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Abstract The release of smart phones equipped with a rich
set of sensors has enabled human activity recognition on
mobile platforms. Monitoring the daily activities and their
levels helps in recognizing the health and wellness of the
users as a practical application. Mobile phone’s ubiquity,
unobtrusiveness, ease of use, communication channels, and
playfulness make mobile phones a suitable platform also for
inducing behavior change for a healthier and more active
lifestyle. In this paper, we provide a review on the activ-
ity recognition systems that use integrated sensors in the
mobile phone with a special focus on the systems that tar-
get personal health and well-being applications. Initially, we
provide background information about the activity recogni-
tion process, such as the sensors used, activities targeted,
and the steps of activity recognition using machine learning
algorithms, before listing the challenges of activity recogni-
tion on mobile phones. Next, we focus on the classification
of existing work on the topic together with a detailed tax-
onomy. Finally, we investigate the directions for future
research.
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1 Introduction

Research on human activity recognition that involves the use
of different sensing technologies provides a great potential
for personal health systems by monitoring the daily activi-
ties and, hence, the wellness and health status of their users.
Especially, the release of smart phones equipped with a rich
set of sensors together with their ubiquity is a key enabler
for the adoption of personal activity recognition systems on
mobile platforms by the masses.

To briefly go over the history of such systems, vision
sensing using cameras has been the focus of early research
in the activity recognition domain [77]. More recently, iner-
tial sensing, using movement-based sensors that can be
attached to the user’s body has been investigated [15].
In fact, today, mobile phones can act as an activity
recognition platform. In the early studies, GSM signals
were used to infer the basic transportation modes of the
users [92], for instance, to understand whether a user is
in a vehicle or is in stationary state. Also, in the early
versions, activity recognition systems that use on-body
wearable sensors as peripherals that can be connected to a
mobile phone were utilized [21]. Currently, smart phones
that are integrated with a rich set of sensors, such as
accelerometer, gyroscope, GPS, microphone, camera, prox-
imity and light sensors, Wi-Fi, and Bluetooth interfaces,
provide a suitable platform for personal activity recognition
systems.

Not only the inclusion of new sensors and their ubiq-
uity but also their unobtrusiveness, zero installation cost,
and ease of usability make activity recognition on mobile
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phones more attractive. Compared to using on-body sen-
sors, mobile phones do not disturb or limit the activities of
the users, do not require to carry or attach external devices
on the body, and do not require the installation or calibra-
tion of the sensors. Mobile phone-based activity recognition
also eliminates the installation of cameras and the limitation
of working indoors compared to vision-based sensing sys-
tems.1 Besides these facts, a survey showed that a mobile
phone is considered as essential when leaving home besides
a key and a wallet, and this reveals that mobile phones
naturally fit people’s lives without disturbing them [11].

In fact, despite these advantages, activity recognition on
mobile phones also faces challenges such as the battery lim-
itation of the phones, limitations in processing and storage
compared to more powerful stations, and human behavior,
such as different use of phones by different people, that need
to be investigated for the realization and further adoption of
these systems.

From the perspective of personal health and well-being
systems, the fundamental contribution of activity recogni-
tion on smart phones can be monitoring the physical health
and well-being of the users by screening the physical activ-
ities, such as the transportation modes, locomotion, and
sports activities, through inertial sensors, mainly through
accelerometers. For instance, by monitoring the activity lev-
els, daily energy expenditure and physical wellness can
easily be calculated. Alternatively, the mobile phone can
be used as a fitness coach, for instance, for the rehabilita-
tion of patients with diseases, such as Parkinson’s disease.
The patient can be given a program with a set of activities,
their duration, and sequence, and the phone can detect what
the user is currently doing and/or if he is performing the
activities correctly with a correct sequence. Moreover, by
following the daily activities, the routines and behavior of
the users can easily be learnt by the activity recognition sys-
tems, and, in case of a drift from these routines, the users can
be warned about these changes. Especially considering the
elderly, these drifts may be indicators for certain diseases,
such as Alzheimer’s disease or dementia, and informing
caregivers may be crucial. Together with accelerometers,
GPS can also provide very useful information for monitor-
ing the activities including also the location information.
For instance, again considering the elderly, following their
daily trajectories and identifying drifts in these trajecto-
ries can reveal important findings about their mood and

1We admit that camera-based systems are more powerful in detecting
a more detailed context for the user, and phone-based activity recogni-
tion may not replace the camera-based solutions in settings where each
action is required to be detected. Here, our consideration is about the
set of the activities that can be detected with the set of sensors available
on the phones, and the camera still can be used for detailed context
recognition.

cognitive well-being [42]. Other sensors such as the micro-
phone, providing ambient sound information, camera, Blue-
tooth interface, providing information on social interactions,
Wi-Fi and cellular radios, providing location information,
and proximity and light sensors, providing ambient informa-
tion, can enrich the activity recognition for personal health
and well-being by providing additional context information.

Besides using the sensing functionality, smart phones
are also convenient interaction platforms for persuasive
applications to motivate healthier behavior because of their
ubiquitous presence, communication channels, and playful-
ness together with their perceived role as a personal and
trusted technology [6, 75] as investigated in [33, 35].Virtual
companions [12], games [78], and social networks [99]
can be used as the means to interact with the users in
mobile applications in order to persuade them for chang-
ing their sedentary or unhealthy habits and even lifestyle
for healthier behavior [27].

In this paper, we review the activity recognition systems
that use integrated sensors in the mobile phone with a par-
ticular focus on the systems that target personal health and
well-being applications. Our aim is to provide an extensive
survey on the topic and to bring the researchers not work-
ing in the field quickly up to date about the state of the
art, opportunities, challenges, and future topics on activ-
ity recognition using mobile phones. To the best of our
knowledge, although surveys on activity recognition using
wearable sensors exist [13, 54, 79], a survey on mobile
phone sensing [51] and on the classification algorithms
for activity recognition on smart phones [5], there is no
extensive survey on activity recognition on mobile phones
including a taxonomy of existing work especially focusing
on the issues of health and well-being.

Our contributions are to present a detailed survey on the
topic, provide a taxonomy of existing work, and investigate
the open issues in this domain. We start with a background
information on what types of sensors used, what kind
of activities are targeted, application domains of activity
recognition on mobile phones, and how activity recogni-
tion systems are or can be used in the field of personal
health and well-being. We focus on the activity recogni-
tion process and explain the details of used techniques.
We particularly explain the steps of the activity recogni-
tion using supervised machine learning algorithms. Then,
we elaborate on the performance evaluation of the used
techniques explaining the performance metrics utilized and
experimentation of proposals. The next topic we focus on is
the challenges of activity recognition on mobile phones and
the possible solutions proposed in the literature to overcome
these challenges. In the second part, we investigate the pro-
posed solutions on activity recognition on mobile phones.
We classify the solutions according to the sensors used and
off-line versus online classification methods together with
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presenting a taxonomy of existing work from different
aspects such as the activities targeted, type of classification
techniques used, and performance testing. In the last part,
we provide a list of open issues and directions for future
research.

The remainder of the paper is organized as follows: in
Section 2, we provide the background information on activ-
ity recognition using mobile phone sensors, such as the
types of sensors used, activities detected, and application
domains. In Section 3, we focus on the process of activ-
ity recognition particularly on the steps of machine learning
techniques and performance metrics. Section 4 is about the
research challenges in the field of activity recognition on
mobile phones, whereas Section 5 includes the taxonomy of
existing work. In Section 6, we discuss the open issues and
comment on possible future research directions. Finally in
Section 7, conclusions are drawn.

2 Background

In this section, first we provide the background information
on the sensors available on mobile phones that are or can be
used for activity recognition purposes and next focus on the
activities that can be inferred using these sensors.

2.1 Sensors

Although today’s mobile phones are powerful devices with
their computational capabilities and richer functionality
with the integrated sensors, they still act as communica-
tion devices from the user’s point of view [51]. The next
step should be to utilize the potential of using the mobile
phone as active assistant devices in supporting users’ daily
activities, and the main enablers to realize this step are the
integrated sensors on the mobile phone and the improving
computational capabilities of today’s mobile phones.

Figure 1 shows an example set of sensors available
on current smart phones: the conventional sensors such
as the cellular radio, Wi-Fi radio, Bluetooth radio, micro-
phone, cameras, and GPS, and newer sensors such as the
accelerometer, gyroscope, compass, light and proximity
sensors. It is expected that in the near future there will be
more and more sensors integrated on the mobile phone to
support a diverse set of applications. For instance, humid-
ity and gas sensors can easily be integrated to infer more
information about the user’s context. Sensors providing
health information, such as blood pressure or heart beat
rate, may not be useful when embedded on the phone itself
since they require contact with the user’s skin, but they
are already used as peripherals that can be connected to a
mobile phone. In fact, there are applications that can mea-
sure the blood oxygen saturation and heart rate using the

Fig. 1 Example sensors available on smart phones

cameras available on the smart phones [1]. It is clear that,
as the technology, particularly in microelectromechanical
systems, improves and the research on mobile phone sens-
ing matures, there will be new applications requiring more
and more sensors either embedded on the phones or used as
peripherals.

As a fundamental sensor on a mobile phone, the radio for
cellular communication enabled the first ubiquitous appli-
cations for coarse-grained context recognition. By using
the connection information between the radio and the cell-
tower, it is possible to locate the user, such as when the
user is at home. Although this does not give a fine-grained
activity information, it provides location-based information
to give a clue about what the user may be doing. Besides
such a location-based service, signal fluctuation information
between the radio and the cell tower has been used to predict
the user’s mode of transportation, such as walking, driving
a vehicle, or in stationary state [92].

Besides the radio for cellular communication, Bluetooth
and Wi-Fi radios can also be used as sensors for context and
activity recognition. For instance, in the “Reality Mining
Project” [30], interactions between or co-location of Blue-
tooth radios on the mobile phone were used to infer social
interactions between phone users. Moreover, fluctuations in
Wi-Fi signals can be used to locate the user, such as in the
classroom or attending a meeting, and again to predict the
user’s mode of transportation [71].

The microphone can also be used for activity recognition
purposes by collecting audio during a user’s daily activi-
ties, such as being in a conversation and being in a noisy
environment [65]. Similarly, the camera can also provide a
rich set of context information. One example application,
EyePhone [69], uses the camera to detect activities such as
tracking the user’s eye movements to start the applications
on the phone. GPS is another powerful sensor for tracking
the location of the mobile phone and the speed of move-
ments similar to the cellular and Wi-Fi radios but with a
more fine-grained information of location.
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The three-axis accelerometer is one of the most effective
sensors for activity recognition purposes on mobile phones.
Although it was integrated in the mobile phone with the
objective of enhancing the user experience by changing the
orientation of the display according to the orientation of
the phone held by the user [51], it can be used for activ-
ity recognition by inferring the user’s movements, such as
walking, standing, running, sitting, and even falling [98]. In
fact, activity recognition using inertial sensors has been an
active field of research [13], and recently, using accelerom-
eters on the mobile phone is receiving a lot of attention
from the research community. In Section 5, we summarize
the example studies using accelerometers for activity recog-
nition. Similarly, the gyroscope and compass can be used
for activity recognition by measuring the orientation of the
mobile phone and enhancing the results inferred with an
accelerometer.

Proximity and light sensors are also the set of sensors
embedded in phones for enhancing the user experience. For
instance, when the proximity sensor detects that the user
holds the phone close to her face, the keys are disabled
or similarly the light sensor adjusts the brightness of the
screen. For activity recognition purposes, they can be used
together with other sensors to infer more accurate activ-
ity information. For instance, the light sensor may provide
information about the environment of the user, such as being
in a dark environment, and give prior information about the
set of the activities that can be carried in a dark environment,
such as sleeping but not reading a book.

It is also possible to use a combination of sensors to
infer more detailed information about the user’s activities.
We will elaborate on such examples in Section 5.4, but to
mention, for instance in [85], both the GPS and accelerome-
ter information is collected to infer user’s movements. GPS
data can be used to identify if a user is walking or in a vehi-
cle, but it is difficult to identify whether a user is running
or biking by just looking at the speed. Combined with the
accelerometer data, it can provide more fine-grained activity
information.

2.2 Activities

In the previous section, we have listed the available sen-
sors on the mobile phone, and in this section, our aim is to
give an overview about the activities that can be recognized
using these sensors identified in the state-of-the-art activity
recognition systems on mobile phones.

When we look at the early works on mobile phone sens-
ing for activity recognition, they address coarse-grained
activities associated with location information, such as stay-
ing at home or being at the office. However, these inferences
do not tell much about the exact activity performed by the
user. For instance, being at the office is not equivalent to

working [23], or staying at home does not tell us whether
the user is watching TV or having lunch. With newer sen-
sors available on the phones, we can go beyond using coarse
locations using substitutes of the activities. For instance,
by using the information from an accelerometer, identify-
ing that the user is sitting, from a microphone, mentioning
that there is a conversation going on, and from the Bluetooth
sensor, that the user’s office contacts are around, we can pro-
vide a more detailed recognition process and conclude that
the user is sitting at a meeting in the office.

Besides the work on associating the user’s location with
an activity, some other early work focused on associating the
user’s movement with an activity. For instance, by using the
fluctuations in GSM signals, it is possible to infer whether a
user is in a vehicle or is in stationary state with around 80 %
accuracy [92]. Compared to location-based activity recogni-
tion, this provides a better fine-grained activity recognition,
but for instance, it cannot distinguish the similar activi-
ties, such that a user is running or cycling. However, using
accelerometers besides the fluctuations in wireless signals
can provide us a better performance in accurate activity
recognition.

Location- and motion-associated activity recognition are
the two dominating types of activity recognition using
mobile phones. Besides these, recent applications con-
sider using mobile phones for more complex activities,
for instance, in the field of sports: outdoor bicycling, soc-
cer playing, lying, nordic walking, rowing with the row-
ing machine, running, sitting, standing, and walking using
accelerometers in [46], or for daily activities such as shop-
ping, using a computer, sleeping, going to work, going
back home, working, and having lunch, dinner, or break-
fast in [22]. Some recent applications also consider to use
mobile phones for detecting dangerous situations such as
falls [26, 98].

In Table 1, we present sample types of activities that
are inferred in state-of-the-art activity recognition systems
on mobile phones classified into six different categories
according to their objectives.

2.3 Application Domains for Activity Recognition: Health,
Well-being, and Lifestyle Change

Activity recognition using mobile phones have been used
or have the potential to be used for various application
domains. A detailed list of applications of mobile activ-
ity recognition was presented in [57]. They classified the
application domains into three categories: (a) applications
for end users, such as fitness tracking, health monitor-
ing, and fall detection; (b) applications for third parties,
such as targeted advertising, research platforms for data
collection, and corporate management; and (c) applica-
tions for crowds and groups, such as activity-based social
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Table 1 Types of activities studied in the literature

Class Activity types

Locomotion Walking, running, sitting, standing, still,

lying

Mode of transportation Biking, traveling with a vehicle, riding

a bus, driving

Exercise Outdoor bicycling, soccer playing, biking

on a fitness bike

Health related activities Falls, rehabilitation activities, following

routines

Daily activities Shopping, using computer, sleeping, going

to work, going back home,

working, lunch, dinner, breakfast, in a

conversation, attending a meeting, using

an ATM

Usage of the phone Text messaging, making a call, browsing

the web, composing an email, using an app

networks, and place and event detection. In this section,
we summarize particularly the applications for health, well-
being, and lifestyle changes that can benefit from the mobile
activity recognition research.

The high correlation between the level of physical activ-
ity and the level of well-being is one of the key enablers
of using mobile phone-based activity recognition in health-
care applications. Common diseases such as obesity or
hypertension are all linked to physical inactivity. In the cur-
rent practice, the patients are asked to keep a diary about
their physical activities throughout the day. The success of
the diary approach depends on the user’s willingness to keep
everything written. However, an automatic activity recogni-
tion system based on mobile phone sensing can offer a more
reliable and flexible solution. Keeping precise information
on the user’s activities can potentially improve the treatment
of a disease.

Activity recognition on mobile phones can also help to
follow the daily habits and routines of users, especially the
elderly. Deviations from routines can easily be identified in
such applications, and this can assist the doctors or care-
givers to diagnose conditions that would not be observed
during routine examinations [59].

Similarly, mobile activity recognition can be used for the
rehabilitation of diseases. For instance, an activity recog-
nition system can detect if a user is correctly doing the
exercises recommended by a physician [14]. Another field
within the health-care domain would be to recognize the
relationship between a user’s physical activity level and
mental condition. Especially to the elderly experiencing
dementia risk or Alzheimer who show inconsistencies in

their daily routines. An automatic activity recognition sys-
tem, summarizing a user’s daily routine would be beneficial
to keep the progress of her mental condition and status of
the disease. One challenge about this application domain,
especially considering to work with the elderly, is that
the elderly may experience difficulties in interacting with
the smart phone interface due to their limited experience
with technology and experienced impairments at different
levels [93].

Well-being and fitness monitoring are also typical appli-
cations targeted in the mobile activity recognition studies.
The mobile phone can act as a pedometer in monitor-
ing the step count and can easily track distances traveled
and calories burned [9, 70]. Additionally, using persua-
sive techniques, mobile phones can interact with the users
to change their behavior and lifestyles in being more
active [25, 81].

Ambient-assisted living is another application domain
within the health care that can benefit from activity recogni-
tion systems. Assistance for people with cognitive disorders
or people with chronic conditions can be provided, and their
daily physical activities and routines can be monitored with
a mobile activity recognition system. Mobile phone-based
fall detection is another application domain exploited by
the researchers recently [26, 98]. Particularly in [98], we
focused on detecting falls which is considered as a major
obstacle to independent living not only for the elderly but
also to patients with neurodegenerative diseases, such as
epilepsy. When a fall is detected especially outdoors, the
proposed system also supports online location identification
using GPS available on the smart phones.

3 Process of Activity Recognition

The activity recognition process can be summarized as
determining a target set of activities, collecting sensor
readings, and assigning sensor readings to the appropri-
ate activities. In other words, it is the process of how to
interpret the raw sensor data to classify a set of activities.
Many of the activity recognition studies, not necessarily
in the field of mobile phone sensing, focus on the use of
statistical machine learning techniques2 to infer informa-
tion about the user activities from raw data. The learning
phase can be supervised or unsupervised. Supervised tech-
niques rely on labeled, i.e., associated with a specific class
or activity, sample observations to build classifiers, whereas
unsupervised techniques do not rely on labeled data. Since
an activity recognition system returns a label of an activity,

2Although activity recognition can be performed using rule-based
inference or using unsupervised techniques, it can be very challenging
to discriminate activities in this context [54].
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such as running and walking, usually they follow super-
vised approaches or semi-supervised approaches where a
part of the training data can be unlabeled. However, in
the literature, only [58] focuses on using semi-supervised
learning approaches for activity recognition on mobile
phones, whereas other studies utilize supervised learning
techniques.

Supervised learning methods are composed of two main
phases: training and classification, i.e., testing. In the train-
ing phase, machine learning approaches utilize a given set
of examples or observations, called the “training set,” to
discover patterns from the sensor readings. These exam-
ples or observations should be associated with a specific
class of activity or in other words should be “labeled” to
learn from these instances. Labeling the data in the train-
ing phase is usually a tedious and complex process. Either
the user should label each activity performed, such as keep-
ing a diary or using an automatic voice recognition system
to record each activity performed, or the activities of the
user should be recorded with a video camera, and the
activities are automatically labeled by the system. After
the collection of labeled data, usually the preprocessing
(noise removal and representation of raw data) and fea-
ture extraction (abstractions of raw data to represent main
characteristics) steps are followed. The details of prepro-
cessing and feature extraction are explained in Section 3.1.
After these steps, training models are built, and training
parameters are calculated according to the used machine
learning technique. In the following sections, we summa-
rize the main steps in the activity recognition process for the
classification phase utilizing machine learning approaches
and discuss the metrics used to evaluate the performance of
a classification technique.

3.1 Activity Classification Steps

As discussed in [13, 79], after the sensor data are col-
lected, the main steps of activity recognition include (a)
preprocessing of sensor data, (b) segmentation, (c) fea-
ture extraction, (d) optionally dimension reduction, and (e)
classification. Figure 2 shows the typical steps of activity
recognition.

The preprocessing step contains noise removal and rep-
resentation of raw data. The segmentation phase is usually
applied to continuous stream of sensor data to divide the
signal into smaller time segments since retrieving use-
ful information from a continuous stream of data is a
difficult problem. For this purpose, different segmenta-
tion methods can be applied to time-series data which
enhance the signal behavior and enable us to gather use-
ful information from continuous stream of data. The fea-
ture extraction phase includes the generation of abstrac-
tions that accurately characterize the sensor data. In other

words, large input sensor data are reduced to a smaller
set of features, called the feature vector, that represents
the original data in the best way. Dimensionality reduction
phase can be applied to remove the irrelevant features to
decrease the computational effort and memory requirements
in the classification process. The aim of dimensionality
reduction is to reduce the computational complexity and
increase the performance of the activity recognition pro-
cess. After the previous steps, the collected data can be
used directly in the classification step. Finally, the classi-
fication phase includes mapping the sensor data (i.e., the
extracted feature set) to a set of activities. The classifica-
tion technique may involve a simple thresholding scheme
or a machine learning scheme based on pattern recognition
or neural networks. As we will elaborate in Section 5.4,
common pattern recognition algorithms include decision
tables, decision trees, hidden Markov models (HMM),
Gaussian mixture models, and support vector machines.
The reader can refer to [79] for the details and compar-
isons of classification models used in activity recognition
research.

To wrap up, although the classification phase and algo-
rithms give the final decision about recognizing an activity,
each phase is equally important. Representing raw data
without loosing the useful information in the preprocess-
ing phase [13], efficient segmentation of continuous signals,
and extracting the best features that characterize raw signals
are all the key steps in delivering activity recognition results
of high performance.

3.2 Performance Parameters

Figure 3 presents the possible workload and system parame-
ters typically used in the performance evaluation of activity
recognition on mobile phones. In this figure, activities and
different users can be grouped as workload parameters,
whereas sampling rate, phone models, classifiers, features,
and segmentation type (window size) can be defined as
system parameters.

• Activity: It is the target action being performed during
tests to be recognized. Selected activity sets are also
important in terms of the accuracy of the system.

• Users: People may perform different activities differ-
ently or can perform multiple tasks at the same time
which can affect the activity recognition performance
negatively.

• Phone model and hardware: Device model is highly
important in terms of embedded sensors and compu-
tational capabilities. Sensor hardware changes accord-
ing to the model and its manufacturer which may
directly affect the performance as different sensors
may have different accuracy and noise characteristics.
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Fig. 2 Typical steps of activity
recognition

Additionally, computational power, memory, and stor-
age capabilities of the device should be sufficient to
handle the selected system parameters and test cases
appropriately.

• Sensing Modalities: Related to the device model, sens-
ing modalities are also important since not all the
phones have the same set of sensors, and the perfor-
mance of the activity recognition process may differ
according to the set of sensors used. For instance, while
only an accelerometer can be used to detect motion,
the performance can be enhanced with utilizing more
sensors such as the GPS [85].

• Classifier: Classification is the key step in the activity
recognition process. Type of selected classifiers play an
important role on the system performance.

• Features: Features are the signatures of the activities
which have an important impact to identify the activities
and affects the results directly.

• Sampling Rate: It is the rate at which the data are
gathered. It affects the capability of the accelerom-
eter to capture the necessary information for target
activities.

• Segmentation type (Window size): It is the duration in
which only data are collected without performing any
classification. Each human activity has a pattern except
the stationary activities. Because of this reason, the col-
lected data during a window play an important role to
identify activities.

3.3 Performance Measures

In the testing (classification) phase of an activity recogni-
tion system, the output classes should be compared with the
ground truth, i.e., what the user was actually doing in order
to evaluate the success of a classification scheme. In most of

Fig. 3 Workload and system
parameters
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the studies, cross validation is employed using a large part
of the collected data for training where the ground truth is
available from the labels associated with the raw data. In
some studies, training and test data may be split.

Although different studies may use different perfor-
mance measures, the research community working on
activity recognition is adopting similar performance mea-
sures: accuracy, precision, recall, confusion matrices, and
F-measure [18].

Accuracy and precision are the mostly adopted perfor-
mance measures in the literature, as outlined in Table 2.
In [43], the efficiency of performance measures for activity
recognition is discussed. Since we usually deal with unbal-
anced datasets, such that some classes may appear much
more frequent than other classes, it is argued in [43] that,
since the conventional use of precision and recall assumes
a two-class problem (i.e., a positive class and a negative
class), instead of using the precision and recall values for all
activities as a metric, the average precision and recall over
all activities should be computed.

4 Challenges of Activity Recognition with Mobile
Phones

In this section, we first investigate the specific challenges
that are only linked with activity recognition on the mobile
phone environment, then the challenges related to persua-
sion and lifestyle change and briefly mention the gen-
eral challenges of activity recognition since more detailed
challenges have been discussed thoroughly in previous
work [13].

4.1 Continuous Sensing

Continuous sensing, i.e, continuous sampling of the sen-
sors on the mobile device, is a fundamental requirement for
activity recognition applications, but it is also a fundamen-
tal challenge considering the battery limitation of the mobile
devices. For instance, in [94], it was shown that a fully
charged Nokia N95 device can support telephone conversa-
tions more than 10 h, whereas it can function only around
6 h while the GPS is turned on without taking into consider-
ation whether it is taking samples or not. While supporting
continuous sensing applications, the user experience should
not be disrupted, such that the user should be able to use the
phone for making calls, sending SMS’s, taking pictures, or
browsing on the web. In this regard, energy-efficient sensing
mechanisms are required where the sensors can be duty-
cycled for energy efficiency or turned off when not required
to take samples. Studies that tackle the continuous sensing
problem propose different approaches [24, 41, 80, 94, 96].
For instance, Wang et al. [94] propose two techniques for

reducing the battery consumption. The first one is to turn
off unused sensors automatically according to user states.
For this purpose, an XML-style state descriptor is taken as
input and used by the sensor assignment functional block.
Accordingly, selected sensors are sampled during a specific
state, whereas differently selected sensors are tracking any
possible user state transitions. The second technique simply
uses sensor duty cycling instead of continuously sampling
the sensors. Although duty cycling the sensors increases the
recognition latency, using these techniques, they show that
the battery lifetime can be improved by over 75 % compared
to an existing application, Cenceme [66].

In [60], a continuous sensing engine, named Jigsaw, for
mobile phone applications was proposed. Jigsaw sensing
engine automatically adapts the GPS sampling according to
the mobility mode of the user by the classification of user
activities in real time using the accelerometer. Based on the
user’s mobility, it switches the GPS on/off with the objec-
tive of minimizing the expected localization error. Using
a similar approach, an adaptive sensor sampling scheme
is proposed in [24], for balancing energy–accuracy–latency
trade-offs. The scheme is based on linear reward-inaction
learning. According to the events observed (interesting or
not), the sampling rate is adjusted, such that sensors are
sampled at a high rate if the observed event is interest-
ing (some audible data for the microphone sensor) and
at a if there is no event of interest (silent event detected
by the microphone). Different from these studies, in [41],
energy efficiency issues are considered for multiple concur-
rently running applications. An engine named, Symphoney,
is introduced effectively to coordinate the resource use of
concurrent contending applications as well as to maximize
their utilities even under severe resource contention.

4.2 Running Classifiers on Mobile Phones

As mentioned, algorithms used in the classification of
activities originate from statistical machine learning tech-
niques. However, a trendy algorithm [19] in machine learn-
ing research may not exhibit a superior performance in
the field of activity recognition, especially on the mobile
phone platform with limited resources, considering the lim-
ited processing power and the battery. Moreover, when
we look at the literature on activity recognition using
inertial sensors, we observe that most of the studies
first collect sensory data and apply classification algo-
rithms off-line on the collected data, using a large part
of the collected data for training. It is clear that with
the larger amount of overlap between the training data
and the testing data, such as using cross validation, better
recognition results will be achieved (unless the overfit-
ting problem occurs). Off-line processing certainly exploits
this advantage.
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Off-line processing can be used for applications where
online recognition is not necessary. For instance, if we are
interested in following the daily routine of a person, such
as in [97], the sensors can collect the data during a day;
the data can be uploaded to a server at the end of the day
and can be processed off-line for classification purposes.
However, for applications such as a fitness coach where the
user is given a program with a set of activities, their dura-
tion, and sequence, we might be interested in what the user
is currently doing and/or if he is performing the activities
with a correct sequence [97]. Therefore, online recognition
of activities becomes important, especially for real-world
personal fitness and well-being applications running on
smart phones to provide the context of the users. Figure 4
presents a comparison of off-line/online training and
classification.

Although smart phones continuously evolve in terms
of computation, memory and storage capabilities, they
are still resource-limited devices, and running a resource-
intensive classifier may not be possible, such as when
classifying audio data [51]. However, early examples of
activity recognition applications on mobile phones show
that classifiers such as decision trees, the minimum dis-
tance classifier, k-nearest neighbor (KNN) classifiers can
run on mobile phones while providing good accuracy
rates [48, 85]. Considering the resource-intensive classi-
fiers, one approach adopted in the literature is to rely
on backend servers with the uploading of sensed data to
a server and benefit from their computational resources
and download the results of the inferences. However, with
this sort of computation, it is not possible to support
real-time applications.

4.3 Phone Context Problem

One of the problems associated with mobile phone sens-
ing is the phone context problem as identified in [51]. The
phone context problem occurs when the phone is carried at
an inappropriate position relative to the event being sensed.
For instance, if the application wants to take a sample from a
light sensor when the phone is located in the pocket or in the
bag, the phone context problem is encountered. Especially
with accelerometer-based activity recognition, the location
where the phone is carried, such as in the pocket or in the
bag, impacts the classification performance [51]. In most
of the studies using inertial sensors, i.e., the accelerometer,
the phone was restricted to be carried in a particular loca-
tion by the users as we elaborate in Section 5. Recently,
in two studies, the phone context problem has been inves-
tigated [67, 73]. In [67], the authors develop a system for
automatic phone context discovery. In their three-level infer-
ence system, the first level is responsible for an inference
from the data collected by individual sensors. However,
the result of this inference may not be conclusive since
individual sensor readings may not identify the context
correctly, for instance, the conclusion of being in a dark
environment made by the camera sensor may not be cor-
rect if the camera is covered by the user’s hand. In the
second step, multisensor inference is performed, such that
the outputs of individual sensor inferences are combined.
Finally in the third level, temporal smoothing and a HMM
is applied for a final decision. The system is tested with
using only the microphone sensor and for the “in the pocket”
and “out of the pocket” cases and revealed a performance
with around 80 % accuracy in detecting the position of the

Fig. 4 Off-line/online training
and classification
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phone. In a very recent study [73], Park et al. investigated
the phone context problem, which was defined as device
pose classification in the paper, using kernel-based estima-
tion methods. Instead of using the built-in sensors available
on a smart phone, they used Nokia SensorBox (connected
via Bluetooth to the phone) including a consumer-grade
accelerometer, gyroscope, magnetometer, thermometer, and
barometer. However, only the accelerometer was utilized
in the experiments. They use of support vector machines
(SVM) and decision tree classifiers utilizing features of dis-
crete Fourier transform (DFT) of the horizontal and vertical
components of the acceleration signal as well as tilt fea-
tures derived from the gravity vector that could achieve
more than 98 % accuracy for off-line classification of poses
bag, ear, hand, and pocket. The authors also evaluated the
system performance with online recognition tests for the
walking activity, and overall, the classifier predicted true
device pose quite well.

Although the phone context problem has been attempted
to be solved by very recent studies [67, 73], there still
remains open issues such as the phone context identifica-
tion in real time including different poses and for different
activities.

4.4 Training Burden

Another challenge is about running the training phase of the
classifiers. Even though a proposed system does online clas-
sification, the training phase can be handled with off-line
processing. Usually, proper training models are being cre-
ated off-line, so that these static models can be used in an
online classification phase [88]. The off-line training phase
is not an easy task, and it is essential for an activity recogni-
tion system since such systems require large, well-defined,
and proper training sets to create appropriate models. These
training sets are collected over a long period of time (cou-
ple of days, weeks, or even years depending on the related
work) with dedicated and a sufficient number of test sub-
jects as presented in [45]. Additionally, collected datasets
can be too large to be processed online on other devices like
smart phones because of their limited capabilities. Consider-
ing these challenges, research on human activity recognition
systems explore the ways for online training.

In order to develop a real-world application where the
user installs the application and does not require to deal with
the burden of the training phase, such that the application
can be pretrained or trained quickly without the requirement
of a long training phase, and which is ready-to-use, the
research question is “Can we recognize the activities with
only a limited set of training data and even without any train-
ing data in a user-independent way?” This question has been
partially addressed in [65] aiming user-independent or lim-
ited training of proposed systems. A system called Darwin

has been proposed to decrease the training burden on users
and improve the user experience on smart phone-based on
model pooling which is simply sharing and exploiting clas-
sification models which are already built by other phones
and by other users. Using model pooling, there is no need to
generate training models from scratch. In [47], we also eval-
uated the performance of classifiers with using training data
from other users where the user’s own training data were
excluded. The results were found to be promising—giving
an insight such that the training data coming from two dis-
tinct subjects with the same physical features and using the
same phone model can be used for each other, which is an
important hint to be able to create user-independent training
datasets, as also mentioned in [65].

User-independent training was also addressed in [53],
considering diverse user populations in large-scale popular
mobile applications and the burden of training. An approach
named “community similarity networks” (CSN) was pro-
posed to incorporate interpersonal similarity measurements
into the classifier training process. Three different simi-
larity metrics which are physical, lifestyle/behavioral, and
purely sensor data driven were used, and it was shown that
the CSN approach outperforms existing approaches, such as
the single model and isolated model, in classifier training
considering the population diversity.

Another important work in this area is presented in [76].
In this work, the authors emphasize the known mistakes
and difficulties during the labeling of the training data.
It is known that collecting consistent and reliable data is
a very difficult task since some contexts may be marked
by users with wrong labels, which creates a necessity for
instructing the users before performing any training. In these
cases, although the labeled data are unreliable, they still con-
tain valuable information. For this purpose, they propose
community-guided learning which is a framework that trains
existing classifiers with unreliably labeled data submitted
by different users.

Another challenge about the training phase is labeling the
activities, which also appears as a burden on the users. As
mentioned, the user may be asked to keep a diary, or using
an automatic voice recognition system and a video record-
ing system, the activities can be automatically labeled by
the system. In this sense, the person-independent classifi-
cation systems are expected to overcome this challenge as
discussed in the previous paragraph.

4.5 Phones not Always Carried

Although people consider the mobile phone as essential
when leaving home besides a key and a wallet [11], the
phone is not always carried. For example, people often leave
the phone on the desk when at work or do not carry it
around when at home. This is not, for instance, the case with
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some other dedicated wearable sensors that are attached on
the body. However, wearable sensors are considered to be
more obtrusive than using mobile phones, and this reflects
the trade-off between these monitoring modalities. Systems
utilizing different sensing modalities and their integration
could be a topic of interest for future research.

4.6 Persuading Users

Especially in persuasive applications for a behavior or
lifestyle change, the success of the application depends
on the willingness of the user to engage. Persuasion tech-
niques such as self-monitoring, social influence, and fun
interaction are often used in the design of such applica-
tions [90]. Virtual companions [12], games [78], and social
networks [99] are commonly used to interact with the users
in mobile applications. However, understanding which types
of methods and metaphors are the most effective for various
applications and people is still under investigation. As also
mentioned in [51], metaphors to motivate users to use the
application for persuasive computing should be investigated
in more detail, possibly by interdisciplinary research teams
including psychologists.

4.7 Human Behavior

People can perform multiple tasks at the same time which
can affect the activity recognition process negatively.
Additionally, various continuous sequences of performing
tasks and their periodic variations may result in incorrect
classifications. Because of these reasons, accuracy and reli-
ability of sensor data play an important role in the activity
recognition.

5 State of the Art on Activity Recognition on Mobile
Phones

As we mentioned in Section 2.2, location- and motion-
associated activity recognition are the two dominating types
of activity recognition using mobile phones. In this section,
we first review the studies that focus on location-associated
activity recognition. Next, we focus on the studies based
on motion-based activity recognition. Finally, we review the
studies that consider different types of activity recognition
other than motion and location. Figure 5 shows the types of
activity recognition on mobile phones classified according
to their objectives.

5.1 Location-driven Activity Recognition

Before the release of smart phones equipped with a rich
set of sensors, early examples of activity recognition on

mobile phones focused on the use of location informa-
tion to detect the user activities. Location-driven activity
recognition aims to recognize activities associated to cer-
tain places [23]. In the Reality Mining Project [30], three
activities “home, work, elsewhere” were targeted using
cell tower and Bluetooth data. An HMM model, con-
ditioned on the hour of the day and day of the week,
was built, and the associated activities were recognized
with 95 % accuracy. Similarly in [36], semantic content
associated with locations were used to infer user activi-
ties, such as in shops, restaurants, recreation, government
offices, schools, and entertainment places. Location data
were collected with GPS. A very recent work that intro-
duces a generic service for indoor and outdoor detection,
named IODetector, was presented in [100]. IODetector
utilizes light sensors, magnetism sensors, and cell tower
signals to detect indoor/outdoor switching. Indoor/outdoor
knowledge is proposed as an important information for
activity recognition systems leading to more accurate
recognition.

The main drawback of using only location-driven activ-
ity recognition is the inaccurate inferences. For instance,
being at home does not mean eating or sleeping. Moreover,
activities inferred with places are usually not of inter-
est for personal health or wellness systems. However, if
location information is used with other sensory data, for
instance, using the microphone or accelerometer, it can help
to improve the activity recognition results.

Another related domain in location-driven activity recog-
nition is indoor positioning and tracking systems. For
instance, detecting patterns of wandering and their loca-
tions as well as detecting hazardous situations typically for
demented patients, such as closeness to a window, are also
important factors in monitoring the well-being of patients
especially those with cognitive disorders. Due to the lack of
reliable GPS signals indoors, in most of the studies, the use
of Wi-Fi beacons and inertial sensors are investigated for
indoor positioning. The main challenges of indoor tracking
systems are that the position of the phone, such as in a hand
or pocket, bouncing of the phone when it is in a pocket,
and receiving a phone call, may affect the sensor readings
and make the tracking challenging [56]. Although not well
linked to personal health applications, examples of indoor
positioning systems can be found in [56, 74, 89], and they
present a potential to be utilized in the health and well-being
domain.

5.2 Motion-based Activity Recognition

Motion-based activity recognition systems mostly utilize
inertial sensors, radio sensors (cellular, Wi-Fi), or other sen-
sors such as the GPS for motion recognition. In this section,
we first review the systems that utilize transceiver interfaces
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Fig. 5 Types of activity
recognition systems on mobile
phones

on the phones and, next, summarize the systems that utilize
inertial sensors, and finally look at the studies that utilize the
combination of these sensors or use other types of sensors
such as the GPS.

5.2.1 Motion-based Activity Recognition using Transceiver
Interfaces

In [92], activities of walking, driving, and staying at the
same place (dwelling) were identified using only the GSM
traces. Additionally, a GSM-based step counter was also
proposed. The principle behind the mobility mode infer-
ence is that radio signals observed from stationary sources
are fixed in time but variable in space. By observing a
series of GSM signals from a set of stable towers and cal-
culating the Euclidean distance between consecutive GSM
measurements, mode of transportation is inferred since sta-
tionary, slow and fast walking and driving show different
distance values. A boosted logistic regression technique was
used for the classification of activities. By measuring the
walking periods and assuming an appropriate step rate, the
user’s daily step count was also calculated. The perfor-
mance of the system was evaluated with three users for
1 month using the Audiovox SMT 5600 mobile platform.
The overall accuracy for the transport mode recognition
was calculated as 85 %, and the step counter reasonably
estimated the number of steps calculated by commercial
pedometers. Although a specific application was not tar-
geted in the paper, elderly care and monitoring the elderly’s

wellness through mobile phones were mentioned as suitable
applications regarding the personal health and well-being
systems.

Shakra [10] is an application for tracking and sharing
daily activity levels with mobile phones. Shakra also utilizes
GSM signal traces to detect the activities of walking, driv-
ing, and in stationary state. The system targets to track the
daily exercise activities of people and users are supported
to share and compare their activity levels with others for
motivating fitness and moderate activity. For the classifica-
tion, both an artificial neural network and an HMM were
used. The application was evaluated with three groups of
users with different activity levels, ranging between inac-
tive and highly active, to find out whether the application
increased the awareness of the users for their activity levels
and persuaded them to be more active. Overall, the HMM
performed slightly better than the artificial neural network
classification revealing an accuracy of 82 %. All of the
users were reported to be responding positively about the
system to increase their activity levels. However, as the
authors mention, it is not possible to claim that the users
would remain motivated about the system, and they men-
tion that this study shows that Shakra is usable, and, if
further, developed it can act as an effective health promotion
tool.

In [49], Wi-Fi signals were used to infer whether the user
is moving or stationary. Whereas in [71], a hybrid approach
utilizing both Wi-Fi and GSM signals were used to infer the
transportation mode.
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5.2.2 Motion-based Activity Recognition
using only Inertial Sensors

Accelerometers on the mobile phone were initially included
to enhance user experience by automatically changing
the orientation of the display according to the orienta-
tion of the mobile phone held by the user. However, as
widely adopted by the activity recognition research in
other areas, i.e. activity recognition using body-worn sen-
sors, accelerometers embedded in the mobile phone also
have the potential to recognize the user’s motion and
activities.

In [88], a classification algorithm is aimed to run on the
iPhone platform. For this purpose, three iPhone applica-
tions are developed called as iLog, iModel, and iClassify.
iLog is used for data collection of different activities in real
time. iModel is a desktop tool for learning and testing mod-
els. Data saved by iLog can be imported into iModel which
is a Java application built on the Weka machine learning
toolkit [2]. By using iModel, the labeled data can be used to
test an existing model or to learn a new model. Lastly, iClas-
sify can be used to classify walking, jogging, bicycling on a
stationary bike, and sitting activities in real time in contrast
to many studies that focus on off-line classification of the
data. In addition to iPhone three-axis accelerometer sensor,
Nike+iPod Sports Kit is used to collect data which imports
the collected data periodically to iPhone via Bluetooth con-
nection. iClassify can report activity classifications once per
second. It performs nearly 97 % accuracy in recognizing
activities.

ActiServ, a service-based recognition architecture, is pre-
sented in [16]. One of the most important features of the
architecture is that it requires minimal personalization effort
by the users, only 1-3 min of data collection per activity
seems sufficient. The performance of the system is evalu-
ated with 20 users, each user generating 2-3 min of data for
each of the activity classes, using OpenMoko Neo Freerun-
ner phone with extensive test scenarios. If the training data
of the user evaluating the system is used with the phone
located in the same position both in the training and evalua-
tion phases, then the performance of the system is reported
to be 97.3 % in terms of accuracy. If the model is trained
when the phone is in different position, then the accuracy
rates drop to 60 %. When the training data of the evaluation
user are excluded and the data from other users (actually
selected from the best matching users) is used, the accu-
racy rates are between 86 and 63.6 %. Although the data
were collected on a mobile phone platform, ActiServ is
both trained and tested off-line on backend servers. ActiServ
does not detail a target application, but the activities classi-
fied and off-line processing can be used for monitoring the
daily routine of a person, such as a personal activity diary
for a wellness application.

Probably the most common device to promote more
active life is the use of pedometers which allow for step
counting [9]. Examples of pedometer applications devel-
oped for smart phones are available in application stores.
Similarly, a step counter service was proposed in [70] whose
performance was compared with different step counting
products. The service used hill detection and threshold cal-
culation for step identification utilizing the magnitude of
acceleration and detected the orientation change to improve
the performance of recognition. The performance of the
server was evaluated with a single user by conducting walks
of 500, 1,500, and 2,500 m, and each walk was repeated
three times. According to the experimental results, the ser-
vice on the average reveals a mean error of 0.5 % compared
to the reference Nike+ sports kit. The performance was also
compared with step counting products such as the Nokia
step counter with the phone carried in different positions
(pocket, belt clip, hand, backpack), and it exhibited better
results.

In [17], instead of periodic activities such as walking,
cycling, and car driving, transitions between physical activ-
ities, particularly between sitting and standing, are targeted.
Assessment of the behavior of elderly people and preg-
nant workers facing inappropriate working conditions under
ergonomic aspects are the target stakeholders for this work.
A set of kernel functions were utilized, and cross correla-
tions with the sampled and projected signals were calculated
to detect a matching. A correlation coefficient near 1 infers
a sit-to-stand transition, whereas near −1 infers a stand-to-
sit transition. The performance of the system was evaluated
on SonyEricsson w715 phones with 12 subjects, and 70 %
average recognition rate was achieved. Although the target
for the system was the detection of inappropriate working
conditions or in support for the health conditions of the
elderly, it was not tested under the circumstances of these
applications.

In [97], instead of only focusing on the classification
performance of activities, the objective is to provide a phys-
ical activity diary, with a potential application of mobile
health care. A rich set of 15 different features (verti-
cal features, horizontal features, and cross-correlation fea-
tures) were extracted from raw acceleration signals, and
decision tree (C4.5), naive Bayes (NB), KNN, and sup-
port vector machine learning algorithms are used as the
classifiers. It was shown that the decision tree achieves
the best performance among the other classifiers, with
around 90 % accuracy. In order to create a physical activ-
ity diary, the system was used by a subject for several
months.

In a recent study, Park et al. [73] focus on the classifi-
cation of the mobile phone’s position relative to the body
and estimation of walking speed only using the accelerom-
eter. Phone position classification is used to tackle with the



158 BioNanoSci. (2013) 3:145–171

phone context problem as discussed in Section 4. Walking
speed estimation is used for health monitoring applications.
Regularized kernel methods are used for the classification
together with the features of raw acceleration data, such as
the discrete Fourier transform, horizontal, and vertical com-
ponents. The system is implemented on the Nokia N900
platform and tested with 14 subjects. The median absolute
speed error was reported to be 0.039 m/s, which amounts to
3 % of the average walking speed.

Similar to the other studies, Kwapisz et al. [50] concen-
trated on recognizing the common human activities such
as walking, jogging, ascending stairs, descending stairs, sit-
ting, and standing. They used inertial accelerometer sensor
of Android-based smart phones. This study differs from
other studies in terms of the data size collected for the
training phase which is performed by 29 different subjects.
The classification steps are performed with the help of the
Weka toolkit by using a decision tree, logistic regression,
and multilayer neural networks. They used ten-fold cross
validation for all experiments. According to the results,
multilayer perceptron achieved the best performance with
91.7 % accuracy rate.

As discussed in Section 2.3, activity recognition may
target different application domains. In this context, exam-
ples of gait analyzers have been presented in [38, 39] for
health-care and presence services. Additionally, Fontecha
et al. [34] proposed a complete elderly frailty detection
system by using accelerometer-enabled smart phones and
clinical information records of the subjects. There are many
different factors to be evaluated for frailty detection and
diagnosis. In this manner, assessment of physical condi-
tion through gait and other physical exercises is one of the
most important factors. This work presents a mobile sys-
tem to collect elderly data based on gait and balance tests.
They create instances for each subject with the combina-
tion of dispersion measures coming from accelerometer data
and risk factors from patient records. By comparing differ-
ent instances, they create an affinity tree which is used for
frailty diagnosis.

Differently from other studies, Zhixian et al. concen-
trated on energy efficiency and introduced an activity-
sensitive strategy (“A3R” - adaptive accelerometer based
activity recognition) for continuous activity recognition
in [96]. They studied the individual’s locomotive activities
such as standing, slow walk, sit–relax, sit, normal walk,
escalator-up, escalator-down, elevator-up, elevator-down,
and downstairs. The proposed system achieved an overall
energy saving of 20–25 % by adapting the accelerometer
sampling frequency and the classification features sepa-
rately for each activity in real time.

As we have summarized, most of the algorithms focus on
simple activities such as locomotion. In [29], more complex
activities are targeted to be monitored, such as cleaning,

cooking, medicating, sweeping, washing hands, and water-
ing plants, besides the simple activities, such as biking,
climbing stairs, driving, lying, sitting, standing, and walk-
ing. The activity recognition system was developed on the
Android platform. Weka machine learning toolkit was used
to test six different classifiers: multilayer perceptron, naive
Bayes, Bayesian network, decision table, best-first tree, and
K-star. Although the classification accuracies for simple
activities were found to be above 90 % except the naive
Bayes classifier, the best accuracy achieved for complex
activities was around 50 %. Simple activities could retain
their high classification accuracy even when tested together
with the complex activities.

Similarly in [95], locomotive microactivities are used
to identify semantic activities such as cooking, working,
eating, relaxing cleaning, on a break, and meeting. Using
lifestyle data with five users for 152 days, the proposed
approach is reported to achieve an average accuracy of
77.14 %. with a 16.37 % improvement compared to the one-
tier approach. The same authors investigate the recognition
of complex activities using higher order features and SVM-
based fusion mechanisms in [84]. The same dataset was
used, and they reported an average accuracy of 86.17 % for
the same set of activities.

As we mentioned in the list of challenges in Section 4,
the training phase of the algorithms using machine learn-
ing approaches creates a burden on the users. The research
community is interested in building classification models
where the activity recognition phase can be performed in a
user-independent way without the requirement of training
data collection by the user [61]. User-independent activity
recognition on mobile phones has been recently addressed
in [91]. In this work, the targeted activities are walking, run-
ning, cycling, driving a car, and idling (sitting/standing). In
the experiments, in both the training and testing phases, the
phone was carried in the pocket of the subject’s trousers.
Twenty-one features in total were extracted from the mag-
nitude of acceleration, including standard deviation, mean,
minimum, maximum, five different percentiles (10, 25, 50,
75, and 90), and a sum and square sum of observations
above/below a certain percentile (5, 10, 25, 75, 90, and
95). In order to recognize activities, a static decision tree
is first used to detect whether the user is active or inactive.
If he is inactive, then the classes to be recognized are sit-
ting/standing or driving. But if the user is active, then the
classes to be recognized are walking, running, and cycling.
The second stage is performance of both KNN and quadratic
discriminant analysis (QDA). The performance of the clas-
sifiers is tested both with off-line and online classification,
and in the off-line case, QDA revealed 95.4 % accuracy,
while KNN performed with an accuracy of 94.5 %. In the
online case, the accuracy achieved with QDA was 95.8 %,
whereas it was 93.9 % for KNN. In the online tests, seven
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subjects tested the system, and training data of three sub-
jects were excluded to make user-independent inferences.
Although the reported recognition rates are quite high, the
authors report two cases where user-independent classifica-
tion has not performed very well. The walking activity of
one of the subjects whose training data were not used was
recognized with 65.6 % accuracy when QDA was used, and
cycling activity of another subject whose training data were
not available was recognized with an accuracy of 76.3 %
using KNN. It is reported that in both cases, cycling and
walking were mixed together. Authors also report that walk-
ing is one of the most challenging activities to recognize
user-independently since different subjects have different
personal walking styles.

Although in [91] the classification phase was performed
online on the mobile platform, together with feature extrac-
tion and segmentation phases, the training phase was per-
formed off-line, similar to that in [66, 85]. In [47, 48], we
focused on online recognition of activities on smart phones
together with performing the training phase also on the
mobile platform. This work is motivated by the fact that
considering the challenge of training burden mentioned in
Section 4, research on human activity recognition systems
explore the ways for online training [31]. We also focused
on the common activities targeted in the literature: sitting,
standing, walking, biking, and running. We used the three
different classifiers naive Bayes, clustered KNN, and deci-
sion tree using mean, maximum, minimum, and standard
deviation in the feature set. These classifiers were selected
considering the limited processing and storage on smart
phones and since these classifiers and features were com-
monly used in the previous studies—using the same set
makes it easier to compare our findings with the similar
studies. Performance of the classifiers is tested with ten dif-
ferent subjects on different Android-based mobile platforms
considering the most effective system parameters like the
window size and the sampling rate. According to the results,
the clustered KNN method exhibited a much better per-
formance with an accuracy around 92 % excluding biking
and 73.4 % accuracy with biking activity. The naive Bayes
classifier performed with 48 % accuracy excluding biking
activity and 32 % accuracy including biking. On the other
hand, its performance is nearly the same as the decision
tree classifier which performed with 86 % accuracy exclud-
ing biking and 76 % accuracy with biking. Similar to [91],
we also evaluated the user independency of the system in
the training phase. When we excluded the training data of
the users in the classification phase and used only the train-
ing data from other users, the average accuracy dropped to
48 % with the decision tree algorithm including the biking
activity. However, for the users who performed the tests on
the same platform the accuracy was not affected, although
they did not use their own training data. We are currently

working on this issue to better evaluate the user indepen-
dency of activity recognition using these classifiers on the
Android-based platforms.

5.2.3 Motion-based Activity Recognition using Other
Sensors

Reddy et al. [85] proposed a different model for activity
recognition. In this study, they designed, implemented, and
evaluated a transportation mode classification system which
runs on a mobile phone by using a three-axis accelerometer
and GPS sensors. Simply, they focused on outdoor activities
and classified them into the following five groups: walking,
in stationary state, biking, running, and motorized transport.
In fact, they first considered the use of different sensors,
such as Bluetooth, Wi-Fi, and GSM cell radio. However,
experimental evaluation concluded that the most dominant
sensors in the performance improvement are the accelerom-
eter and the GPS sensors. Although the GPS sensor was
observed to be the most dominant one, it was not successful
in identifying the biking and running activities, since they
reveal similar speed patterns. To distinguish these activities
from each other, they used the acceleration sensor and could
achieve a recognition accuracy over 93 %.

Similarly in [87], a system called ambulation was pro-
posed for monitoring the mobility patterns of using the
accelerometer and GPS sensors available on mobile phones.
The system targets patients who suffer mobility-affecting
chronic diseases, such as Parkinson’s disease. Variance,
mean, and fast Fourier transform (FFT) coefficients from
raw acceleration data are used as the features together with
the decision tree classifier. Using acceleration, the system
can identify the activities of walking, running, and in sta-
tionary state. By also using the GPS sensor, additional
activities of biking and driving are also identified. The sys-
tem also displays the mobility traces of people, and through
these traces, one can easily detect anomalies in the change
of mobility behavior.

Differently from other studies, Martin et al. [62] inves-
tigated the effects of using a different set of sensors on
the overall system performance while considering different
factors. In this work, they emphasize that priori informa-
tion on the orientation and the placement of the device
relative to user’s body may enhance the results of the
system in terms of accuracy. For this purpose, they also
used proximity, light, and magnetometer sensor data in
addition to the accelerometer sensor data. The system per-
formance is evaluated by using lightweight classification
techniques such as the naive Bayes, a decision tree, and
a decision table. According to the results, a computation-
ally low-cost decision table with best suitable feature set
can achieve 88 % accuracy rate with all the sensors listed
previously.
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5.3 Activity Recognition Systems Utilizing Other Context
Information

Besides motion and location-based activity recognition sys-
tems, there are also examples where different context infor-
mation, such as ambient light, noise, and even social interac-
tions, can be used to infer activities. In this section, we first
review the studies that focus on utilizing other sensors for
more comprehensive context and activity recognition and
then elaborate on the studies with the objective of monitor-
ing the social interactions and relations between users using
smart phones.

In [94], a novel design framework, called EEMSS, for
energy-efficient mobile sensing is proposed. A hierarchical
sensor management strategy is used to recognize user states
as well as to detect state transitions. User states may contain
a combination of features such as motion (running, walk-
ing), location (staying at home or on a freeway), and back-
ground condition (loud or quiet) which all together describe
the user’s current context. The state transition system imple-
mented on Nokia N95 can currently define the following
states: walking, on a vehicle, resting, at home talking,
at home entertaining, working, meeting, in the office–
loud, in a quiet place, place speech, and in a loud place.
The sensors used for activity recognition are accelerome-
ter, Wi-Fi detector, GPS, and microphone. EEMSS is able
to detect states with approximately 92.56 % accuracy by
processing testing data off-line and improves the battery
lifetime by over 75 % compared to an existing application,
Cenceme [66].

In [66], authors present design, implementation, and
evaluation of a social networking application, called
Cenceme. Basically, users are able to share their contex-
tual information through social platforms like Facebook and
MySpace using this application. Cenceme benefits from off-
line computational powers of backend servers for training
whereas it additionally performs online classification. In
this study, the authors have focused on sitting, standing,
walking, and running activities as well as on audio info of
the environment. For this purpose, they used accelerometer,
Bluetooth, audio sensors, and GPS which are embedded in
Nokia N95. The classifiers used in this study can be grouped
as audio and activity classifiers. The audio classifier benefits
from DFT, and its feature vector consists of the mean and
the standard deviation of the DFT power. On the other hand,
feature vectors in the activity classifier are the mean, the
standard deviation, and the number of peaks per unit time.
Simple three-level decision tree performs classifications
online on the Nokia platform for identifying the activities of
walking, running, standing, and sitting states. Additionally,
backend classification derives contextual information from
collected data. The performance of the proposed system is

tested with 22 subjects over 3 weeks on the Nokia N95
platform.

In [52], the design of an automated well-being applica-
tion for the Android smart phones, BeWell, was introduced.
BeWell monitors sleep, physical activity, and social inter-
actions and gives feedback to promote better health. GPS
and accelerometer are used to monitor a person’s physical
activities, such as driving, in stationary state, running, and
walking, and microphone is used to recognize social inter-
actions by identifying voicing and non-voicing states. Sleep
durations are approximated by measuring phone usage pat-
terns, such as phone recharging, movement, and ambient
sound. BeWell also provides an ambient well-being inter-
face to give continuous feedback about a users current
well-being state. The system was tested with a single user
for a week.

Sleeping patterns and sleeping hygiene can have an
important effect on various health conditions, such as affec-
tive disorders, hypertension, and heart disease [8]. Besides
the research activities on monitoring sleeping behavior [7,
52, 72], there are also applications available in the mar-
ket [3, 4]. Mainly, the accelerometer that detect the move-
ments of the user and microphone that record ambient noise
and snoring are utilized to monitor sleeping behavior. In
some of the systems [4], the user is given feedback and
woken up in the lightest sleep phase.

Social interactions and relations between users are also
considered as important factors in well-being monitor-
ing [63, 64]. As we mentioned, in the “Reality Mining
Project” [30], co-location of Bluetooth radios on the mobile
phone were used to infer social interactions between phone
users. Gaussian mixture model (GMM) was used to detect
patterns in proximity between users and identify the type
of relationship, such as work groups. The data were col-
lected from 100 users for over the course of an academic
year, summing up to 450,000 h of information. In a simi-
lar study [82], the SociableSense platform was introduced
to monitor user interactions in office environments by
providing users a quantitative measure about their socia-
bility and that of colleagues. Colocation patterns, using
the Bluetooth sensors, and interaction patterns, using the
microphone, were used to measure the sociability of users.
Additionally, the accelerometer was also utilized to detect
the moving and stationary states of the users. The sys-
tem was tested with ten users for 10 days in an office
environment.

Emotionsense [83] is another platform that monitors the
social interactions among users using similar techniques as
in [82] but additionally recognizes the emotional states of
the users with the microphone, such as happy, sad, and neu-
tral. GMM classifiers were used in emotion recognition, and
the system was tested with 18 users for 10 days.
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5.4 Taxonomy

In this section, we provide a taxonomy of the reviewed
examples of activity recognition systems using mobile
phones according to different metrics ranging from the types
of sensors used to the number of subjects included in the
experiments. Table 2 summarizes the general aspects of the
studies that are discussed in this section, ordered by the
type of activity recognition, followed in the system, i.e.,
motion-based and location-based. Looking at the dates of
publications, most of the studies have been presented quite
recently—in the last couple of years. The most commonly
used sensor is the acceleration sensor. Wi-Fi, GPS, or any
other sensors are added to improve the sensing power and
accuracy of the results. Sitting, standing, walking, running,
driving, and bicycling are the common activities being tar-
geted to be recognized in the applications. There are also
other studies which target to recognize contextual informa-
tion, such as location and environmental audio data, of the
users as in [94].

From the perspective of personal health and well-being
systems, most of the studies target applications such as fit-
ness applications or tracking of daily activities. In earlier
studies, the classification algorithms are implemented on
Nokia N95 which is one of the first mobile phones with
sensing capabilities. In the recent studies, Android phones
are commonly utilized. Very diverse set of classifiers (deci-
sion tree seems to be the most common one), and features
have been used in the papers with different number of test
subjects that make it difficult to compare the performance
of the studies even those performed with the same set of
activities. As we discuss in Section 6, the collection of open
datasets is required for benchmarking. Additionally, the
number of test subjects in most of the studies is quite lim-
ited, even in some of them, less than ten test subjects were
included. This makes it difficult to generalize the findings
of these studies. Accuracies differ between approximately
80 to 97 % depending on the set of activities used and the
processing techniques.

6 Open Issues and Future Research Directions

In this paper, we have provided a review of existing activ-
ity recognition systems on mobile phones. As can be seen
from the date of publications in the list of references, it
has become a quite hot topic in the recent years with the
release of smart phones equipped with a variety set of sen-
sors. However, there are still significant open issues, such as
the recognition of composite activities rather than locomo-
tion activities, which require further research. Moreover, the
current performance results can be improved and extended.

In this section, we present a list of some possible future
research directions.

• From Locomotion Activities to Complex Activities:
Most of the studies infer locomotion activities, such as
walking and running. However, the link between these
basic activities and more complex activities and the
context information of the user is weak. For instance, it
is rather straightforward to detect if the user is running,
but inferring if the user is running away from danger or
jogging in a park is different [40]. Although some initial
work [29, 95] attempted to address this issue, recog-
nition of more complex activities and mapping these
activities to the application domains where this activity
information can be useful should further be explored.

• Fusing Sensor Information for More Accurate
Context Recognition: The most common sensor used in
the presented studies is the acceleration sensor, whereas
in some of the studies, the GPS and microphone also
accompany the accelerometer. Which sensors should be
used together for which types of target applications for
better context recognition should be explored. Besides
the embedded sensors in the mobile platform, external
sensors, such as the ones measuring physiological infor-
mation attached to the user body, can also be utilized, or
the ambient sensors, such as the ones deployed in smart
homes for user behavior recognition [44], can be used
together with the mobile phone sensors for a complete
user behavior recognition.

• Continuous sensing and inference duty cycling: As
mentioned in Section 4, continuous sensing is both a
requirement and also a challenge for mobile activity
recognition systems. The sensor sampling should be
adapted while considering the battery lifetime and infer-
ence accuracy trade-offs. Although some initial work
has been presented [24, 41, 60], intelligent mecha-
nisms for duty cycling of sensor sampling are required
to be further investigated so that while supporting
continuous sensing applications, the user experience
is not disrupted, and battery lifetime is not seriously
affected.

• User-Independent Systems: The data collection and
labeling in the training phase of the supervised machine
learning algorithms are challenging tasks and may
decrease the adoption of the activity recognition sys-
tems. Hence, user-independent systems with a high
recognition rate should further be explored for the
success of these systems. Moreover, the use of unsu-
pervised learning techniques can also be investigated
although it is a challenging task.

• Group Activity/Behavior Understanding: Most of
the studies propose to recognize the activities of
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individuals from the sensing data. In [86], body-
worn sensors were used to recognize group activ-
ities, such as people walking together, queuing
on a line. Accelerometers on mobile phones can
also used for distributed activity recognition. For
instance, people running together can be identi-
fied using the acceleration and Bluetooth (for prox-
imity detection) sensors available on the phones.
This open topic should further be investigated
for different application domains utilizing different
sensors.

• Open Datasets: One of the fundamental difficulties in
activity recognition research is the challenge of compar-
ing the results of different proposals, since they are usu-
ally carried with different number of people, different
activities, and different mobile platforms. There is an
urgent requirement for the collection of open datasets.
Although examples of mobile datasets exist, such as
Reality Mining [30] and Nokia-Idiap [45] datasets, they
do not utilize the sensors, especially the acceleration
sensor, for activity recognition. Small datasets such as
the CenceMe [66] also exist, but they do not provide
ground truth for performance analysis.

• Persuasion Methods: As we mentioned in Section 4,
finding efficient ways for persuading users for a
behavior change is important, especially in health-care
and wellness domains. Finding efficient methods and
metaphors [32] to motivate the users is still under
investigation.

• Phone Context Problem: The location and the orien-
tation of the phone where it is carried is a fundamen-
tal challenge in mobile activity recognition. Although
the phone context problem has been attempted to be
solved by very recent studies [67, 73], there still remain
open issues such as the phone context identification
in real time including different poses and for different
activities (In [73], real-time pose recognition was only
tested with the walking activity).

• Online Classification and Training: Most of the pre-
sented studies benefit from off-line classification meth-
ods where the data are collected on the mobile phone
but trained and classified off-line on a a backend server.
In order to develop real-world applications, classifi-
cation of activities should be performed online on
the mobile platform especially for health and well-
being applications. Performance of the classifiers uti-
lized in the presented papers should also be evaluated
with online recognition. Moreover, in an ideal sys-
tem, the training of the classifiers can continuously be
improved as long as the user collects data. For instance,
using active learning approaches [58], the user can be
queried to label the data to improve the recognition
rates.
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• Security and Privacy Threats from Sensors: Related
to security, in [20, 68], it is shown that the location of
screen taps on smart phones can be identified from the
readings of motion sensors, such as by the accelerom-
eter and gyroscope. Using this information, an attacker
can monitor user’s inputs, such as keyboard presses and
icon taps. Hence, it is an open field how to address the
threats arising from the unrestricted access to motion
sensors by the activity recognition systems. Similarly,
privacy emerges as a big concern in activity recognition
applications due to the potential of collecting personal
data, particularly if the data reveal a users location and
speech [51]. This raises the requirement for developing
suitable privacy-preserving mechanisms [28].

7 Conclusion

In this paper, we provided a review of the state-of-the-art
studies in activity recognition on mobile phones, especially
targeting health-care and well-being applications. By pro-
viding background information on the types of sensors used,
targeted activities, performance metrics, and the steps of
the activity recognition process, we aimed to present a gen-
eral snapshot of the problem of activity recognition. We
identified the fundamental challenges of activity recognition
especially on the mobile platform such as the challenge of
continuous sensing and running classifiers on the phones,
considering the limited resources available on the phones.
Following the challenges identified, we explored the recent
studies on the topic and summarized the existing work with
a taxonomy. According to this survey and taxonomy, we
identified that most of the proposals use off-line training
and classification, that simple activities of locomotion are
usually targeted, and that they are usually user-dependent
systems. Along with these lines, we presented a list of
open topics for further research such as fusing information
from different sensors for better context recognition, devel-
oping user-independent systems to eliminate the training
burden, and compiling open datasets to compare the results
of different proposals.
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