates and be complex. Logic synthesis methods with
volistors are therefore different from classical logic synthesis.
Volistors are implemented in generic crossbar arrays of rectifying
memristors [6]. Unlike stateful logic, voltage pulses are the ac-
tual inputs to the volistor gates. It is always assumed that
complemented input variables are available as voltage signals
at no additional cost. Sometimes input signals are required in
both positive and negative forms, e.g., x and x. In addition, there
is no propagation penalty as it exists in MRL. In a 1 × 8
crosspoint array, the propagation delay in volistors is shorter than
in stateful INH. In a 1 × 8 crosspoint array, multi-input multi-
output volistor gates consume less power than the corresponding
stateful logic. The outputs of volistors are stored as the resis-
tances of the target memristors. To provide the correct function-
ality, target memristors need to be initially closed, i.e., target
memristors must be set to the low resistance state. With different
coding schemes, either a volistor OR and NAND logic set or a
volistor NOR and AND logic set can be realized in the same
crossbar array. For instance, if the closed state of a memristor
encodes logic B0^ and the open state of a memristor encodes
logic B1,^ the set of OR and NAND operations is implemented.
The reverse encoding scheme implements the NOR and AND
logic set. With volistor logic, crossbar drivers need to supply
only three voltage levels: V+, V−, or 0 V. In addition, the control
circuitry must be capable of setting arbitrary nanowires in the
crossbar to either high impedance (HZ) or grounding these nano-
wires through load resistors RG. Obviously, the volistor network
layer cannot implement every Boolean function such as Sum of
Products. However, a combination of a volistor NOR and AND
with stateful INH, or their dual logic of volistor OR and NAND
with stateful IMP, can both be used to realize arbitrary multi-
output Boolean functions. As will be presented, this hybrid real-
ization is faster than an equivalent circuit realized with only
stateful gates. The speed comparison of hybrid and stateful logic
circuits will be presented in Section 4.

In Section 2, the hysteresis behavior of rectifying
memristors is reviewed. In Section 3, volistor gates are de-
scribed. In Section 4, the synthesis of arbitrary Boolean func-
tions is discussed. In Section 5, the power consumption of
volistor gates is computed and compared with stateful logic.
In section 6, volistors in memory application are discussed.
Section 7 is a summary of the work.

2 Rectifying Memristors

We used a rectifying memristor [4, 6] as a linear bistable device
[7]. The behavior of a rectifying memristor is defined in (1), fol-
lowing [7]. Equation (1) describes a simplified model of diode-
like memristor M demonstrated practically in [4]. RM denotes
resistance of memristorM; s is the state variable ofM normalized

to a real number in the range 0 through 1, s ϵ [0, 1], and therefore
RCLOSED≤RM ≤ROPEN; v is the voltage applied acrossM.

RM ¼ ROPEN
RCLOSED

ROPEN

� �s

v≥0

ROPEN
v<0

8<
: ð1Þ

ROPEN denotes high resistance state of memristor M;
RCLOSED is low resistance state of memristorM. It is assumed
that ROPEN = 500MΩ and RCLOSED = 500KΩ which are
consistent with empirical results reported in [4]. The dynamic
behavior of the state variable s is such that s changes in time as
described in the linear differential Eq. (2). In Equation (2),
vCLOSE is a positive threshold voltage; vOPEN is a negative
threshold voltage. For simplicity, it is assumed that the
threshold voltages vCLOSE and vOPEN are symmetric
vCLOSE = − vOPEN ) and vCLOSE= 1V; α is a positive constant
associated with the switching rate of the memristor. Here, α is
assumed to be 125 × 107 (V. s)− 1, following [7].

ds

dt
¼

α v−vCLOSEð Þ v > vCLOSE
α v−vOPENð Þ v < vOPEN
0 elsewhere

8<
: ð2Þ

Figure 1a shows the i − v characteristic of rectifying
memristor M described in (1) and (2). In this work, the posi-
tive programming voltage is defined v = 1.2V and denoted by
VSET; the application of VSET will close switch M when it is
open. Also, the negative programming voltage is defined
v = − 1.2V and denoted by VCLEAR; the application of
VCLEAR will open switch M when it is closed. Substituting
all related values in Eq. (2) results in

ds

dt
¼

0:2α v ¼ 1:2
−0:2α v ¼ −1:2
0 elsewhere

8<
:

The straightforward analytical solution of this differential
equation is

s t þ 1ð Þ ¼
0:2αTþ v ¼ 1:2
−0:2αT− v ¼ −1:2
s tð Þ elsewhere

8<
:

Since s is normalized to interval [0, 1], for the given values
of α and v, the assumption of s(t + 1) = 1 results in the
switching delay of T+ = 4ns. The desired solution for (2) is

s t þ 1ð Þ ¼
1 v ¼ 1:2
0 v ¼ −1:2
s tð Þ −1≤v≤1

8<
:

Note that s(t) and s(t + 1) denote the current state and the
next state of memristor M, respectively; for − 1 ≤ v ≤ 1, the
resistance state of memristor remains unchanged, i.e.,
s(t + 1) = s(t). Obviously, a larger VSET results in a smaller
switching delay T+, as suggested by Eq. (2).
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This simplified model does not accurately describe the
behavior of rectifying memristor M. For instance, the threshold
voltages vCLOSE and vOPEN are assumed to be constant, and/or the
programming rate ds

dt and the applied voltage v are assumed to be
piecewise linearly related. The behavior of rectifying memristors
described in (1) and (2) is compared with the actual behavior of
memristors reported in [4, 6] for applied voltage v below.

1) v < 0V

The actual behavior of rectifyingmemristors shows that I− <

10− 13 A and I−

Iþ < 10−6, where I− is the reverse biased

current and I+ is the forward biased current, and the ROPEN
RCLOSED

ratio is from three to six orders of magnitude (103 − 106). In

our model, the ROPEN
RCLOSED

ratio is 103 , which is consistent with

the empirical results. However, the I−

Iþ ratio is 10−3 which is

much larger than the empirical results. Thus, using a precise
memristor model would show even less power consumption
in a crossbar array than our used model.

2) 0V < v < vCLOSE

Figure 1b shows the i − v characteristics of ten recti-
fying memristors in a 16 × 16 crossbar array overlaid on
top of each other. The memristors show approximately
the same piecewise linear relationship between i and v in
the interval [0, vCLOSE]. In other words, for applied volt-
age v, almost the same amount of current flows through
all ten memristors. Therefore, Eqs. (1) and (2) with a fixed v
can be applied uniformly to describe the behaviors exhibited
by all memristors in the given interval. The linear behavior
observed in Fig. 1a is the result of applying (1) and (2) which
is uniform throughout all the memristors (Fig. 2).

3) v > vCLOSE

The threshold voltage distribution of the rectifying
memristors in the crossbar array is shown in Fig. 1c [4]. The
difference in the threshold voltages results in a difference in

(a)

(b)

(c)

Fig. 1 a The i − v characteristic
of rectifying memristor M
described in (1) and (2). A
sinusoidal input voltage with
frequency 25 MHz and amplitude
1.2 V is applied to memristor M.
The inset shows the symbolic
diagram of a rectifyingmemristor.
b The i − v characteristics of 10
different rectifying memristors in
the crossbar array. The inset
shows the i − v characteristics
plotted in log scale demonstrating
current suppression at negative
bias in the on-state [4]. c
Threshold voltage distribution of
256 cells in the fabricated cross-
bar array. The threshold voltage is
defined as the voltage at which
the measured current is above
10− 6 A [4]
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the programming rates. Since the difference in the threshold
voltages is not significant, i.e., vCLOSE ∈ [2.1V, 2.5V], the
difference in the programming rates is not significant either.
A small increase in the pulse width driving the crossbar array
ensures a complete state transition in the memristors. In our
model, the programming rate is assumed to be constant and in
accordance with the empirical results reported in [8, 9].
Although the description of the behavior of the rectifying
memristors modeled by (1) and (2) is imprecise, they still
can be used in estimating the power consumption in
CMOS-memristive circuits.

3 Volistor Logic

In this section, volistor logic is introduced. The key idea
behind volistor logic is that inputs are voltages and outputs
are resistances. This is a significant change from the way the
voltage drivers are used in stateful logic; however, the target
memristor is still used as a memory element where the output
is stored. The basic volistor logic gates are inverter, k-input
NOR and k-input AND, and their duals: k-input OR and k-input
NAND. In the following subsections, we define the basic
architecture required for logic computations and describe the
basic logic gates.

3.1 Crosspoint Architecture

The basic circuit structures for volistor logic computations are
the 1 × 2 crosspoint array and 2 × 1 crosspoint array depicted
in Fig. 2. The crosspoint array is a horizontal or a vertical
vector of memristors, i.e., a one-dimensional array. Figure 2a
shows a generic structure for logic operations. The circuit is
comprised of two rectifying memristors, labeled S and T, elec-
trically connected through the common horizontal nanowire
HL. Just as in stateful IMP, S denotes the source memristor
and T the target memristor. The vertical nanowire VL1 con-
nected to source memristor S conveys input signal Vin. Let
V+ = 0.6Vand V− = − 0.6V. The logical coding scheme for Vin

is defined as follows: V+ encodes logic B1,^ denoted vin = 1;
0 Vencodes logic B0,^ denoted vin = 0. The vertical nanowire

VL2 connected to target memristor T carries a bias voltage,
Vbias =V−. Memristor Tacts as a switch whose resistivity state
t represents the output of the crosspoint array. When T is open,
its high-resistivity state encodes logic B0,^ i.e., t = 0. When T
is closed, its low-resistivity state encodes logic B1,^ t = 1. This
interpretation of the resistivity state of T is used for performing
NOR/AND logic set; another interpretation will be discussed in
Section 3.5. Prior to logic computation, both memristors S and
T must be closed. To unconditionally close a memristor, it must
be forward biased by VSET. Unlike the target memristor, the
source memristor S acts as a diode. The 1 × 2 crosspoint array
must satisfy (3).

VOPEN < Vbias < 0V
Vbias−V in ¼ VCLEAR

�
ð3Þ

Each nanowire must be either driven by one of the voltages
Vin, Vbias, and 0 Vor terminated with high impedance HZ or
grounded by load resistor RG as shown in Fig. 3. All these
connections are realized with CMOS switches shown symbol-
ically in Fig. 3. RG is defined as geometric mean of ROPEN and
RCLOSED,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ROPEN⋅RCLOSED

p ¼ 15MΩ. The crosspoint array
operates by the simultaneous application of Vin and Vbias to
S and T, respectively. Since Vin >Vbias, Ohm’s Law requires a
flow of current through the array. However, given the structure
of the array, the application of these voltages forward biases S
and reverse biases T thus suppressing the flow of current. This
means that VHL ≈Vinwhere VHL is the voltage on HL. If (3) is
satisfied, the voltage across T will toggle that memristor, i.e.,
the new state of target memristor becomes t = 0.

0V < Vbias < VCLOSED

V in−Vbias ¼ VCLEAR

�
ð4Þ

The crosspoint arrays shown in Fig. 2 can be scaled to 1 × n
and n × 1 arrays, allowing for multi-input multi-output
volistor logic functions. The 1 × n and n × 1 crosspoint
arrays must satisfy (3) and (4), respectively. In these ar-
rays, logic computation is achieved by implementing the
wired OR function, i.e., VHL or VVL denotes the logical
OR of inputs vin1, …, vink where VVL is the voltage on
vertical nanowire VL and 1 ≤ k < n.

(a) (b)

Fig. 2 aA 1 × 2 crosspoint array;
b a 2 × 1 crosspoint array

BioNanoSci. (2016) 6:214–234 217



3.2 Volistor NOT Gate in a Crosspoint Array

An inverter is the simplest gate to realize in volistor logic; the
symbolic diagram is shown in Fig. 4a. Take, for example, the
case where (vin, t ) = (1, 1) i.e., vin = 1 and t = 1. Both source
and target memristors are initially closed. Single-output
volistor NOT can be realized in either a 1 × 2 or a 2 × 1
crosspoint array. When realized in a 1 × 2 array, Vbias must
be a negative voltage, Vinmust be greater than or equal to 0 V,
per (3), and horizontal nanowire HL must be connected to a
high impedance, HZ. Connecting HL to HZ allows Vin to
manifest on HL. Based on Ohm’s Law, current should flow
through the array, since Vin −Vbias > 0V. However, memristor
T is reverse biased and thus suppresses the flow of current. In
this case, the voltage drop across memristor S is 1.198 mV,
i.e., the voltage on HL equals 598.801 mV. The voltage drop
across T is 1.198 V which is sufficient to open memristor T.
This is the desired behavior of the inverter function that it
results in (vin, t ) = (1, 0). Given the parameters introduced

in Section 2, the propagation delay of single-output volistor
NOT is 4.044 ns as shown in Fig. 5b.

Single-output volistor NOT can be extended to an arbitrary
fan-out which corresponds to a multi-output gate realized in
arrays of types 1 × n or n × 1. The multi-output NOT gate
stores vin in up to n-1 target memristors in any arbitrary
location in the array. The role of each memristor is deter-
mined by its driver, i.e., source memristors are driven by
Vin and target memristors by Vbias. Interestingly, this means
that a memristor’s function is independent of its position in
the crosspoint array. Figure 5a shows a four-output volistor
NOT gate implemented in a 1 × 8 array. Source memristor S
is driven by Vin and target memristors T1⋯ T4 are driven by
Vbias. Memristors X1, X2 and X3 are terminated to HZ and do
not take part in the circuit’s operation. The proper operation of
a 63-output NOT gate with vin= 1 implemented in a 1 × 64
array and simulated in LTspice is depicted in Fig. 5c. VHL is
528.881 mV and all 63 target memristors are switched off
successfully in 6.223 ns. Figure 5d shows the desired behavior
of volistor NOT implemented in a 1 × 2 array when vin = 0.
VHLis − 599.4μ V and the target switch remains closed.
Figure 5e shows the behavior of a sixty three-output volistor
NOT implemented in a 1 × 64 array where vin = 0. This results
in VHL = −35.559 mVand all target switches remaining closed.

Table 1 summarizes these configurations and their effects
on VHL. A NOT with an arbitrary fan-out can be realized in
one pulse.We discuss this gate for completeness; in practice, it
is not required since the logical negation can be created by
appropriately selecting the vin values. In this paper, all volistor
gates can appear only at the input layer.

3.3 Volistor NOR Gate in a Crosspoint Array

The second basic gate in volistor logic is NOR. Figure 4b
shows the symbolic diagram of a two-input volistor NOR
gate. Since 1 × n arrays have been previously discussed, in
this subsection, n × 1 arrays are considered. Take, for exam-
ple, a two-input NOR gate where (vin1, vin2, t) = (1, 0, 1). This
requires the application of input data to S1 and S2 and Vbias to
T, as shown in Fig. 6. Since the function is realized in a 3 × 1
crosspoint array, Eq. (4) requires Vbias > 0V and Vin ≤ 0V.
Based on Ohm’s Law, since Vbias −Vin > 0, a current should
flow through the crosspoint array.

However, S2 and T are both reverse biased and thus
they suppress the flow of current. The voltage drop
across S1 is 1.796 mV, i.e., VVL = -598.203 mV. The
voltage drop across T is −1.198 V which is sufficient
to open T. Recall that all memristors are initially closed.
The gate is realized by implementing wired-OR, i.e., the
voltage on VL is the logical OR of vin1 and vin2. As
before, Vin causes memristors S1 and S2 to behave as
diodes and Vbias causes memristor T to behave as a

Fig. 3 The symbolic illustration of driver circuitry connected to each
nanowire

(a) (b)

(d)

(c)

Fig. 4 Symbolic notation for volistor single-input and two-input logic
gates. a Volistor inverter; b two-input volistor NOR gate; c two-input
volistor AND gate; d mixed-input NOR gate. Inside the gates, symbols
V and R denote whether a signal is a voltage-based or resistance-based,
respectively
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switch. The output of the gate is the new state of the target
switch T, either open or closed. Table 2 shows VVL and td for
various combinations of input values of a two-input, single-
output volistor NOR gate implemented in a 3 × 1, and a
sixty three-input, single-output volistor NOR gate

implemented in a 64 × 1 crosspoint array. Note that with
more logic B1^ inputs, the value of VVL approaches Vin

and the propagation delay td gets shorter. Volistor logic
allows a multi-input NOR gate to be realized in only
one pulse.

(a)

(b) (c) (d) (e)
Fig. 5 Volistor NOT behavior. a A 1 × 8 crossbar array implementing a
four-output NOTand showing arbitrary nature of the locations of S and T.
The contribution of each memristor is determined by the voltage driver to
which it is connected. The horizontal nanowire is connected to HZ. b The
operation of a one output NOT in a 1 × 2 array. V(hl) stabilizes at ≈
600 mV indicating vin = B1^ manifesting on HL. In addition V(t), which

is the SPICE model’s representation of t, toggles to 0 V (t = B0^). c The
operation of a 63 output NOT in a 1 × 64 array. V(hl) stabilizes and V(t)
toggles as in b. d The operation of a one output NOT in a 1 × 2 array.
V(hl) stabilizes at ≈−600 mV indicating vin = B0^manifesting on HL. As
a result, V(t) remains 1 V (t = B1^). e V(hl) stabilizes as in d

Table 1 Implementation of
multi-output volistor NOT gate Crosspoint array vin Number of outputs VHL

(mV)

td
(ns)

Fig.

1 × 2 1 1 598.801 4.065 Fig. 5b

1 × 64 1 63 528.881 6.223 Fig. 5c

1 × 2 0 1 −0.599 Not applicable Fig. 5d

1 × 64 0 63 −35.559 Not applicable Fig. 5e

vin denotes a logical input; VHL is the voltage on horizontal nanowire HL, and td is the switching delay
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3.4 Volistor AND Gate in a Crosspoint Array

The third basic gate in volistor logic is AND. This gate is
realized as NOR with negated literals of the desired product
applied to the crosspoint array. For example, the desired prod-
uct abc is realized by applying (vin1, vin2, vin3) = (1, 0, 1) to
the memristors. As a result, the voltage across T is sufficient to

toggle t to B0^ where t ¼ aþ bþ c and according to De

Morgan’s Law aþ bþ c ¼ abc which is the desired result.
The AND gate can be scaled to perform multi-input multi-
output operations. The details are the same as described for
volistor NOR. In this work, it is assumed that negated inputs
are always available at the same cost as the non-negated in-
puts. Volistor logic allows a multi-input AND to be realized in
only one pulse.

3.5 Volistor OR and NAND Gates in a Crosspoint Array

In all volistor logic gates discussed above, the logical cod-
ing scheme of memristive switch T is defined as follows: an

open switch encodes logic B0^ and a closed switch encodes
logic B1.^ This scheme allows direct implementation of
volistor NOR/AND; however, it does not allow for direct
implementation of volistor OR/NAND. Therefore, execut-
ing a circuit with a volistor OR/NAND gate would require
two consecutive pulses.

However, if the logical coding scheme of the memristor
switch T is reversed, i.e., the open switch encodes logic B1^
and the closed switch encodes logic B0,^ then the OR/NAND
gate can be realized in one pulse. This scheme allows a direct
realization of volistor OR in the samemanner as volistor NOR
described in Section 3.3. Likewise, volistor NAND is realized
by applying negated input logic values to the crosspoint array
in the same manner as the volistor AND described in
Section 3.4. The designer could use one of the two encoding
schemes for the entire system or use both encoding schemes in
a partitioned system. In each separate partition, one encoding
scheme is utilized and partitions with different schemes com-
municate through inverters.

3.6 Mixed-Input Logic Gates in a Crosspoint Array

Inputs on standard volistor gates are voltages; however,
as shown in Fig. 4d, implementing gates with mixed-
inputs is possible using a hybrid of stateful and volistor
logic where some inputs are represented by resistances
and some by voltages. Figure 7 depicts a three-input
NOR gate implemented in a 1 × 4 crosspoint array
where (s, vin1, vin2, t) = (0, 0, 1, 1). In (s, vin1, vin2, t), s and t
are resistive logic values of S1 and T, and vin1 and vin2 are
logic input voltages applied to S2 and S3, see Fig. 7.
Specifically, s is the resistive logic value stored in S1
and it is to be interpreted as logic B0.^ Assume s has been
set in a previous operation and that all memristors with
voltage inputs have already been set to RCLOSED. As in
stateful logic, HL is grounded through RG and V+ is ap-
plied to S1. As in volistor logic input data are applied to
memristors S2 and S3, and bias voltage V− is applied to
memristor T. Equation (3), discussed in Section 3.1, re-
quires Vbias = V− and Vin ≥ 0V. With this configuration,
the resistive value of logic s manifests as a voltage on
HL and the circuit operates in the same manner as a

Fig. 6 A 3 × 1 crosspoint array used to perform two-input volistor NOR

Table 2 Implementation of multi-input single-output volistor NOR
gate

Crosspoint array Number of inputs VVL td

vin = 0 vin = 1 (mV) (ns)

2 × 1 0 2 −599.400 4.048

1 1 −598.203 4.068

2 0 0.300 Not applicable

64 × 1 63 0 0.010 Not applicable

0 63 −599.981 4.035

50 13 −597.609 4.082

Parameters vin, VHL and td are defined in the caption of Table 1

Fig. 7 Mixed-input NOR. The implementation of three-input one-output
NOR gate. The resistive input is stored in S1 and the voltage inputs are
applied to S2 and S3. The output is stored in memristor T
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volistor NOR. Translation between logical encoding
schemes is accomplished in the same manner as described
in Section 3.5. Mixed volistor AND gate is realized with
one extra step; since all input resistances need to be ne-
gated, one additional pulse is required.

4 Hybrid Approach to Synthesize Boolean Functions
in Crossbar Networks

In theory [10, 11], every single-output Boolean function of
n variables can be realized in a crosspoint array with n
source memristors and two additional working memristors.
These working memristors can act as both source and target
memristors. However, this realization leads to long se-
quences of pulses. These long sequences can be avoided
by the use of crossbar arrays to realize arbitrary multi-
output Boolean functions. Crosspoint arrays are the build-
ing blocks of crossbar arrays.

In this section, we first discuss hybrid computation in a
crosspoint array and thenwe show how to implement arbitrary
Boolean functions in a network of crossbar arrays. This net-
work uses a combination of stateful, volistor, and mixed-input
gates. These generic network structures can be used to imple-
ment logic functions in several forms such as SOP (Sum of
Product), POS (Product of Sum), and TANT (Tree level AND
NOTNetwork) [12]. TANTarchitecture requires non-inverted
inputs, but we consider a generalized TANT with no restric-
tion on input polarity. In this paper, stateful operations are
realized solely with NOR and NOT. Note that the NOT gate
can be obtained from INH by setting the non-inverted input to
constant 1. Also, the NOR gate can be created by cascading
stateful INH gates and setting the non-inverted input of the

first gate of the cascade to constant 1, e.g., aþ b ¼ 1 ⋅að Þ⋅b.

4.1 Hybrid Computation in a Crosspoint Array

The simplest structure to perform memristive logic computa-
tion is a crosspoint array. In this structure, computations can
be performed by two approaches: (1) solely stateful logic [1],
(2) a combination of mixed-input, stateful and volistor logic.
We call the second approach the hybrid approach. The first
approach is potentially slow since a long sequence of opera-
tions needs to be implemented. However, the second approach
has the potential to reduce the number of required operations.
We assume a SOP with M single literal degenerate products
and N products with more than one literal, thus the SOP is the
OR ofM+N inputs. Realization of this SOP function requires
a four-step process to be computed with the second approach:

(1) CLEAR: Set all memristors to the closed state. In a 1 × n
array, this requires driving all vertical nanowires to V+

and the horizontal nanowire to V−; for an n × 1 array, the
driving voltages should be swapped. This step is realized
in one pulse.

(2) AND: Sequentially perform N volistor AND gates, each
in one pulse. This step requires a total of N pulses.

(3) NOR: Perform a NOR operation on N+M arguments.
This includes the M single literal variables, which are
supplied as voltages, and the N products from the previ-
ous step, which are stored as resistances. This step re-
quires one pulse.

(4) NOT: Negate the result of the previous step. This step
requires one pulse.

Example 1 The following example describes the hybrid ap-
proach in a crosspoint array for the Boolean function

f ¼ abþ abþ c. This function can be realized in a 1 × 4
crosspoint array in five consecutive operations, one for
CLEAR, two for AND, one for NOR, and one for NOT, as
shown in Fig. 8.

Figure 8a shows a 1 × 4 crosspoint array driven by Vi, and
Fig. 8b shows the circuit configuration in each step. The first
step is implemented by setting all Vi to V

+ and HL to V−. This
step will set the memristors Mi closed, i.e., encoding logic
B1.^ The second step is to compute the product ab. This step
is implemented by setting V1 and V2 to Vā and Vb where Vā

and Vb are voltage signals encoding literals ā and b, respec-
tively. The result of this computation is stored in M4.

Similarly, the second product, ab, is computed by setting V1

and V2 to Va and Vb where Va and Vb are voltage signals
encoding literals a and b, respectively. The computed result
is stored in M3. The third step is realized with a mixed-input

NOR gate, i.e., NOR ab; ab; c
� �

. Note that variable c in SOP

function f is a voltage signal, whereas ab and ab are resistive
signals. This step is implemented by connecting HL to the
ground through RG and driving V1, V2, V3, and V4 to
Vc, V

−, V+, and V+, respectively. The result of the NOR gate

is stored in M2. Currently, the logic value of M2 is f , thus the
last step is to invert this logic value to obtain f. This step is
implemented by connecting HL to ground through RG and
driving V1 and V2 to V− and V+, respectively. Since M3 and
M4 do not take part in the last computation, V3 and V4 are
terminated to HZ.

As illustrated in Example 1, every SOP can be realized in
N + 3 operations, requiring at least N+ 1 +M memristors in
the crosspoint array. In Example 1, M = 1, so we used four
memristors. As a matter of proper operation, all target
memristors Ti must be initially closed. Further, if any of the
inputs are logic B1,^ then at least one of those logic B1^ inputs
must be driving a closed source memristor Si. If all such
memristors Si were open, the electrical characteristics of the
memristors might prevent proper manifestation of the input
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voltage on the common nanowire. Therefore, all memristors
should be initially closed. The closed state of a memristor will
only change to open when driven by Vbias and the voltage
drop across the memristor is VOPEN. Therefore, a target
memristor T can be used as a source memristor, i.e., driven
by Vin in subsequent operations with no risk of changing its
state. This reuse allows for compact logic implementations.
However, this approach potentially results in all source
memristors being open, so any subsequent logic B1^ inputs
have no closed memristor to drive. Therefore, the number of
memristors in the array should be more than the number of
products, i.e., extra memristors should be provided as dedicat-
ed targets. So, realizing volistor gates with many inputs is
possible neglecting the resistance of the common nanowire.
This allows implementing structures such as SOP with many
products. However, in a crosspoint array, each nanowire is
driven by an individual CMOS driver with control circuitry,
as shown in Fig. 2. This requirement imposes a large area
penalty potentially restricting the number of inputs to the
gates. Extending a crosspoint array to a crossbar array over-
comes this potential limitation and increases the overall
memristive density.

4.2 Hybrid Computation in a Crossbar Array

The crosspoint array can be scaled into a two-dimensional
crossbar array of sizem × n. Each of them rows in the crossbar
array can be thought of as a 1 × n crosspoint array and each of
the n columns can be thought of as an m× 1 crosspoint array.
With this crossbar structure, in a single volistor operation, a
product of literals can be created and copied to an arbitrary
column memristor or row memristor in the crossbar simulta-
neously. The multi-output capability of crosspoint arrays

discussed earlier allows an arbitrary number of copy opera-
tions to be performed in any of the two dimensions of the
crossbar array. Figure 9a depicts target memristors as multi-
input volistor gates whose outputs are the states of the corre-
sponding memristors. Using the multi-output property, any
combination of NOR/AND gates can be copied to any number
of arbitrary locations in a single column. One operation is
required for each gate type. In the worst case, the entire cross-
bar array can be populated with an arbitrary combination of
gates in 2n operations. Populating the crossbar array in this
manner is the first step (after initialization) to map a Boolean
function to a generic crossbar fabric. This fabric may, in gen-
eral, combine the use of volistor logic, mixed-input logic, and
stateful logic in the same crossbar array to produce logic
computations.

Example 2 As a means of discussing this hybrid approach,
take for example, the implementation of function

f ¼ abþ cd þ A ¼ Bþ A ¼ AB. This implementation re-
quires the same four-step process described in Section 4.1
and is illustrated in Fig. 10. The entries of the symbolic ma-
trices represent the logic values stored in each memristor of
the crossbar. Voltages applied to the horizontal and vertical
nanowires are indicated by the values shown to the left of
and on top of the matrices. The labels on top of the arrows
between matrices indicate the number of operations required
to move to the next matrix. Figure 10a shows the crossbar
after initialization; the voltages to achieve this state are not
shown. Figure 10b shows the result of computing the first
product with volistor AND. Figure 10c shows the computa-
tion of the other product which is also realized with volistor
AND. Figure 10d shows stateful logic being used to compute

(a)

Operation Step Memristors’ Drivers
V

Logic state of 

Memristors.

M

HL V1 V2 V3 V4 M1 M2 M3 M4

1 CLEAR V
−

V
+

V
+

V
+

V
+ 1 1 1 1

2
AND

HZ Va Vb HZ V
− 1 1 1

3 HZ Va Vb V
− HZ 1 1

4 NOR RG Vc V
−

V
+

V
+ 1

5 NOT RG V
−

V
+ HZ HZ

(b)

Fig. 8 Example of hybrid
computation in a crosspoint array.
a A 1 × 4 crosspoint array used to
implement SOP function f. b The
circuit configuration to
implement each step. The total
number of consecutive operations
(pulses) to realize f is 5
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B ¼ abþ cd. In this step, V+ and V− are equal to VCOND and
VSET, and RG is the load resistor in stateful INH [2].
Figure 10e shows the implementation of a mixed NOR gate

with resistance-based signal B and voltage-based signal Ā
producing the desired function f.

With the hybrid approach, the use of stateful IMP can be
avoided. This simplifies the driver circuitry, removes the need
for a keeper circuit [13], and simplifies crossbar initialization
since all memristors are initialized as closed. The stateful ap-
proach also requires a step to store the inputs in the crossbar.
However, since the hybrid approach uses voltages as inputs,
no storage step is required. The main advantage of the hybrid
approach over the stateful approach is that, for the same num-
ber of operations and memristors, one additional logic level
can be realized. The hybrid approach uses the efficiency of
volistors to implement the first level of logic which is usually

most complex. Figure 9a depicts a crossbar array divided into
three blocks. In stateful logic, the memristors in block 1 store
inputs; the memristors in block 2 store the first-level logic
outputs, and the memristor in block 3 stores the output of
the second-level logic. In the hybrid approach, since inputs
are voltages, the memristors in block 1 store the outputs of
the first-level logic; the memristors in block 2 store the outputs
of the second-level logic, and the memristor in block 3 stores
the output of the third-level logic. With the same number of
operations and the same number of memristors, the stateful
approach produces only two-level logic (Fig. 9b) whereas the
hybrid approach produces three-level logic as shown in
Fig. 9c. However, since in volistor logic the inputs are volt-
ages, there can be only one set of inputs applied to the crossbar
at any given moment and therefore only one output can be
computed at a time. In stateful logic, inputs are stored as

(a) (b) (c)
Fig. 9 The crossbar array. a A crossbar array divided into three blocks;
the populated gates in the block labeled 1 are realized by volistors, but the
blocks labeled 2 and 3 are realized with stateful NOR. b The symbolic
two-level circuit is realized with the stateful approach. c The symbolic

three-level circuit is realized with the hybrid approach. The first level of
the circuit, L1, is realized with volistor logic, whereas the next levels, L2
and L3, are realized with the stateful approach

(a)

(d)

(b) (c)

(e)

Fig. 10 The symbolic matrices
illustrate the steps of logic
computations based on the hybrid
approach for computing

f ¼ abþ cd þ A.
a Initialization step. b Computing
ab with a volistor AND.
c Computing cd with a volistor

AND. dComputing abþ cd with
a stateful NOR. e Computing f
with a mixed-gate NOR
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resistances. Therefore, each row or column can be thought of
as a distinct set of inputs capable of simultaneously producing
distinct outputs, with the restriction that all outputs implement
the same type of stateful gate [2], e.g., all the four NOR gates
as shown in block 2 of Fig. 9a. In Section 4.3, we use the
hybrid approach in a crossbar network to achieve different
outputs in parallel.

4.3 Hybrid Computation in a Crossbar Network

In a data path of a larger memristor architecture, there are usu-
ally several combinational blocks as well as memories each of
which is realized in one or more crossbars. A question arises as
to how one can implement information transfer between these
crossbars. Let us consider transfer of data from source memory
to target combinational logic. The memories can store informa-
tion as either voltage (e.g., CMOS memory) or as resistance. If
data are stored as voltage, the first level of the target logic can be
implemented with volistors. However, when data in memories
are stored as resistances, the first logic level in combinational
logic is realized with stateful NOR/NOT. Another problem is
how to partition large combinational blocks to improve process-
ing time by increasing parallelism. In a single crossbar array
using volistor logic, identical gates with identical inputs can be
produced in a single step. This is a limited form of parallelism
that replaces fan-out. This limitation can be resolved using a
network of many individual crossbars. Each individual crossbar
can have as many copies as necessary of a single gate with
identical inputs. This structure allows two or more separate
crossbars to simultaneously calculate the first logic level of an
arbitrary Boolean function. Additional logic levels can be

achieved with stateful operations, mixed-input gates, or both.
Table 3 shows different structures to realize Boolean functions
that are well suited to this hybrid approach. Next, we present
detailed examples for cases 2 and 5 from Table 3.

Example 3 POS implementation. The three variable EXOR
expression f = a⊕ b⊕ c can be implemented as the POS

expression aþ bþ cð Þ aþ bþ c
� �

aþ bþ c
� �

aþ bþ cð Þ.
The De Morgan equ iv a l en t exp r e s s i on i s f ¼
aþ bþ cð Þ þ aþ bþ c

� �þ aþ bþ c
� �þ aþ bþ cð Þ ¼

wþ xþ yþ z. The function is synthesized in four crossbar ar-
rays each of which is 4 × 4. In this crossbar column,
adjacent crossbars communicate through vertical
switches capable of connecting and disconnecting the
crossbars as illustrated in Fig. 12a. Figure 12b shows
the crossbar column with closed vertical switches be-
tween all adjacent crossbars creating a 16 × 4 crossbar
array. These switches are not further discussed in this
work. Executing f is a three-step procedure.

(1) Initialize all crossbar arrays by driving all vertical nano-
wires with V+ and all horizontal nanowires with V−.

(2) Simultaneously compute volistor NOR of each
maxterm in a separate crossbar column as described
in Section 3 3.3. In Fig. 12a, individual crossbar

arrays A, B, C, and D compute w ¼ aþ bþ c,

x ¼ aþ bþ c, y ¼ aþ bþ c, and z ¼ aþ bþ c in
parallel.

(a)

(e) (f)

(b) (c) (d)

Fig. 11 Implementation of different forms of Boolean functions with the
hybrid approach. a An example of a SOP function. b An example of a
POS function. c An example of a three-level sum of products of sums. d
An example of an EXOR of two products. e An example of a NAND-
AND-EXOR logic function. f An example of an AND-EXOR-OR logic

function. P stands for pulse (operation), e.g., 1P indicates that a related
logic level requires one pulse to be implemented. VL and SL stand for
volistor and stateful operations. In all circuits, only the first logic level is
implemented with volistor logic
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(3) Connect the vertical switches between adjacent
crossbars to form a 16 × 4 crossbar array. Perform
a stateful NOR on the logic values computed in
step 2 as illustrated in Fig. 12b.

Executing f with a solely stateful approach would
require two steps plus the overhead of setting up each

input [2]. This input overhead is directly proportional
to the number of inputs in the largest sum. Volistor
logic has no such input overhead; a multi-input gate
and a single-input gate are both produced in the same
number of steps. However, the solely stateful approach
can be executed in two steps in a single crossbar
whereas the hybrid approach would require more steps
if performed in a single crossbar.

Example 4 NAND-AND-EXOR implementation. Consider the
expression f ¼ e⋅ab⋅cd⊕cd⋅ae⋅b. The De Morgan equivalent ex-

pression is f ¼ eþ abþ cd þ aeþ bþ eþ aeþ cd þ cd þ aeþ b ¼
eþ xþ yþ zþ bþ eþ xþ yþ yþ zþ b ¼ w1þ w2þ w1þ w2 ¼
o1þ o2. Executing f is the six-step procedure depicted in Fig. 13
and described as follows. In each step, all outputs are computed
simultaneously.

(1) Perform the initialization as in example 3.
(2) Compute the products x, y, and z in parallel. Value y is

computed twice to enable simultaneous computation in
step 3 as in Fig. 13a. This realizes the four AND gates
using volistors.

(3) Using mixed-input gates, as described in Section 3.6,
compute w1 and w2 where Vē and Vb are input voltages
and x, y, and z are input resistances, as in Fig. 13b. This
realizes the NOR logic level.

(4) Produce w1 and w2 in parallel, as in Fig. 13c. This
performs two stateful NOT operations in the third logic
level.

(5) Produce o2 and o1 in the fourth logic level, NOR,
using the outputs calculated in steps 3 and 4, as in
Fig. 13d.

(6) Produce f from o2 and o1, as in Fig. 13e. This
produces the fifth level of logic, NOR. Executing
f with a solely stateful approach would require six
steps plus the input setup overhead. Note that
NAND-AND-EXOR circuits are a new concept in
logic synthesis. These circuits are a generalization
of the PSE circuits introduced in [14] in which
only one argument of the AND layer is a NAND
and others are literals.

Table 3 Different forms of logic functions and their De Morgan’s equivalents

# Logical form De Morgan’s equivalent Example # of pulses

1 AND-OR (SOP) AND-NOR-NOT Fig. 11a 3

2 OR-AND (POS) NOR-NOR Fig. 11b 2

3 NAND-NAND-NAND AND-NOR-NOR-NOT Fig. 11c 4

4 AND-EXOR (ESOP) AND-NOT-NOR-NOR Fig. 11d 4

5 NAND-AND-EXOR AND-NOR-NOT-NOR-NOR Fig. 11e 5

6 AND-EXOR-OR AND-NOT-NOR-NOR-NOR-NOT Fig. 11f 7

(a) (b)
Fig. 12 Implementation of POS function f in a crossbar network
comprised of four crossbar arrays of size 4 × 4. The function is realized
in a two-step procedure. a Realization of the first logic level of POS
function f in separate crossbars. The network configuration shows the
voltage drivers applied to each nanowire. This step produces four NOR
gates. b The switches between the 4 × 4 arrays are closed to create a 16 ×
4 crossbar array. The results w, x, y, and z of the first step are NORed to
create the output of the POS function f
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5 Comparison of Power Consumption and Speed
Between Stateful and Volistor Circuit Models

In this work, power measurements are made using the same
model mentioned in Section 2 in the LTspice IV simulation
environment. The average power Pavg consumed in a crosspoint
array is computed using the equation Pavg =∑VRMS ⋅ IRMSwhere
VRMS and IRMS are the root mean squares of the voltage across
and the current through each memristor. The average power
consumption of each individual element of a 1 × n crosspoint
array where n ≤ 64 is computed over a 10 ns interval beginning
with the application of the driver voltages V

+
= 0.6V,

V
−
= − 0.6V and 0 V which are applied for 8 ns. Let the power

consumed in a source memristor set to logic B1^ be denoted PS1,

the power consumed in a source memristor set to logic B0^ be
denoted PS0, the power consumed in a target memristor be de-
noted PT, and the power consumed in load resistor RG be denoted
PRG. Let PS denotes the total power consumption in all source
memristors. The superscripts SL and VL are used to indicate
power consumptions during stateful logic and volistor logic,
respectively. For example, PS0

SL
is the power consumed by a

source memristor set to logic B0^ when SL is performed and
PS
VL

is the power consumed in all source memristors when
volistor logic is performed. Table 4 describes the power

consumption in each crosspoint element where VHL and V̂HL

are the voltages on the horizontal nanowire during VL and SL
operations, respectively. Table 4 is derived based on the average
power equation Pavg and Ohm’s Law; the circuit elements

(a) (b)

(c) (d)

(e)

Fig. 13 Realization of the De
Morgan equivalent for the
NAND-AND-EXOR expression
f. The crossbar network is com-
prised of four crossbar arrays each
of size 4 × 4. The function is re-
alized in a six-step procedure. a
The first logic level of f is realized
with volistors, b the second logic
level of f is realized with mixed-
input gates, and c–e the rest of the
logic levels are realized with
stateful logic. Crossbar drivers are
indicated by 0 V, V+, V−, RG, and
HZ. In each step, the performed
operation is depicted by logic
gates and the results of the opera-
tions are shown as outputs of the
gates

226 BioNanoSci. (2016) 6:214–234



considered in power computation are the resistance values of the
memristors, either RCLOSED or ROPEN, load resistance RG, and
the driver voltages. The power required to connect the nanowires
to V

+
, V

−
, 0V, RG, and HZ is the same in both VL and SL

operations and is not considered in this work. The resistance of
the horizontal nanowire HL is negligible when compared with
load resistance RG. Jo et al. [15] reported that the resistive value
of a relatively largewidth nanowire of diameter 120 nmused in a
1-kb crossbar array is at most 30 KΩ when implemented with
relatively high resistance p-doped Si. This upper bound is much
smaller than RG = 15 MΩ chosen in this work. Recall,

RG ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ROPEN � RCLOSED

p
and ROPEN

RCLOSED
¼ 103 as mentioned in

Section 2 and Section 3. The power consumed by volistor logic
in a crosspoint array is entirely due to the leakage through the
reverse biased rectifying memristors as there is no direct path to
ground. However, when volistor logic is performed in a crossbar
array, there is an additional power consumption in memristors
not taking part in the operations. This is true for stateful logic as
well. Since the power consumption in both cases is the same
and we are only interested in comparing SL and VL, this

additional power is not discussed. In this section, the power
consumption in a crosspoint array for S1 > 0 and S1 = 0 is
analyzed separately. For ease of reference, let S1 and S0 denote
the numbers of source memristors set to vin = 1 and vin = 0,
respectively; T denotes the number of target memristors; PSL
and PVL denote the total power consumption in memristors and
in load resistor RG during SL and VL operations, respectively;
and td denotes the switching delay—the time required to
completely switch from the close state of a target memristor T
to the open state.

5.1 Analysis of Power Consumption and Switching Delays
in a 1 × 8 Crosspoint Array for S1 > 0

Table 5 compares the switching delay, td, and the overall
power consumption in memristors and in load resistor RG

during SL and VL operations for various compositions of

S1, S0 and T ; PSLPVL
. From the simulation results shown in

Table 5, the following is observed.

(1) In SL and VL, PT is approximately 2nW, i.e., the changes
to the number and the high/low composition of input
values slightly affect the power consumed by any indi-
vidual target memristor T. This is expected given the
characteristics of the rectifying memristors and consider-
ing that VHL ≈Vin.

(2) The major contributor to the power consumption in SL
is RG—it consumes approximately eight times more
power than each target memristor. In VL, PRG = 0.

(3) The minor contributors to the power consumption in SL
is S0 × PS0

SL.

Table 5 Circuit element power consumption, switching delay and power ratio in a 1 × 8 crosspoint array

(S1, S0, T) Op PS1 PS0 PT PRG td Pavg PSL
PVL(nW) (nW) (nW) (nW) (ns) (nW)

(2, 2, 1) VL 2.224e-3 0.555 2.226 0 4.044 3.340 6.13
SL 0.168 0.168e-3 2.192 17.946 4.239 20.474

(2, 3, 1) VL 3.471e-3 0.555 2.225 0 4.044 3.897 5.254
SL 0.168 0.168e-3 2.192 17.947 4.239 20.476

(2, 4, 1) VL 4.993e-3 0.554 2.224 0 4.054 4.450 4.601
SL 0.168 0.168e-3 2.192 17.947 4.239 20.476

(2, 4, 2) VL 8.868e-3 0.553 2.221 0 4.064 6.672 3.397
SL 0.187 0.187e-3 2.190 17.911 4.227 22.666

(2, 3, 3) VL 11.22e-3 0.553 2.220 0 4.073 8.341 2.955
SL 0.207 0.207e-3 2.187 17.876 4.288 24.645

(2, 2, 4) VL 0.014 0.552 2.219 0 4.083 10.008 2.701
SL 0.229 0.229e-3 2.185 17.838 4.288 27.036

S0 and S1 denote the numbers of sourcememristors set to logic "0" and logic "1", respectively; T denotes the number of target memristors. PS0 and PS1 are
the power consumptions in a source memristor set to logic "0" and logic "1", respectively. PT is the power consumption in a target memristor, and PRG is
the power consumption in load resistor RG. Pavg denotes the average power consumption in the crosspoint array. td denotes the switching delay. PSL and
PVL indicate the power consumptions during SL and VL operations, respectively

Table 4 Power consumption in each crosspoint array element

Logical
op.

PS0 PS1 PT PRG

VL
VHLð Þ2
ROPEN

Vþ−VHLð Þ2
ROPEN�10−3

VþþVHLð Þ2
ROPEN

0

SL
Vþ−V̂HLð Þ2
ROPEN

Vþ−V̂HLð Þ2
ROPEN�10−3

VþþV̂HLð Þ2
ROPEN

V̂HL
2

ROPEN
� 10

ffiffiffiffiffi
10

p

PS0 and PS1 denote the power consumptions in a source memristor set to
logic "0" and logic "1", respectively. PT is the power consumption in a
target memristor, and PRG is the power consumption in load resistor RG
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(4) The major contributors to the power consumption in VL
are determined based on S0 and T.

(5) For any combination of S1, S0, and T,
PSL
PVL

> 2. The lower

bound of PSL
PVL

obtained for the composition of (S1, S0,

T) = (1, 0, 7) is 2.129.
(6) For anycombinationofS1,S0, andT, td is always lower forVL.

As a summary, we observed that in a 1 × 8 crosspoint array
VL circuit is faster than SL and consumes at most half the
power of its SL technology equivalent.

In a 1 × 8 crosspoint array, for any composition of S1, S0,
and Twhere S1 > 0, the power ratio can be approximated based
on the following power properties, Property 1–Property 4.

Property 1 When S1 > 0, the power consumption in a target
memristor duringVLoperation can be approximated as shown in (5).

PVLT ≈4� PVLS0 ð5Þ

Proof The power consumption in a target memristor during

VL operation is PVLT ¼ VHL−V−ð Þ2
ROPEN

¼ VHLþVþð Þ2
ROPEN

and the power

consumption in a source memristor set to logic B0^ during

VL operation is PVLS0 ¼ VHL
2

ROPEN
. So, PVLT

PVLS0
¼ VHLþVþð Þ2

VHL
2 . Let V+ =

VHL + ε. As a result, P
VL
T

PVLS0
¼ 2VHLþε

VHL

h i2
¼ 2þ ε

VHL

h i2
. The up-

per and lower bounds of PVLT
PVLS0

, obtained for the upper and lower

bounds of ε
VHL

, are calculated for (S1, S0, T) = (1, 1 , 6 ) and

(S1, S0,T) = (6, 1, 1), respectively. These compositions were sim-

ulated using LTspice obtaining 4:002≤ PVLT
PVLS0

≤ 4:052. Therefore,

for any combination of S1, S0, and Twhere S1 > 0 we can assume
PT
VL ≈ 4 × PS0VL.

Property 2 When S1 > 0, the power consumption in the load
resistor can be approximated as shown in (6).

PRG≈8� PSLT ð6Þ

Proof The power consumption in the load resistor is PRG ¼
V̂HL

2

RG
and the power consumption in a target memristor during

SL operation is PSLT ¼ V̂HL−V−ð Þ2
ROPEN

¼ V̂HLþVþð Þ2
ROPEN

. So,

PRG
PSLT

¼ V̂HL
2

RG
� ROPEN

V̂HLþVþð Þ2 ¼
ROPEN
RG

� 1

V̂HLþVþ
V̂HL

h i2. L e t Vþ ¼

V̂HL þ ε̂. A s a r e s u l t , PRG
PSLT

¼ ROPEN
RG

� 1

2V̂HLþε̂

V̂HL

h i2 ¼ ROPEN
RG

�

1

2þ ε̂
V̂HL

h i2. Computing the upper bound of PRG
PSLT

requires comput-

ing the lower bound of voltage ratio ε̂
V̂HL

. The upper and lower

bounds of PRG
PSLT

or the lower and upper bounds of ε̂
V̂HL

are calcu-

lated for the compositions of (S1, S0, T) = (7, 0, 1) and (S1, S0,
T) = (1, 0, 7), respectively. These compositions were simulat-

ed using LTspice obtaining 7:542≤PRG
PSLT

≤ 7:866. Therefore, for

any combination of S1, S0, and Twhere S1 > 0 we can assume
PRG ≈ 8 × PT

SL.
Since PT

VL and PT
SL for any combination of S1, S0, and T

where S1 > 0 are approximately 2nW, they can be replaced
with PT in (5) and (6).

Property 3 When S1 > 0, the power consumption in source
memristors during SL operation is considerably smaller than
the overall power consumption in target memristors and load
resistor RG as shown in (7).

PSLS
PSL−PSLS

≪1 ð7Þ

Proof The simulation results show that the power consump-
tion in source memristors during SL operation, PS

SL, is neg-
ligible when compared to the overall power consumption in
target memristors and load resistor RG. The power con-
sumption in source memristors set to logic "1" is much
larger than the power consumption in source memristors

set to logic "0", as can be seen in follows:
PSLS1
PSLS0

¼ Vþ−V̂HLð Þ2
RCLOSED

�
ROPEN

Vþ−V̂HLð Þ2 ¼ 103. Substituting PS1
SL = 103 × PS0

SL in
PSLS

PSL−PSLS
re-

sults in
S1�103þS0ð Þ�PSLS0

PSL−PSLS
. Substituting PSL − PS

SL with T ×

PT + PRG or its equivalent (T + 8) × PT in
S1�103þS0ð Þ�PSLS0

PSL−PSLS

results in
S1�103þS0ð Þ
Tþ8ð Þ� PT

PSL
S0

. It is required to compute the lower

bound of PT
PSLS0

to verify
S1�103þS0ð Þ
Tþ8ð Þ� PT

PSL
S0

≪1. This power ratio, PT
PSLS0

,

is equal to
V̂HL−V−ð Þ2
ROPEN

� ROPEN

Vþ−V̂HLð Þ2 or
2V̂HL
ε̂ þ 1

� 	2
considering

Vþ ¼ V̂HL þ ε̂. The lower bound of PT
PSLS0

obtained for the lower

bound of V̂HL
ε̂ is calculated for (S1, S0, T) = (1, 1, 6). This

composition results in V̂HL
ε̂ ¼ 21:949 and therefore

S1�103þS0ð Þ
Tþ8ð Þ� PT

PSL
S0

¼ 0.036 which is considerably smaller than

1 and thus proves (7). The immediate consequence of
(7) for any combination of S1, S0 and T where S1 > 0 is
PSL − PS

SL ≈ PSL used in deriving (9).

Property 4 The power consumption in source memristors
driven by logic B1^ during VL operation is considerably
smaller than the overall power consumption in source
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memristors driven by logic B0^ and target memristors as in
(8).

S1 � PVLS1
PVL−S1 � PVLS1

≪1 ð8Þ

Proof The simulation results show that the power consumption
in source memristors driven by logic B1^ during VL operation is
negligible when compared to the overall power consumption in
memristors. Using the results of simulations, inequality (8) can

be proved as follows.
S1�PVLS1

PVL−S1�PVLS1
¼ S1�PVLS1

S0�PVLS0 þT�PT
. Using (6),

S1�PVLS1
S0�PVLS0 þT�PT

≈ S1�PVLS1
S0�PT

4 þT�PT
¼ S1

PT
PVL
S1

S0
4 þTð Þ. The lower bound of PT

PVLS1

is required to verify
S1�PVLS1

PVL−S1�PVLS1
≪1 and is obtained for the com-

position of (S1, S0, T) = (1, 0, 7). Note that PT
PVLS1

¼ 2VHLþεð Þ2
ROPEN

� RCLOSED

Vþ−VHLð Þ2 ¼ 10−3 � 2VHL
ε þ 1

� �2
whe r e ε = V+ − VHL .

Using LTspice simulator, the lower bound of VHL
ε for the given

combination is 70.929 and consequently PT
PVLS1

¼ 20:409.

Therefore,
S1�PVLS1

PVL−S1�PVLS1
≈ 0:007 is significantly smaller than 1

and thus proves (8). The immediate consequence of (8) for
any combination of S1, S0, and T where S1 > 0 is PVL − S1 ×
PS1
VL ≈ PVL used in deriving (9).

According to (7) and (8), PSLPVL
≈ T�PTþPRG

S0�PVLS0 þT�PT
, and according

to (5) and (6), T�PTþPRG
S0�PVLS0 þT�PT

≈ T�PTþ8�PT
S0�PT

4 þT�PT
. Therefore, for any

combination of S1, S0, and Twhere S1 > 0, we can assume:

PSL
PVL

≈
T þ 8

T þ S0
4

ð9Þ

The lower bound of (9) is larger than 2. Simplifying the

inequality Tþ8
TþS0

4

> 2 results in T þ S0
2 < 8. In a 1 × 8

crosspoint array for any composition of S1, S0, T where S1 >

0, the inequality T þ S0
2 < 8 holds and so PSL

PVL
> 2.

In terms of switching delay, volistor gates perform faster
than stateful gates. The switching delay in both SL and VL
operations corresponds to the voltage drop across the target
memristors, or equivalently the voltage of the common nano-
wire during the operations. The lowest voltage drop across the
target memristors is obtained for the composition of (S1, S0,
T) = (1, 0, 7), for which td is 4.136 and 4.477 ns for VL and
SL, respectively. The highest voltage drop across the target
memristors is obtained for the composition of (S1, S0, T) = (7,
0, 1) for which td is 4.030 and 4.089 ns for VL and SL, re-
spectively. Note that the increase of S1 reduces the switching
delay in both SL and VL operations.

5.2 Analysis of Power Consumption in a 1 × n Crosspoint
Array for S1 = 0

In a 1 × 8 crosspoint array, for S1 = 0 and any combination of

S0 and T, our simulation results show that PSL
PVL

> 1. Table 6

compares the power consumption in memristors and load re-
sistor RG for S1 = 0 and various compositions of S0 and T
during VL and SL operations. In all compositions, T is kept
constant at 1 and S0 is varied between 1 and 7. Table 6 shows
that the increase of S0 has almost no effect on PVL, i.e. for all
given compositions the power consumption in memristors
during VL operation is almost equal to the power consump-
tion in only target memristors.

Property 5 When S1 = 0, the power consumption in source
memristors driven by logic B0^ during VL operation is con-
siderably smaller than the overall power consumption in target
memristors as in (10).

S0 � PVLS0
T � PVLT

≪1 ð10Þ

ProofOur simulation results show that the overall power con-
sumption in memristors during VL operation is almost equal
to the power consumption in only targetmemristors when S1 = 0.

Table 6 Comparison of power ratio PSL
PVL

of a multi-input NOR realized in a 1 × 8 cross point array with S1 = 0 and various values of S0

(S1, S0, T) Op. PS0 PT PRG Pavg PSL
PVL(nW) (nW) (nW) (nW)

(0, 1, 1) VL 0.556e-3 0.556 0 0.557 2.004
SL 0.558 0.558 0 1.116

(0, 2, 1) VL 0.139e-3 0.557 0 0.557 2.975
SL 0.527 0.589 0.014 1.657

(0, 4, 1) VL 0.035e-3 0.557 0 0.557 4.772
SL 0.474 0.648 0.114 2.658

(0, 7, 1) VL 0.011e-3 0.557 0 0.557 6.427
SL 0.407 0.731 0.392 3.58

The parameters S0, S1, T and so on are defined in the caption of Table 5
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The power ra t io
S0�PVLS0
T�PVLT

i s equa l to S0
T � VHL

2

RCLOSED
�

ROPEN

VHLþVþð Þ2 ¼ 103 S0
T

� �� 1

1þ Vþ
VHL

� 	2. The upper bound of
PVLS0
PVLT

is

obtained for the composition of (S0, T) = (7, 1) which produces
maximum VHL. For this composition, VHL = − 75.417µV and

thus
PVLS0
PVLT

¼ 1:106� 10−4 which is considerably smaller than 1

and proves (10). Note that for a larger crosspoint array equation
(10) is also valid, e.g., in a 1 × 64 crosspoint array the upper

bound of
PVLS0
PVLT

is calculated for (S0, T) = (63, 1). For this compo-

sition, VHL = − 8.3807µV, PVL = 0.558nW, and consequently
PVLS0
PVLT

¼ 1:229� 10−5≫1. The consequence of (10) for any

combination of S0 and T is PVL ≈ PVL − S0 × PS0
VL. Note that for

S1 = 0, PT
SL ≠ PTVL and the increase of S0 increases PSL

PVL
as shown in

Table 6.

Table 7 compares PSL
PVL

for various compositions of S0 and T.

In a 1 × n crosspoint array, for S1 = 0, the power consumption
during SL operation is the same for both combinations (S0,
T) = (n − k, k) and (S0, T) = (k, n − k) where 1 ≤ k < n. In other
words, if the voltage on the common nanowire of the

crosspoint array for (S0, T) = ( n − k, k) is V̂HL, this voltage

for (S0, T) = (k, n − k) would become −V̂HL. For example, for

(S0, T) = (2, 6) V̂HL ¼ −51:096mV, but for (S0, T) = (6,

2) V̂HL ¼ 51:096mV. In both composit ions, PSL =
4.246nW, as shown in Table 7. This circuit behavior causes
PSL
PVL

to increase as S0 approaches n. As S0 increases, the volt-

age drop across the target memristors during SL operation
becomes larger than the voltage drop across the target
memristors during VL operation. Since all target memristors

show the same resistance when reverse biased, PSL
PVL

> 1.

Recall that in SL operation, all source memristors are con-
nected to V+, whereas in VL operation, under the assumption
of S1 = 0, all source memristors are only set to 0 V. Moreover,
the power consumption in source memristors during VL
operation is negligible as shown in (10); therefore, the
increase of S0 slightly affects PVL. However, the power
consumption in source memristors and in load resistor RG

during SL operation can significantly increase the PSL
PVL

ratio.

When S0 = T, during SL operation Vþ−V̂HL



 

 ¼ V−−V̂HL



 

,
and thus V̂HL ¼ 0V and PRG = 0V. In other words, PT

SL = PS0
SL.

In this case, PSLPVL
≈ 2. For example, in a 1 × 8 crosspoint array

for S0; Tð Þ ¼ 4; 4ð Þ PSL
PVL

¼ 2:113, or in a 1 × 64 crosspoint

array for (S0, T) = (32, 32) PSL
PVL

¼ 2:005.
In a 1 × 8 crosspoint array, for any composition of S0

and T, PSL
PVL

> 1, i.e., the lower bound of PSL
PVL

is 1.025,

computed for (S0, T) = (1, 7). This composition maximizes
PVL, while minimizing PSL as shown in Table 7. However,
in a 1 × n crosspoint array where n > 8, the decrease of k

in (S0, T) = (k, n − k) can bring PSL
PVL

to less than 1, as shown

in Table 8. Table 8 shows various compositions of S0 and

T for which PSL
PVL

< 1. In each composition, for a given S0,

only the lower bound of T for which PSL
PVL

< 1 is presented,

i.e., a larger T leads to a smaller PSL
PVL

.

5.3 Analysis of Power Consumption and Switching Delays
in a 1 × 64 Crosspoint Arrays for S1 > 0

Tables 9, 10, 11, and 12 compare the switching delay and the
overall power consumption in a 1 × 64 crosspoint array during
SL and VL for various compositions of S1, S0, and T, where
S1 > 0. The simulation results, shown in Tables 9, 10, 11, and

Table 7 Comparison of power ratio PSL
PVL

of a multi-input multi-output NOR realized in a 1 × 8 cross point array with S1 = 0 and various values of S0 and T

(S1, S0, T) Op PS0 PT PRG Pavg PSL
PVL(nW) (nW) (nW) (nW)

(0, 1, 7) VL 0.027 0.550 0 3.877 1.025
SL 0.731 0.407 0.392 3.972

(0, 2, 6) VL 0.005 0.554 0 3.352 1.267
SL 0.671 0.455 0.174 4.246

(0, 3, 5) VL 0.002 0.556 0 2.786 1.582
SL 0.613 0.505 0.044 4.408

(0, 4, 4) VL 0.556e-3 0.556 0 2.226 2.113
SL 0.588 0.558 0 4.704

(0, 5, 3) VL 0.200e-3 0.557 0 1.672 2.636
SL 0.505 0.613 0.044 4.408

(0, 6, 2) VL 0.062e-3 0.557 0 1.114 3.811
SL 0.455 0.671 0.174 4.246

(0, 7, 1) VL 0.011e-3 0.557 0 0.557 6.427
SL 0.407 0.731 0.392 3.972

The parameters are defined in the caption of Table 5
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12, are consistent with the first four observations stated for a
1 × 8 crosspoint array in Section 5.1. However, unlike the last
two observations stated for a 1 × 8 crosspoint array, the
following is observed.

(1) Themain contributors to the power ratio PSL
PVL

are S0, T, and
PRG. For example, holding T constant while increasing

S0, as shown in Table 9, decreases the power ratio
PSL
PVL

. In

contrast, holding S0 constant while increasing T, as

shown in Table 10, brings PSL
PVL

close to 1.

(2) The switching delay td in VL is shorter than in SL if
PSLS1
PVLS1

> 1 and is equal or longer than in SL if
PSLS1
PVLS1

≤1.

In a 1 × 64 crosspoint array, for any composition of S1, S0,

and Twhere S1 > 0 Eqs. (5), (7), and (8) hold and since 7:07

8≤PRG
PSLT

≤ 8:328 Eq. (6) can still approximate the relation

between PRG and PT
SL during SL operation. As a result, PSL

PVL

can still be approximated by (9). All derivations are in the
same manner as shown in Section 5.1.

Table 9 shows that VL consumes more power than SL

when S0 > 33. In this case, an increase of T brings the PSL
PVL

ratio

close to 1 as predicted by (9). This prediction is varified in
Table 10. The converse is also true, when S0 < 33, VL con-

sumes less power than SL and the increase of T brings the PSL
PVL

ratio close to 1, as shown in Table 11. Note that the increase of

S1 slightly affects the PSL
PVL

ratio as shown in Table 12.

In terms of switching delay, volistor gates perform faster

than stateful gates when
PSLS1
PVLS1

> 1. When
PSLS1
PVLS1

≈1, the propagation

delay in both operations is almost the same; when
PSLS1
PVLS1

< 1,

stateful gates perform faster than volistors. In other words,
the switching delay changes with the voltage on the

Table 9 Comparison of delay td and power ratio psl
pvl

of a multi-input NOR realized in a 1 × 64 crosspoint array with S0 ≥ 33 and varied S1

(S1, S0, T) Op. PS0 PS0 PT PRG td Pavg PSL
PVL(nW) (nW) (nW) (nW) (ns) (nW)

(30, 33, 1) VL 0.757e-3 0.556 2.228 0 4.041 20.599 1.009
SL 0.770e-3 0.770e-6 2.228 18.541 4.041 20.792

(29, 34, 1) VL 0.857e-3 0.556 2.227 0 4.034 21.156 0.982
SL 0.824e-3 0.824e-6 2.227 18.539 4.042 20.767

(25, 38, 1) VL 1.423e-3 0.558 2.227 0 4.048 23.467 0.885
SL 1.107e-3 1.107e-6 2.227 18.533 4.044 20.760

(13, 44, 1) VL 0.007 0.554 2.222 0 4.072 26.689 0.778
SL 0.004 4.069e-6 2.224 18.484 4.060 20.760

(1, 62, 1) VL 2.021 0.492 2.098 0 4.907 34.623 0.583
SL 0.579 0.579e-3 2.159 17.406 4.470 20.18

The parameters are defined in the caption of Table 5

Table 8 A multi-input multi-output NOR with power ratio psl
Pvl

< 1 for some combinations of S0 and Twith S1 = 0 realized in a 1 × n cross point array

(S1, S0, T) Op PS0 PT PRG Pavg PSL
PVL(nW) (nW) (nW) (nW)

(0, 1, 8) VL 0.035 0.549 0 4.427 0.987
SL 0.757 0.388 0.508 4.369

(0, 2, 12) VL 0.020 0.551 0 6.652 0.997
SL 0.818 0.347 0.830 6.63

(0, 3, 16) VL 0.016 0.552 0 8.88 0.990
SL 0.869 0.315 1.147 8.794

(0, 4, 20) VL 0.014 0.552 0 11.096 0.982
SL 0.912 0.290 1.447 10.895

(0, 5, 23) VL 0.012 0.552 0 12.756 0.992
SL 0.933 0.278 1.601 12.66

(0, 6, 26) VL 0.010 0.553 0 14.438 0.998
SL 0.951 0.268 1.742 14.416

(0, 7, 30) VL 0.010 0.553 0 16.66 0.987
SL 0.982 0.253 1.987 16.451

All of the parameters are defined in the caption of Table 5

BioNanoSci. (2016) 6:214–234 231



common nanowire of a crosspoint array or equivalently
the voltage drop across the target memristors. A logic
gate operates faster if the voltage drop across its target
memristors is larger. The increase of S0 versus the de-
crease of S1 results in faster stateful gates and vice
versa as shown in Table 9. In addition, the increase of
T versus the decrease of S1 results in faster volistor
gates. Table 11 shows the increase of td in SL versus
VL for constant S0 with T varied from 1 to 57.

Table 9 shows PSL
PVL

< 1 when S0 > 33, regardless of value S1.

Table 12 reinforces our conclusion that S1 has almost no effect

on the power ratio, PSLPVL
. The increase of S0 and the decrease of S1

result in PS1
VL > PS1

SL and thus a longer switching delay td for VL.

Table 10 shows how the increase of T affects PSL
PVL

when

S0 > 33. The increase of T brings PSL
PVL

close to 1. For all com-

positions, td is longer for VL. This long switching delay is
related to the increase of T and the large S0.

Table 11 shows how the increase of Taffects PSL
PVL

when S1 and

S0 are fixed at at 1 and 6, respectively. For all compositions,

shown in Table 11, PRG
S0�PVLS0

≈ 5:2; however, the increase of T

brings PSL
PVL

close to 1, reducing the effect of PRG
S0�PVLS0

in PSL
PVL

signif-

icantly as predicted by (9). As a result, executing a multi-input
multi-output gate in a small crosspoint array, e.g., 1 × 8, with VL
is more power efficient than with SL. This conclusion is consis-
tent with (9) and with the simulation results shown in Table 5.
The increase of T results in PS1

SL > PS1
VL and thus longer td for SL.

Table 12 shows how the increase of S1 affects PSL
PVL

when

S0 (> 33) and T are fixed at 40 and 1, respectively. The in-

crease of S1 has almost no effect on PSL
PVL

, i.e., all compositions

result in almost the same power ratio of 0.856. Although the

increase of S1 has almost no effect on PSL
PVL

, it does decrease the

switching delay in both SL and VL operations.
As a summary, in a 1 × 8 crosspoint array, the power

consumption in SL is higher than in VL and volistors operate
faster than stateful gates. In a 1 × 64 crosspoint array, when
S1 > 0, the majority of the power consumption in VL is S0 ×
PS0
VL + T × PT, and in SL is PRG + T × PTas described in (5), (6),

(7), and (8). In this case, PSLPVL
can be approximated with (9). In a

1 × 64 crosspoint array, a multi-input volistor gate consumes
less power than a multi-input stateful gate, unless the majority

Table 11 Comparison of delay td and power ratio psl
pvl

of a multi-input NOR realized in a 1 × 64 crosspoint array with constant number of inputs and
varied outputs

(S1, S0, T) Op. PS1 PS0 PT PRG td Pavg PSL
PVL(nW) (nW) (nW) (nW) (ns) (nW)

(1, 6, 1) VL 0.035 0.549 2.212 0 4.103 5.541 3.636
SL 0.643 0.643e-3 2.155 17.345 4.454 20.147

(1, 6, 5) VL 0.140 0.54 2.195 0 4.223 14.355 2.002
SL 0.960 0.96e-3 2.139 17.074 4.571 28.735

(1, 6, 15) VL 0.693 0.519 2.152 0 4.474 36.087 1.383
SL 2.020 2.020e-3 2.098 16.420 4. 874 49.922

(1, 6, 30) VL 2.263 0.489 2.090 0 4.942 67.897 1.192
SL 4.247 4.247e-3 2.040 15.482 5.411 80.954

(1, 6, 57) VL 7.104 0.439 1.985 0 6.026 122.883 1.096
SL 10.069 10.069e-3 1.94 13.925 6.681 134.634

The parameters are defined in the caption of Table 5

Table 10 Comparison of delay td and power ratio
psl
pvl

of a multi-input NOR realized in a 1 × 64 crosspoint array with constant input values S0 and S1,
and varied

(S1, S0, T) Op. PS1 PS0 PT PRG td Pavg PSL
PVL(nW) (nW) (nW) (nW) (ns) (nW)

(1, 40, 1) VL 0.908 0.513 2.141 0 4.575 23.569 0.856
SL 0.603 0.603e-3 2.157 17.383 4.461 20.167

(1, 40, 4) VL 1.179 0.507 2.129 0 4.665 29.975 0.888
SL 0.821 0.821e-3 2.145 17.187 4.543 26.621

(1, 40, 8) VL 1.592 0.5 2.113 0 4.780 38.496 0.914
SL 1.161 1.161e-3 2.130 16.928 4.65 35.175

(1, 40, 16) VL 2.592 0.484 2.081 0 5.049 55.248 0.943
SL 2.005 2.005e-3 2.098 16.421 4.895 52.074

The parameters are defined in the caption of Table 5
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of inputs are logic B0.^ When S1 = 0, a multi-input volistor
gate consumes less power than a multi-input stateful gate. In a
1 × 64 crosspoint array, for S1 > 0, a logic gate with a large fan-
out consumes the same power when realized with SL and VL.
When S1 = 0, the majority of the power consumption in VL is
T × PT

VL as shown in (10). However, in SL operation, the pow-
er consumption in each circuit element depends on the com-
bination of S0 and T.

6 Memory Application

Memristors are nanoscale nonvolatile devices used primarily
as resistive memory. The generic structure for memristive
memory is a crossbar array. The crossbar arrays can be verti-
cally stacked creating a 3D crossbar memory [16]. The poten-
tial problem of the crossbar structure is the leakage pathways
from surrounding memory cells. In a recent work, Vourkas
et al. [17] proposed memories comprised of parallel/serial
complementary memristive switches. In order to have states
that are distinguishable, they introduced insulating junctions
within a crossbar array to restrain leakage pathways [18].

In another approach, Kim et al. [4] fabricated a crossbar
array utilizing rectifying memristors rather than standard
memristors. The use of rectifying memristors eliminates the
leakage pathways due to the diode-like behavior of
memristors, as discussed in Section 2. Furthermore, the large
ROPEN
RCLOSED

ratio of the rectifying memristors allows for multi-level

memory as demonstrated in [4]. This memory array can be
programmed exploiting volistor gates. As demonstrated in
Section 5, volistor gates are more efficient than stateful gates
in terms of power consumption. In the process of program-
ming the memory array, first, all memristors are initialized to
low resistance state. This initialization step can be implement-
ed in one clock cycle. Second, every cell of the memory array
is programmed sequentially. The latter approach for memory
realization is more efficient than the former approach in terms
of simplicity, power consumption, reliability, and robustness,
e.g., the second approach allows for multi-level memory

realization. Furthermore, realization of memory array
with rectifying memristors allows for programming the
memory cells to exploit volistors, which is a more
power-efficient approach than the conventional stateful
approach. This distinction between memories is origi-
nated from the property of rectifying memristors over
standard memristors.

Volistors can be used to create memory-like digital
sensor integrating devices. These devices read voltages
from many sensors in parallel/serial mode and convert
them to words of stored resistive information. The
stored information can be next processed by combina-
tional stateful memristive circuits.

7 Conclusion

Volistors capitalize on the characteristics of rectifying
memristors to allow voltages to be used directly as inputs.
There is no need to store inputs as resistances in memristors
before logic can be performed. This eliminates the use of RG to
read out the inputs in the first logic level and thus eliminates the
most power-hungry circuit element in stateful logic. There is no
static power in our circuits. The switching power consumed by
volistor logic in a crosspoint array is entirely due to the leakage
through the reverse biased rectifying memristor as there is no
direct path to the ground. Using volistors at the first level pro-
vides NOR and AND directly which provides a flexibility suf-
ficient to remove the need for IMP gates in stateful logic and to
realize all subsequent levels with only NOR/NOT. Realizing all
stateful logic levels with NOR/NOT simplifies the driver cir-
cuitry and removes the need for keeper circuits. An additional
advantage is that the first-level volistor logic can have as many
inputs as the number of available memristors in the crosspoint
array within a single operation. However, inputs set to 0V
incur a higher power penalty than the inputs set to V+ or
V−. The two-dimensional, multi-output property of
volistors provides for both a large fan-out (at the cost of
increased power consumption) and for a great flexibility

Table 12 Comparison of delays td and power ratio
psl
pvl

of a multi-input NOR realized in a 1 × 64 crosspoint array with varying S1 and S0 > 33

(S1, S0, T) Op. PS1 PS0 PT PRG td Pavg PSL
PVL(nW) (nW) (nW) (nW) (ns) (nW)

(1, 40, 1) VL 0.908 0.513 2.141 0 4.585 23.569 0.856
SL 0.603 0.603e-3 2.157 17.383 4.468 20.167

(5, 40, 1) VL 0.039 0.548 2.212 0 4.140 24.327 0.850
SL 0.027 0.027e-3 2.215 18.326 4.122 20.677

(10, 40, 1) VL 0.010 0.553 2.221 0 4.079 24.441 0.849
SL 0.007 0.007e-3 2.223 18.456 4.080 20.749

(20, 40, 1) VL 0.002 0.555 2.226 0 4.064 24.466 0.849
SL 1.727e-3 1.727e-6 2.226 18.52 4.057 20.781

The parameters are defined in the caption of Table 5
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in the placement of calculation results. Using multiple
crossbars in a network provides parallelization which
leads to pipelined and SIMD architectures in the data
path. Several different first-level volistor operations can
be computed in separate crossbars at the same time, great-
ly speeding up what is typically the most complex level of
Boolean function implementations. Subsequent logic levels
can be accomplished in connected crossbars in an approach
that uses mixed-input gates and stateful NOR. This hybrid
approach with volistors and stateful NOR can be used to com-
pute logic faster, with less power and with simpler external
control circuitry than a solely stateful approach.
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