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Abstract
This paper introduces an optimization approach for the probabilistic design of multi-
band power system stabilizers, considering demand uncertainties. The primary 
objective is to minimize the sum of central gains for each multi-band structure. The 
approach incorporates inequality constraints to manage parameter bounds and to 
ensure the probabilities of achieving security (based on the minimum damping ratio) 
and stability (based on the spectral abscissa). To address this complex problem, 
particle swarm optimization is proposed in conjunction with the two-point estimate 
method (2PEM) for probabilistic small-signal analysis. The 2PEM facilitates the 
use of a limited set of samples, enhancing efficiency. The efficacy of this approach 
is demonstrated through results obtained for a Brazilian test system and the New 
England test system, validated using Monte Carlo simulation. These results confirm 
both the accuracy and computational efficiency of the proposed method. Addition-
ally, time-domain nonlinear simulations affirm the system’s stability under large 
perturbations.

Keywords Multi-band power system stabilizers (MB-PSS) · Probabilistic tuning · 
Two-point estimate method (2PEM) · Monte Carlo simulation · Uncertainty
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D-SSSA  Deterministic small-signal stability assessment
ESS  Energy storage system
FACTS  Flexible AC transmission systems
FFOA  Fruit fly optimization algorithm
FO  Firefly optimization
GA  Genetic algorithm
LFO  Low-frequency oscillations
LHS  Latin hypercube sampling
MB-POD  Multi-band power oscillation damper
MB-PSS  Multi-band power system stabilizer
MCS  Monte Carlo simulation
MICA  Modified imperialist competitive algorithm
MRAC   Model reference-based adaptive control
PDF  Probability density functions
PSO  Particle swarm optimization
P-SSSA  Probabilistic small-signal stability assessment
SG  Sychronous generator
SSSA  Small-signal stability assessment
STATCOM  Static synchronous compensators
VSC-HVDC  Voltage source converters based high voltage direct current systems
WADC  Wide area damping controller
WAMS  Wide area measurement systems
WG  Wind generator

1 Introduction

1.1  Motivation

Angular Small-Signal Stability Assessment (SSSA) studies Low-Frequency Oscilla-
tions (LFO) that emerge from unbalanced torques in synchronous generators follow-
ing minor perturbations such as load and generation changes. These oscillations can 
reduce the capacity to transfer power between areas, potentially leading to blackouts 
[1]. Various control structures can mitigate LFO.

The first is Conventional Power System Stabilizers (CPSS), implemented in syn-
chronous generators to introduce a damping torque component through modulation 
of the excitation voltage [2–4]. CPSS, comprising stages of gain, washout filter, and 
lead lag blocks, are effective in damping local modes (1–2 Hz) and can damp inter-
area modes (0.1–1 Hz) with coordinated design [5].

However, the coordinated design of multiple CPSS can be impaired by market 
issues [6], and therefore conventional power oscillation dampers (CPODs) fitted 
on Flexible AC Transmission Systems (FACTS) are a secondary strategy to damp 
the LFO through voltage or power modulation. In [7], the CPOD parameters in the 
static voltage compensators (SVC) are optimized using the Seeker optimization 
Algorithm.
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The development of Wide-Area Measurement Systems (WAMS), providing 
phasor measurements, has enabled remote signals for LFO damping [8]. Remote 
signals enhance the observability of oscillation modes. Reference [6] presents 
a Linear Quadratic Regulator-based approach to design Wide Area Damping 
Controller (WADC) parameters, a central controller using remote WAMS signals 
for LFO damping. In [9] a method is proposed to identify the most effective 
input–output pairs for WADC to maximize oscillation mode damping, and [10] 
addresses tuning of WADC parameters to mitigate the impact of remote signal 
channel failures.

Introduced in the early 2000s for the Hydro-Québec system, Multi-Band Power 
System Stabilizers (MB-PSS) represent another control structure for LFO damp-
ing [11]. MB-PSS consists of three bands that target specific frequency ranges: low 
(0.01–0.1 Hz for global modes), intermediate (0.1–1 Hz for inter-area) and high fre-
quency (1–10 Hz for local modes). Each band features differential filters with gain, 
lead-lag blocks, and a hybrid block, exhibiting symmetric gain around central fre-
quencies and gain attenuation above 10 Hz to minimize issues such as PSS satura-
tion and noise [12, 13].

Most of the CPSS, CPOD and MB-PSS model tuning methods rely on determin-
istic analysis, assuming known loads and renewable generation sources [14]. How-
ever, with increasing weather dependency and integration for decarbonization [15, 
16], uncertainty levels in power systems are rising, necessitating controllers’ design 
tools that can accommodate these uncertainties [17]. This requirement is particu-
larly evident with the recently proposed MB-PSS, where most parameter design 
approaches remain deterministic.

1.2  Literature review

1.2.1  Multi‑band power system stabilizer applications

MB-PSS was initially proposed for synchronous generators in the Hydro-Québec 
system in [11]. In [18], a heuristic technique focusing on central frequencies and 
gains was introduced. An extensive performance comparison between MB-PSS and 
the accelerating power-based PSS (PSS2B) is presented in [12]. In [19] an optimi-
zation approach, solved by differential evolution, is proposed for the design of the 
MB-PSS parameter, aiming to minimize the quadratic error of the angular speed. 
In [20] a combination of the culture Algorithm, particle swarm optimization, and 
coevolutionary Algorithm is suggested for the design of the MB-PSS parameters to 
minimize the integral of the absolute time-weighted error of the angular speed. The 
Steepest Descent Method for optimizing MB-PSS parameters is employed in [21]. A 
gradient-based nonlinear optimization algorithm for MB-PSS tuning is proposed in 
[22].

The Multi-Band Power Oscillation Damper (MB-POD) is introduced in [23] with 
the same structure as MB-PSS for installation in Static Synchronous Compensators 
(STATCOM) and SVC, enhancing voltage stability and LFO damping using Wide-
Area Measurement Systems signals. An MB-PSS based on remote signals from 
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Wide-Area Measurement Systems for synchronous generators is proposed in [24]. A 
hybrid optimization algorithm combining the steepest descent method and the grav-
ity search algorithm is presented in [25] to maximize the damping of LFO using 
MB-PSS.

In [26] a modified particle swarm optimization is suggested for the MB-PSS 
design by minimizing the integral of the time-weighted absolute error of the angu-
lar speed. An MB-POD is proposed to modulate the suspeptance of SVC in [13] 
to maximize the damping of LFO. Adaptive control based on model reference 
(MRAC) for the MB-PSS design is introduced in [27]. An analytical pole placement 
approach is proposed using the Newton–Raphson method for the MB-PSS design in 
[28]. The role of MB-POD in STATCOM in improving primary frequency control 
in systems with high penetration of wind energy is investigated in [29]. The Interior 
Point Method is used in [30] to design the MB-POD parameters for STATCOM to 
damp the LFO. In [31], a hybridization of particle swarm optimization with pattern 
search is proposed for the MB-PSS design. The Mayfly Optimization Algorithm for 
designing MB-POD for SVC is suggested in [32]. Lastly, [33] presents an MRAC-
based MB-POD for wind generators to damp the LFO. Table 1 summarizes the pub-
lications addressed here on the multiband control structure.

1.2.2  Designing power system stabilizers using probabilistic methods

The approaches for MB-PSS tuning, as described in Table  1, are deterministic, 
developed within the Deterministic Small Signal Stability Assessment (D-SSSA) 
framework. These approaches work assuming that the loads and generations from 
renewable sources are known to evaluate security and stability through modal 
analysis [4]. To meet the security requirement, it must be ensured that the minimum 
damping ratio in closed-loop operation is at least a certain level (for example, 
10%, as suggested in [34]). The stability requirement is fulfilled by ensuring that 
all eigenvalues in closed-loop operation lie on the left side of the complex plane, 
determined by the spectral abscissa [4]. However, these assumptions may not always 
align with real-world scenarios, necessitating the application of Probabilistic SSSA 
(P-SSSA).

P-SSSA involves estimating the statistical values (means and standard deviations) 
of the output variables (minimum damping ratio and spectral abscissa) based on the 
means and standard deviations of input variables (loads and generations). In the lit-
erature, three types of methods are recognized to calculate these statistical variables 
for the outputs: (i) numerical, (ii) analytical, and (iii) approximate [17, 35].

Numerical methods for P-SSSA include, but are not limited to, Monte Carlo Sim-
ulation (MCS), Quasi-Monte Carlo Simulation (Quasi-MCS), and Latin Hypercube 
Sampling (LHS). MCS involves using a large set of probabilistically defined sam-
ples to calculate the statistical variables of the outputs. Although its results are con-
sidered benchmark, the method is computationally intensive. Applications of these 
numerical approaches for the assessment or design of conventional Power System 
Stabilizers (PSS) or Power Oscillation Dampers (POD) within the P-SSSA frame-
work are proposed in various studies.
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In [36], Quasi-MCS is applied to evaluate P-SSSA systems with the integration 
of plug-in electric vehicles (PEVs). Detailed modeling of PEVs has been found to 
be required for a proper analysis. Simulations carried out for two-area 4-machine 
and New England 10-generator 39-bus systems indicated that the Quasi-MCS pro-
vided errors around 40% compared to the MCS (with a reduced set of samples, 
which provided errors ranging from 34 to 112%). In [37], the MCS is used to assess 
the P-SSSA of the IEEE 16-generator test system, considering three load levels (low, 
mid, high). The main goal is to generate a set of samples based on wind farm gen-
eration levels, calculate the Probability Density Function (PDF) of critical eigen-
values, and optimize the PSS parameters through the Genetic Algorithm. Another 
application of MCS is presented in [38]. It focuses on optimal probabilistic PSS tun-
ing considering uncertainties in renewable energy and power load. Simulations con-
ducted for the New England New York test system have shown that the deterministic 
framework tends to be too conservative because the solutions obtained for a par-
ticular operating state are assumed to remain satisfactory when the analysis extends 

Table 1  Publications regarding multi-band control structures

Year Approach Tuning approach Controller References

2000 Deterministic – MB-PSS SG [11]
2003 Deterministic Heuristic MB-PSS SG [18]
2005 Deterministic Heuristic MB-PSS SG [12]
2012 Deterministic Differential evolution MB-PSS SG [19]
2013 Deterministic Culture Algorithm,

Particle Swarm Optimization
Coevolutionary Algorithm

MB-PSS SG [20]

2013 Deterministic Steepest Descent MB-PSS SG [21]
2015 Deterministic Gradient MB-PSS SG [22]
2017 Deterministic Gradient MB-POD STATCOM

MB-POD SVC
[23]

2018 Deterministic Particle Swarm Optimization MB-PSS SG [24]
2018 Deterministic Steepest Descent Method

and Gravitational Search Algorithm
MB-PSS SG [25]

2018 Deterministic Particle Swarm Optimization MB-PSS SG [26]
2019 Deterministic Particle Swarm Optimization MB-POD SVC [13]
2020 Deterministic Model Reference-based

Adaptive Control (MRAC)
MB-PSS SG [27]

2020 Deterministic Analytical Pole Placement
using Newton–Raphson

MB-PSS SG [28]

2020 Deterministic Gradient MB-POD STATCOM [29]
2020 Deterministic Interior Point Method MB-POD STATCOM [30]
2022 Deterministic Particle Swarm Optimization

and Pattern Search
MB-PSS SG [31]

2023 Deterministic Mayfly Optimization Algorithm MB-POD SVC [32]
2023 Deterministic MRAC MB-POD WG [33]
2024 Probabilistic Particle Swarm Optimization MB-PSS SG Proposed
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to other operating states. Finally, the LHS is integrated with the differential evolu-
tion method in [39] to design PSS for wind and synchronous generators, considering 
remote signals and uncertainties. The results for the two-area system and the New 
York and New England Interconnected Power Systems show 90% of reproducibility 
in a reduced computational time compared to the MCS.

Analytical methods such as the cumulative method, based on linearized models, 
offer results with reduced computational time. However, the process of lineariza-
tion may introduce susceptibility to errors. Applications of these analytical methods 
in the P-SSSA context have been explored in various studies. In [14], it was dem-
onstrated that the stochastic output of the wind farm deteriorates the probabilistic 
small-signal stability of power systems. To solve this problem, the authors proposed 
the coordinated design of power system stabilizers (PSS) and static VAR compensa-
tor damping controllers (SVC). The solution was obtained using a modified fruit fly 
optimization algorithm (MFOA) and the Cumulant method, and case studies were 
conducted for the two-area test system. In [40], an approach to maximize the prob-
abilities of security and stability is proposed by using differential evolution for opti-
mization and the Taylor series for probabilistic analysis. Simulations for the three-
machine power system and the New England test system have shown that DE is not 
remarkably sensitive to its control parameters over specified ranges.

Gurung et  al. proposed a series of works applying the Cumulant method to 
address uncertainties during controller design. The initial observation focuses on 
the reduced computational effort required to treat uncertainties (estimating the prob-
abilities of security maximized during the design process). In [41], the Bat Algo-
rithm is applied to design controllers for synchronous generators and wind genera-
tors, demonstrating its superiority over CS, FO, and PSO. In [42], a Directional Bat 
Algorithm is used to design controllers for synchronous generators, presenting bet-
ter results than the conventional Bat Algorithm. Damping controllers for synchro-
nous generators and Energy Storage Systems (ESS) were tuned in [43], showing the 
promising results of ESS in damping low-frequency oscillations. Finally, damping 
controllers for wind and solar generators were investigated in [44], indicating that 
the high penetration of photovoltaic systems can improve Probabilistic Small-Signal 
Stability when properly designed.

Approximate methods provide an effective balance between accuracy and 
computational efficiency. This is largely due to their reliance on a smaller, 
deterministically calculated set of data to estimate the statistical variables of the 
outputs. A notable example is the Two-Point Estimate Method (2PEM), introduced 
in [45]. The 2PEM simplifies the estimation process by replacing uncertain input 
variables with deterministic points strategically positioned on both sides of their 
mean values.

The first application of 2PEM in the P-SSSA context was presented in [46], 
where no design was carried out, and uncertainties in power loads were simulated 
for the 9-bus 3 generator system, showing a computational gain compared to MCS. 
Although no design was carried out, the uncertainties of wind speed and power load 
were addressed in [47]. Simulations with the New England 39-bus system demon-
strated the effectiveness of 2PEM in assessing the P-SSSA compared to the MCS. 
In [48], the design and implementation of a probabilistic coordinated approach is 
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proposed for power systems with synchronous generators (SG), DFIGs, and FACTS 
devices. An optimization approach is formulated to maximize the probabilities of 
security and stability, and it is solved by employing a modified Imperialist Com-
petitive Algorithm together with 2PEM (to perform the P-SSSA). The results of the 
modified 39-bus New England power system show the superiority of the proposed 
probabilistic approach over particle swarm optimization, the genetic algorithm, and 
the standard imperialist competitive algorithm.

Table  2 summarizes recent publications in the context of P-SSSA. As one can 
see, most P-SSSA applications consider conventional structures for PSS and POD.

1.3  Contributions

An examination of Tables 1 and 2 reveals a notable omission in the literature: the 
probabilistic design of MB-PSS has not been extensively explored. This paper aims 
to address this gap with the following contributions.

• The development of an optimization approach aimed at minimizing the sum of 
gains of the MB-PSS in synchronous generators. This approach incorporates ine-
quality constraints to ensure that the probabilities of meeting security (minimum 
damping ratio) and stability (spectral abscissa) requirements are at least equal to 
a predetermined confidence level.

• The application of PSO [51] is proposed for solving the optimization problem, 
where each individual in the PSO represents a potential solution comprising the 

Table 2  Publications on recent P-SSSA

Year Probabilistic method Optimal tuning? Controller References

2007 2PEM Only assessment – [46]
2008 Taylor series DE CPSS SG [40]
2012 2PEM Only assessment CPSS SG [47]
2013 Quasi-MCS Only assessment CPSS SG [36]
2014 MCS GA CPSS SG [37]
2015 Cumulant FFOA CPSS SG, CPOD SVC [14]
2016 LHS DE CPSS SG, CPOD WG [39]
2019 Cumulant BA, CS, FO, PSO CPSS SG, CPOD WG [41]
2019 2PEM MICA CPSS SG, CPOD WG

CPOD STATCOM
[48]

2020 Cumulant DBA CPSS SG [42]
2020 Cumulant FO CPSS SG, CPOD ESS [43]
2020 MCS CCA CPSS SG [38]
2021 Cumulant BA CPOD WG, CPOD PV [44]
2022 MCS Only assessment VSC-HVDC [49]
2024 Series expansion Only assessment PSS-SG [50]
2024 2PEM PSO MB-PSS SG Proposed
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central gains and frequencies of the MB-PSS in synchronous generators (SG). 
The evaluation of each individual is conducted within a P-SSSA framework, uti-
lizing the 2PEM. This approach significantly reduces the computational burden 
associated with the assessment.

This is the first study to address the probabilistic design of MB-PSS employing the 
2PEM. The results of the Southeastern Brazil and New England test systems [52] 
are validated using Monte Carlo simulations and time domain simulations.

1.4  Paper organization

This paper is structured as follows. Section  2 introduces preliminary concepts 
related to the MB-PSS model and the P-SSSA, utilizing both MCS and the 2PEM. 
Section 3 details the proposed probabilistic design methodology for MB-PSS, incor-
porating an optimization approach resolved using particle swarm optimization and 
2PEM. Section 4 assesses the effectiveness of this approach using the Southeastern 
Brazil and New England test systems [52]. The conclusions drawn from this study 
are presented in Sect. 5. Additionally, Appendices A and B provide data on the test 
system and a deterministic approach for comparative purposes.

2  Preliminary concepts

2.1  Multi‑band power system stabilizer

Figure 1 presents the simplified representation of the MB-PSS. It can be seen that 
the three bands are well separated with their central frequencies and central gains. 
Each band is associated with a specific oscillation mode: (i) low-frequency band 
for global modes (in red—0.01–0.1 Hz), (ii) intermediate-frequency band for inter-
area modes (in green—0.1–1 Hz), and (iii) high-frequency band for local modes (in 
blue—1–10 Hz) [12, 18].

According to [18, 28], four tunable parameters define the structure depicted in 
Fig. 2: 

1. central frequencies for low ( FL ), intermediate ( FI ), and high ( FH ) bands;
2. gains at central frequencies for low ( KL ), intermediate ( KI ), and high ( KH ) bands;
3. global gain ( KG).

These parameters allow for the calculation of gains and time constants in Fig.  2 
employing (1)–(5). These equations are associated with the low-frequency band and 
can be extended to other bands. The constant R is set to 1.2 and controls the band-
width. Finally, the transducers in Fig. 3 obtain the signal required at the input of the 
MB-PSS ( Δ�L−I and Δ�H ) [12].
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(1)TL2 = TL7 =
1

2 ⋅ � ⋅ FL ⋅

√

R

(2)TL1 = TL2∕R

(3)TL8 = TL7 ⋅ R

(4)KL1 = KL2 =
R2 + R

R2 − 2R + 1

(5)KL11 = KL17 = 1

Fig. 1  Simplified representation of the MB-PSS
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Fig. 2  Simplified structure of the MB-PSS

Fig. 3  High and low-frequency transducers of the MB-PSS

Fig. 4  Feedback procedure
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2.2  Deterministic small signal stability analysis

Small signal stability analysis (SSSA) employs linearized equations to represent the 
dynamics of the power system. These equations are formulated in a state-space model 
[4] and are analyzed in two distinct operating modes: open-loop (without MB-PSS) and 
closed-loop (with MB-PSS). Equation (6) provides the state-space representation for 
the open-loop operation mode. Furthermore, the transfer function in the open-loop fre-
quency domain ( TFO ) can be calculated as defined in Eq. (7) [53]. Figure 4 illustrates 
this transfer function and includes the transfer function for the Multi-Band Power Sys-
tem Stabilizer (MBPSS(s)), calculated according to Figs. 2 and 3.

where:

• AO , BO , and CO are the state-space, input, and output matrices respectively;
• Δx represents the vector of states composed of angular speeds, internal angles, 

internal voltages, and field voltages. Similarly, Δu denotes the vector containing 
input values, specifically ΔVREF , while Δy is the vector associated with output vari-
ables, in this case, Δ�pu.

The closed-loop state space representation, as shown in (8), is derived from a feed-
back representation depicted in Fig. 4. Similarly, a transfer function for the closed-
loop operation is formulated and found in (9).

where Δẋ includes the state variable of MB-PSS.

From the closed-loop state space representation, it is possible to obtain m eigenval-
ues (from matrix AC in (8)) or m roots from the denominator of TFC(s) . For each pair 
of complex eigenvalues (or root) given in (10), it is possible to calculate a damping 
ratio according to (11).

Defining the minimum damping ratio and the spectral abscissa is essential to assess 
security and stability from the small-signal stability point of view. The minimum 

(6)
Δẋ = AOΔx + BOΔu

Δy = COΔx

(7)TFO(s) = CO ⋅

(

sI − AO

)−1
⋅ BO

(8)
Δẋ = ACΔx + BCΔu

Δy = CCΔx

(9)TFC(s) = CC ⋅

(

sI − AC

)−1
⋅ BC

(10)�i =�i ± j�i

(11)
�i =

−�i
√

�2
i
+ �2

i
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damping ratio is the minimum value for all the calculated damping ratios. The spec-
tral abscissa is the largest one of the real parts of the system’s eigenvalues [54]. The 
system is stable when all �i are negative and �i are positive [4]. The minimum damp-
ing ratio �min and the spectral abscissa �max are calculated according to (12).

In power system operation, we say that the power system is secure when its mini-
mum damping ratio �min is greater than or equal to a security level (10%, for exam-
ple) [34]. The pseudocode used for the Deterministic Small Signal Stability Analy-
sis is presented in Algorithm 1.

Algorithm 1  Pseudocode for the Deterministic SSSA

2.3  Probabilistic model of loads

In the probabilistic analysis performed in this paper, active and reactive power 
loads are random input variables X following a normal distribution as given in 
(13) [17]. The vector with mean values ( X mean ) and the covariance matrix ( PX ) 
are presented in (14).

where N denotes the normal distribution.

(12)
�max = max

(

1,… , �i,… , �m
)

�min = min
(

1,… , �i,… , �m
)

(13)X ∼ N
(

X mean ,PX

)
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where k = 1,… , nb.
Taking into account the nb load nodes, the dimensions of X mean and PX are 

( 2nb × 1 ) and ( 2nb × 2nb ), respectively.

2.4  General formulation of the probabilistic small signal stability analysis

The probabilistic small-signal analysis in this paper can be seen as a multivariable 
nonlinear transformation given in (15), being the output vector Y composed of the 
minimum damping ratio ( �min ) and the spectral abscissa ( �max ). In this case, the cal-
culated mean vector ( Y mean ) and the covariance matrix ( PY ) will be given as in (16).

The most widely used technique to solve (15) is Monte Carlo Simulation, whose 
pseudocode is given in Algorithm 2. It is based on a set of samples whose structure 
is depicted in Fig. 5.

Algorithm 2  Pseudocode for the Probabilistic SSSA through the MCS

(14)

X mean =

[

�P
dk

�Q
dk

]

PX =

[

�2
Pdk

0

0 �2
Qdk

]

(15)Y = g(X)

(16)

Y mean =

[

��min

��max

]

PY =

[

�2
�min

0

0 �2
�max

]
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2.5  Probabilistic small signal stability analysis using the two‑point estimate 
method—2PEM

A significant challenge with Monte Carlo simulation is the need for many sam-
ples to solve (15). An approximate method such as the Two Point Estimate 
Method (2PEM) is advantageous in alleviating the computational demand. 
The 2PEM simplifies the process by substituting uncertain input variables 
with deterministic points positioned on either side of their mean values. This 
approach enables the application of the deterministic procedure outlined in 
Algorithm 1. Consequently, the Deterministic SSSA, as discussed in Sect. 2.2, 
is executed twice for each uncertain variable: once using a value below the 
mean and then using a value above the mean, while maintaining other variables 
at their mean values. This section introduces the algorithm and the fundamental 
formulation of the 2PEM. Additional information and elaborations are available 
in [17, 56–58]. The pseudocode for the probabilistic SSSA using 2PEM is pre-
sented in Algorithm 3.

Fig. 5  Sample structure example for a system with 3 nodes



Optimal probabilistic design of multi‑band power system…

Algorithm 3  Pseudocode for the Probabilistic SSSA through the 2PEM
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3  Proposed approach

Two critical aspects must be considered during the design of power system stabiliz-
ers. Firstly, the magnitude of the gains should not be large to prevent saturation of 
the output of the excitation system [54]. Secondly, it is imperative to address secu-
rity and stability requirements in the presence of uncertainties. In such scenarios, the 
probabilities of meeting these requirements should be at least equal to a predeter-
mined confidence level [14].

3.1  Optimization problem

The proposed optimization approach is detailed in (22)–(25). Equation (22) 
describes the objective function, which is designed to minimize the sum of gains, 
thereby reducing the control effort. The probability of meeting the security require-
ment Pr{� min ≥ �d} must be at least 95%, as specified in (23). Equation (24) ensures 
that the probability of stability, indicated by the spectral abscissa Pr

{

𝜎 max < 0
}

 , is 
also at least 95%. Lastly, the optimization variables, as outlined in (26), are required 
to remain within the specified limits, as defined in (25) [59].

(20)

E
(

�min

)

=

m
∑

k=1

2
∑

i=1

(

Pk,i ⋅ �
k,i

min

)

E
(

(�min)
2
)

=

m
∑

k=1

2
∑

i=1

(

Pk,i ⋅ (�
k,i

min
)2
)

E
(

�max

)

=

m
∑

k=1

2
∑

i=1

(

Pk,i ⋅ �
k,i
max

)

E
(

(�max)
2
)

=

m
∑

k=1

2
∑

i=1

(

Pk,i.(�
k,i
max

)2
)

(21)

��min
= E

(

�min

)

��min
=
√

E
(

(�min)
2
)

− �2
�min

��max
= E

(

�max

)

��max
=
√

E
(

(�max)
2
)

− �2
�max
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where:

• i = 1,… , npss , being npss the number of MB-PSS to be tuned. Each PSS follows 
the structure defined in Fig. 2.

• �d is the minimum damping ratio to ensure security (here, �d = 10%).
• the probabilities are calculated based on the means and standard deviations defined 

in (16), according to [60].

3.2  Fitness function calculation

The optimization problem, as formulated in (22)–(25), presents complexities that 
make it challenging to solve using gradient-based methods. In contrast, population-
based metaheuristic algorithms offer high-quality solutions in a reasonable compu-
tational time. In this context, the particle swarm optimization method [51] is used. 
Each individual in the PSO population indk is represented by a vector of dimension 
( 1 × 7npss ), which corresponds to a potential solution to the optimization problem, 
as depicted in (27). A fitness function, fitk , is associated with each individual, as 
elaborated in (28).

where, i = 1,… , npss , �1 = 1 and �2 = �3 = 102.
The fitness function in (28) comprises three components: F1 , F2 , and F3 . The 

first term F1 , defined in (29), is associated with the objective function in (22). The 

(22)min f (z) =

npss
∑

i=1

(

KLi + KIi + KHi + KGi

)

(23)s.t. Pr

{

� min ≥ �d
}

≥ 95%

(24)Pr

{

𝜎 max < 0
}

≥ 95%

(25)z min
i

≤ zi ≤ z max
i

(26)zi =
[

KLi KIi KHi KGi FLi FIi FHi

]

(27)indk =
[

KLi KIi KHi KGi FLi FIi FHi

]

(28)fitk = �
1
⋅ F

1
+ �

2
⋅ F

2
+ �

3
⋅ F

3
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remaining terms, F2 and F3 , serve as penalties within the fitness function, applied 
when the security and stability requirements, as specified in (23)–(24), are not met. 
In this case, F2 and F3 are calculated in (30)–(31). In particular, these penalizations 
are included through empirically adjusted weights, denoted as �i.

where penal1 = 95% − Pr

{

�min ≥ �d
}

.

where penal2 = 95% − Pr

{

𝜎max < 0
}

.
It is important to note that the constraint (25) is handled directly by the PSO 

method for constrained optimization. Finally, the pseudocode for the calculation of 
the fitness function is presented in Algorithm 4.

Algorithm 4  Pseudocode for the Fitness Calculation

3.3  Particle swarm optimization algorithm

The Particle Swarm Optimization method was proposed in [51] and mimics the pro-
cess that birds perform while searching for food. Individuals move into the search 
space based on cognitive and social information. The cognitive factor is associated 
with the best experience of the individuals themselves, and the social factor is asso-
ciated with the best experience of the population. In generation t, each particle (or 
individual) has the following:

(29)F
1
=

npss
∑

i=1

(

KLi + KIi + KHi + KGi

)

(30)F
2
=

{

∣ penal
1
∣ if Pr

{

𝜉
min

≥ 𝜉d
}

< 95%

0 otherwise

(31)F3 =

{

∣ penal2 ∣ if Pr

{

𝜎max < 0
}

< 95%

0 otherwise
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• a velocity vt
k
;

• a position indt
k
 , , representing a possible solution;

• the information about the best position achieved by the individual itself ( pbestk ). 
It is associated with cognitive information.

The previous parameters ( vt
k
 , indt

k
 , and pbestk ) are vectors ( 1 × 7npss ), and indt

k
 is 

defined in (27). Finally, the best position among all individuals is stored in gbest 
(social information). Equations (32)–(34) are used to update the individual’s posi-
tions during the generations (or iterations).

In PSO, c1 and c2 are the acceleration constants, both set to 2. The random numbers 
r1 and r2 contribute to the stochastic nature of the algorithm. The inertia constant wt , 
crucial for the balance of global and local search during the optimization process, 
varies at each generation t. It decreases from a maximum wmax = 0.9 to a minimum 
wmin = 0.4 , as defined in (33), with tmax being the specified maximum number of 
generations.

The search space limits are defined in (35), associated with the constraints in 
(25). The velocities vt

i
 are limited to 10% of the maximum values of (35), as given in 

(36). In cases where the limits set in (35)–(36) are violated, the variable is adjusted 
to the violated limit (feasibility test).

The pseudocode for particle swarm optimization is presented in Algorithm 5.

(32)vt+1
k

= wtvt
k
+ c

1
r
1

(

pbestk − indt
k

)

+ c
2
r
2

(

gbest − indt
k

)

(33)wt = w
max

−

(

w
max

− w
min

t
max

)

t

(34)indt+1
k

= indt
k
+ vt+1

k

(35)
indmin

k
= zmin

indmax
k

= zmax

(36)− 0.10 × indmax
k

≤ vt
k
≤ 0.10 × indmax

k



 W. Peres 

Algorithm 5  Pseudocode for Particle Swarm Optimization

3.4  Tutorial example

3.4.1  Flowchart

The flowchart of the PSO method, detailed in Algorithm 5, is illustrated in Fig. 6. 
The Probabilistic Small Signal Stability Analysis (considering load uncertainties 
following a Normal Distribution) is conducted in Steps 5 and 6 during the fitness 
function calculation.
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Fig. 6  Flowchart—optimization approach

Fig. 7  Tutorial example
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3.4.2  Example

Consider a tutorial power system with 2 nodes and one generator, as illustrated in 
Fig.  7. Probabilistic small signal stability analysis (Step 5 of Fig.  6) follows the 
Algorithm 3.

(a) power loads follow the normal distribution as defined in (37): 

 As defined in (38), the mean values are the nominal power loads given in 
X mean . The covariance matrix is denoted as PX . 

(b) The number of uncertain variables is m = 4.
(c) Calculate the locations and probabilities of concentrations. For each variable k 

( k = 1,… , 4 ), two locations ( �k,1 and �k,2 ) are calculated as given in (39). Simi-
larly, the probabilities of concentrations ( Pk,1 and Pk,2 ) are calculated in (40). 

(37)

Pd1 ∼ N
(

�Pd1
, �Pd1

)

Pd2 ∼ N
(

�Pd2
, �Pd2

)

Qd1 ∼ N
(

�Qd1
, �Qd1

)

Qd2 ∼ N
(

�Qd2
, �Qd2

)

(38)

X mean =

⎡

⎢

⎢

⎢

⎣

�Pd1

�Pd2

�Qd1

�Qd2

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

P nom
d1

P nom
d2

Q nom
d1

Q nom
d2

⎤

⎥

⎥

⎥

⎦

PX =

⎡

⎢

⎢

⎢

⎢

⎣

�2
Pd1

0 0 0

0 �2
Pd2

0 0

0 0 �2
Qd1

0

0 0 0 �2
Qd2

⎤

⎥

⎥

⎥

⎥

⎦

(39)

�1,1 =
√

m =
√

4 = 2

�1,2 = −
√

m = −
√

4 = −2

�2,1 =
√

m =
√

4 = 2

�2,2 = −
√

m = −
√

4 = −2

�3,1 =
√

m =
√

4 = 2

�3,2 = −
√

m = −
√

4 = −2

�4,1 =
√

m =
√

4 = 2

�4,2 = −
√

m = −
√

4 = −2
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(d) Two concentrations are calculated for each variable k as given in (41). 

(e) Two samples are defined for each variable k, and two deterministic SSSA (Algo-
rithm 1) are performed (for X1 and X2 ). Each sample is a vector of power loads. 
For each sample, the nonlinear power flow and the deterministic Small Signal 
Stability Analysis (considering a set of parameters for the MB-PSS) are con-
ducted to calculate the associated minimum damping ratio ( �min ) and the spectral 
abscissa ( �max ). This process is given in (42)–(45).

• k = 1
(

Pd1

)

• k = 2
(

Pd2

)

(40)

P1,1 = P1,2 =
1

2m
=

1

8

P2,1 = P2,2 =
1

2m
=

1

8

P3,1 = P3,2 =
1

2m
=

1

8

P4,1 = P4,2 =
1

2m
=

1

8

(41)

x1,1 = �Pd1
+ �1,1�Pd1

= �Pd1
+ 2�Pd1

x1,2 = �Pd1
+ �1,2�Pd1

= �Pd1
− 2�Pd1

x2,1 = �Pd2
+ �2,1�Pd2

= �Pd2
+ 2�Pd2

x2,2 = �Pd2
+ �2,2�Pd2

= �Pd2
− 2�Pd2

x3,1 = �Qd1
+ �3,1�Qd1

= �Qd1
+ 2�Qd1

x3,2 = �Qd1
+ �3,2�Qd1

= �Qd1
− 2�Qd1

x4,1 = �Qd2
+ �4,1�Qd2

= �Qd2
+ 2�Qd2

x4,2 = �Qd2
+ �4,2�Qd3

= �Qd2
− 2�Qd3

(42)

�

X1 X2

�

=

⎡

⎢

⎢

⎢

⎣

x1,1 x1,2
P nom
d2

P nom
d2

Q nom
d1

Q nom
d1

Q nom
d2

Q nom
d2

⎤

⎥

⎥

⎥

⎦

X1 → �
1,1

min
= �min → �1,1

max
= �max

X2 → �
1,2

min
= �min → �1,2

max
= �max
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• k = 3
(

Qd1

)

• k = 4
(

Qd2

)

(f) Calculation of the mean and standard deviation of damping ratio as given in 
(46)–(47). 

(g) Calculation of the mean and standard deviation of spectral abscissa as given in 
(48)–(49). 

(43)

�

X1 X2

�

=

⎡

⎢

⎢

⎢

⎣

Pnom
d1

Pnom
d1

x2,1 x2,2
Qnom

d1
Q nom

d1

Q nom
d2

Q nom
d2

⎤

⎥

⎥

⎥

⎦

X1 → �
2,1

min
= �min → �2,1

max
= �max

X2 → �
2,2

min
= �min → �2,2

max
= �max

(44)

�

X1 X2

�

=

⎡

⎢

⎢

⎢

⎣

P nom
d1

Pnom
d1

Pnom
d2

Pnom
d2

x3,1 x3,2
Qnom

d2
Qnom

d2

⎤

⎥

⎥

⎥

⎦

X1 → �
3,1

min
= �min → �3,1

max
= �max

X2 → �
3,2

min
= �min → �3,2

max
= �max

(45)

�

X1 X2

�

=

⎡

⎢

⎢

⎢

⎣

Pnom
d1

Pnom
d1

Pnom
d2

Pnom
d2

Qnom
d1

Qnom
d1

x4,1 x4,2

⎤

⎥

⎥

⎥

⎦

X1 → �
4,1

min
= �min → �4,1

max
= �max

X2 → �
4,2

min
= �min → �4,2

max
= �max

(46)

E
(

�min

)

=

4
∑

k=1

2
∑

i=1

(

Pk,i ⋅ �
k,i

min

)

E
(

(�min)
2
)

=

4
∑

k=1

2
∑

i=1

(

Pk,i.(�
k,i

min
)2
)

(47)
��min

= E
(

�min

)

��min
=
√

E
(

(�min)
2
)

− �2
�min
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The process defined in (37)–(49) is required to evaluate each PSO solution and is 
repeated several times during the optimization process. Its results are used to calcu-
late the fitness function discussed in Sect. 3.2.

4  Results

The proposed approach is validated using two benchmark models from the literature 
[52]. The first model is the equivalent Brazilian 7-bus system, comprising 7 buses 
and 5 machines. The second model is the 39-bus New England test system, compris-
ing 39 buses and 10 generators.

(48)

E
(

�max

)

=

4
∑

k=1

2
∑

i=1

(

Pk,i ⋅ �
k,i
max

)

E
(

(�max)
2
)

=

4
∑

k=1

2
∑

i=1

(

Pk,i ⋅ (�
k,i
max

)2
)

(49)
��max

= E
(

�max

)

��max
=
√

E
(

(�max)
2
)

− �2
�max

Fig. 8  South-Southeastern Brazil equivalent system
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4.1  Equivalent model of the South‑Southeastern Brazilian system

4.1.1  System description and optimization parameters

The test system utilized in this study is a seven-bus, five-machine configuration, as 
depicted in Fig.  8, where one machine represents the Southeastern Brazil system 
[52, 54, 61]. Detailed data on the power system are provided in Appendix 1. Syn-
chronous generators are modeled using a third-order representation, while automatic 
voltage regulators are described using a first-order model.

It is noteworthy that this system is among the six benchmark systems recom-
mended by the IEEE Task Force on Benchmark Systems for Stability Controls of the 
Power System Dynamic Performance Committee for analyzing and controlling elec-
tromechanical oscillations in power systems [52]. These benchmark systems were 
selected for their educational value and unique characteristics, which pose signifi-
cant challenges in control system design relevant to the research community. Thus, 
utilizing this system in our paper is crucial as it is well-recognized and ensures 
reproducibility.

It should be noted that the performance of multiband power system stabilizers 
compared to conventional power system stabilizers, which are based on a classical 
structure, has been extensively studied in various works [12, 13, 25, 30]. However, 
this particular case study is exclusively focused on the MB-PSS structure.

Table  3 outlines the limits considered during the optimal adjustment of MB-
PSS. Initially, the probabilistic design of MB-PSS, as detailed in Appendix  2, is 
conducted. Subsequently, the solution is validated using the probabilistic methods 
described in Algorithms 2 and 3. Following this, the proposed approach described 
in Sect. 3 is applied, and the controllers’ performance is evaluated under different 
levels of uncertainty. Finally, angular transient stability is also analyzed.

Given seven load nodes, the total count of uncertainty input variables amounts to 
14, which includes active and reactive power values. Consequently, for the proba-
bilistic small signal analysis using 2PEM (using Algorithm 3), a total of 28 sam-
ples are required. In contrast, the MCS approach (outlined in Algorithm 2) will be 
implemented with 5000 samples. This study (MCS) will also include an analysis of 
convergence, specifically investigating the minimum number of samples required for 
the stabilization of the mean and standard deviation of the output variables.

Table 3  Controller parameter 
boundaries [25]

Parameter min max

F
L
 (Hz) 0.01 0.1

F
I
 (Hz) 0.10 1.0

F
H

 (Hz) 1.00 10.0
K
L
 (pu) 0.01 30

K
I
 (pu) 0.01 40

K
H

 (pu) 0.01 120
K
G

 (pu) 0.01 20
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4.1.2  Deterministic design and probabilistic validation

The deterministic SSSA, conducted in open loop mode (without stabilizers), 
reveals system instability with a damping ratio of − 12.224%. Four MB-PSS units 
are installed in generators 1, 2, 3, and 4 to stabilize the system, as illustrated in 
Fig. 8. Generator 7, an equivalent system, is not equipped with an MB-PSS. The 
deterministic optimization process, detailed in Appendix 2, employs the follow-
ing PSO parameters: 25 particles and 50 iterations. This results in 1250 fitness 
function evaluations ( 25 × 50 = 1250 ). Convergence is achieved in 48.48 s, with 
the evolution of the fitness function displayed in Fig.  9. The desired damping 
ratio is 10% ( �d = 10%).

Fig. 9  Fitness function evolution—deterministic design

Table 4  Designed parameters 
for MB-PSS (deterministic 
approach—central frequencies)

Generator FL (Hz) FI (Hz) FH (Hz)

01 0.040052 0.54593 6.6796
02 0.090422 0.83242 9.9667
03 0.041969 1.00000 9.9230
04 0.100000 0.47130 6.9764

Table 5  Designed parameters 
for MB-PSS (deterministic 
approach—central gains)

Generator KL (pu) KI (pu) KH (pu) KG (pu)

01 4.3103 7.0227 16.524 9.5954
02 28.499 1.0395 34.644 6.3234
03 0.0100 2.1117 0.0100 5.8199
04 0.0100 0.0100 16.826 20.0000
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The closed-loop system with designed controllers (whose parameters are 
presented in Tables  4 and  5) presents a minimum damping ratio of 10.004% 
( �min = 10.004% ) and a spectral abscissa of − 0.17698 ( �max = −0.17698).

From a deterministic perspective, the system demonstrates stability in closed-loop 
operation, as verified by Algorithm 1. However, it is crucial to assess the stability 
probabilistically. In this approach, the loads are modeled with a mean equivalent to 
their nominal values and a standard deviation of 5% of these mean values. The com-
parative results are presented in Table 6. The means and standard deviations derived 
from the 2PEM are observed to be closely aligned with those obtained by the MCS, 
but the computational effort required for the 2PEM is substantially lower. Figures 10 
and  11 illustrate the convergence pattern of the MCS, indicating the stabilization 
of results between 2000 and 3000 samples, which is considerably higher than the 
sample count required for the 2PEM. In particular, the probability of satisfying the 
security constraint ( Pr{� min ≥ 10%} ) with MB-PSS (designed by the deterministic 

Table 6  Probabilistic analysis of 
the deterministic design

Bold vlaues are used to highlight the probabilities of security

Parameter MCS 2PEM

Algorithm  2  3
Samples 5000 28
Computational burden 5.6324 min 2.9503 s
��min

9.8799% 9.8983%
��min

0.33253% 0.37486%
P
r

{

�
min

≥ �
d

}

35.894% 39.31%
��max

− 0.17699 − 0.17702
��max

0.00097015 0.00096842
P
r

{

𝜎
max

< 0
}

100% 100%

Fig. 10  Convergence of Monte Carlo simulation ( ��min
—deterministic design)
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approach) falls below 40%, significantly lower than the desired confidence level of 
95%. This discrepancy underscores the necessity of the proposed approach in this 
paper for designing robust controllers under uncertainties.

4.1.3  Probabilistic design using the proposed approach

The implementation of the proposed approach involved 25 particles and 50 itera-
tions, leading to 1250 fitness evaluations ( 25 × 50 = 1250 ). For the design and 
validation stages, the loads were modeled with means equivalent to their nominal 
values and a standard deviation of 5% of these mean values. A confidence level 
of 95% was maintained for security and stability requirements, as delineated in 
(23)–(24). A minimum damping ratio of 10% was established to ensure security. 

Fig. 11  Convergence of Monte Carlo Simulation ( ��min
—deterministic design)

Table 7  Designed parameters 
for MB-PSS (probabilistic 
approach—central frequencies)

Generator FL (Hz) FI (Hz) FH (Hz)

01 0.056086 0.92914 10.0000
02 0.038109 1.00000 5.83010
03 0.010000 0.38560 10.0000
04 0.045834 1.00000 8.55430

Table 8  Designed parameters 
for MB-PSS (probabilistic 
approach—central gains)

Generator KL (pu) KI (pu) KH (pu) KG (pu)

01 0.0100 3.6353 18.513 9.1452
02 9.8333 0.0100 11.597 5.5021
03 10.754 26.511 0.0100 0.79618
04 0.0100 0.0100 37.673 16.5740



 W. Peres 

The process converged in 21 min. The optimized parameters resulting from this 
study are detailed in Tables 7 and 8.

To evaluate the efficacy of the results, Algorithms  2 and  3 (both MCS and 
2PEM) were carried out, with the main results presented in Table 9. The results 
of both methods are consistent, and the probability of meeting the security con-
straint exceeds the required confidence level of 95%. In the MCS analysis, 5000 
samples were used, whereas the 2PEM required only 28 samples, a fixed number 
determined by the count of uncertainty input variables. As noted in the previ-
ous section, the MCS stabilized its mean and standard deviation values between 
2000 and 3000 samples, as illustrated in Figs.  12 and  13. This sample size is 
significantly more significant than that required for the 2PEM. It is essential to 
note that 1500 fitness function evaluations were performed during optimization. 
The 2PEM (referenced in Algorithm  3) required 28 deterministic modal analy-
ses for each evaluation. In contrast, employing MCS (Algorithm 2) would require 

Table 9  Probabilistic analysis of 
the probabilistic design

Bold vlaues are used to highlight the probabilities of security

Parameter MCS 2PEM

Algorithm 2 3
Samples 5000 28
Computational burden 5.942 min 3.0857 s
��min

11.177% 11.151%
��min

0.40103% 0.69405%
P
r

{

�
min

≥ �
d

}

99.834% 95.133%
��max

− 0.2005 − 0.2005
��max

0.00079291 0.00079124
P
r

{

𝜎
max

< 0
}

100% 100%

Fig. 12  Convergence of Monte Carlo simulation ( ��min
—probabilistic design)
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2000 to 3000 samples, underscoring the efficiency of using 2PEM for designing 
MB-PSS.

Finally, it is important to note that stabilizing the mean and standard deviation 
of the output variables is a common practice in the literature [57, 62] to ensure the 
reliability of results obtained by Monte Carlo simulation (MCS). This is because, 
beyond a certain number of simulations (samples), there is no significant gain in 
precision for the statistical measures of output variables (mean and standard 
deviation) as the number of samples increases. Therefore, in this paper, the number 
of samples used is considered sufficient to ensure the statistical significance of the 
results.

4.1.4  Impact of the uncertainty level

The previous analyses involved load uncertainties modeled with a standard deviation 
of 5%. To examine the impact of uncertainties on the tuning carried out (parameters 

Fig. 13  Convergence of Monte Carlo simulation ( ��min
—probabilistic design)

Table 10  Impact of the loads 
uncertainty level—2PEM

Bold vlaues are used to highlight the probabilities of security

Standard deviation of 
loads ( �Pdk

 , �Qdk
)

5% 2.5% 10%

��min
11.151% 11.263% 10.913%

��min
0.69405% 0.19387% 1.6245%

P
r

{

�
min

≥ �
d

}

95.133% 100% 71.29%
��max

− 0.2005 − 0.20049 − 0.19865
��max

0.00079124 0.0003944 0.01011
P
r

{

𝜎
max

< 0
}

100% 100% 100%
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specified in Tables 7 and 8) Algorithm 3 was applied with varying standard devi-
ations for �Pdk

 and �Qdk
 (2.5% and 10%). The results are summarized in Table 10, 

showing that the probability of maintaining stability security (negative spectral 
abscissa) consistently remains 100%. However, the uncertainty level in the loads 
influences the probability of meeting the security requirement (minimum damping 
ratio of 10%). For a standard deviation equal to 2.5%, less than the value used in the 
tuning stage, the probability increases to 100%. In contrast, increasing the stand-
ard deviation to 10% reduces this probability. This trend aligns with the expectation 

Fig. 14  Histogram for �
min

 ( �
P
dk
= �

Q
dk
= 5.0%)

Fig. 15  Histogram for �
min

 ( �
P
dk
= �

Q
dk
= 2.5%)
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that higher input uncertainty leads to increased output uncertainty. Figures 14, 15, 
and 16 showcase histograms of the minimum damping ratio in closed-loop operation 
for various uncertainty levels. To construct each figure, 104 samples were generated 
using the values of ��min

 and ��min
 from Table 10, indicating that higher uncertainty 

levels lead to greater dispersion of the output variable.

4.1.5  Nonlinear time‑domain simulation

The efficacy of the proposed approach, particularly in the context of angular small 
signal stability, should be further validated through nonlinear time-domain simula-
tions for angular transient stability assessment. In this simulation, a short circuit is 
introduced in bus 5 for 50 ms, cleared by disconnecting lines 5-1 for another 50 
ms, and reclosed. This scenario is tested under the nominal operating conditions 
specified in Appendix  1. The deterministic and probabilistic tuning approaches 
(as presented in Tables 4, 5, 7, and 8) are evaluated using Anatem software [63]. 
The results show internal angles, MB-PSS outputs, and voltage magnitudes in Fig-
ures  17, 18, 19, 20 and  21. These figures indicate that the system remains stable 
post-disturbance, returning to its initial state after restoring the network topology.

4.1.6  Sensitivity analysis

Particle Swarm Optimization has proven to be highly effective in solving the pro-
posed approach in this work. However, as noted in the literature [64], the number 
of individuals and generations employed significantly influences the quality of its 
solutions. It is crucial to emphasize that while PSO does not guarantee a global 
optimal solution, it is capable of providing high-quality solutions in reasonable 

Fig. 16  Histogram for �
min

 ( �
P
dk
= �

Q
dk
= 10.0%)



 W. Peres 

computational time. In this section, we present simulations of three different 
cases, with the results summarized in Table 11 and Fig. 22. For these cases, the 
number of fitness function evaluations was kept constant (approximately 1250) to 
maintain a similar computational burden of around 21 min. As shown in Table 11, 
for this particular problem and system, employing 25 individuals and 50 genera-
tions (as used in previous simulations) produced the lowest value of the fitness 

Fig. 17  Internal angle (Itaipu—Generator 4)

Fig. 18  Internal angle (Foz do Areia—Generator 3)
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function (summation of gains). Figure 22 illustrates the convergence of the fitness 
function in each simulation.

4.2  New England test system

4.2.1  System description and simulation scenarios

The New England test system, depicted in Fig. 23, will be used to discuss the results 
derived from the proposed approach. Comprising 39 nodes and 10 generators, the 

Fig. 19  Itaipu controller output ( V
PSS4

)

Fig. 20  Voltage magnitude at node 05
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Fig. 21  Voltage magnitude at node 06

Table 11  Sensitivity analysis

Simulation Individuals Generations Evaluations Fitness Computational 
burden (min)

01 25 50 1250 150.58 20.9
02 20 63 1260 187.23 21.4
03 50 25 1250 198.86 21.3

Fig. 22  Fitness function evolution—probabilistic design
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detailed data for this system can be accessed in [65]. In the base case, this system 
has a total load of 6097.1 MW and 1408.9 MVAr, with active power generation of 
6140.8 MW. In this specific case study, a wind generator with a dispatch capacity of 
920 MW is placed at node 14, representing approximately 15% of the active power 
generation of the base case [66]. The unity power factor is adopted for the wind 
generator.

The base case is used to design the MB-PSS in this case study. The minimum 
damping ratio in open loop operation ( �min ), calculated by deterministic analysis, is 
− 6.0421%. Therefore, MB-PSS will be integrated into the system. In particular, the 
generator located at node 39 represents an equivalent system and is thus excluded 
from receiving a PSS. The same limits presented in Table 3 are considered during 
the optimal adjustment of MB-PSS.

The following PSO parameters were used for deterministic and probabilistic 
designs: 25 particles and 50 iterations. This results in 1250 fitness function evalu-
ations ( 25 × 50 = 1250 ). For probabilistic assessment and design, loads and wind 
generation are modeled with a mean equivalent to their nominal values and a stand-
ard deviation of 5% of these mean values.

4.2.2  MB‑PSS design

The deterministic approach detailed in Appendix 2 and the probabilistic approach 
outlined in Sect. 3 were applied (which took around 2.5 h to converge). Figure 24 
shows the evolution of the fitness function, with optimal fitness values of 798.13 for 
the probabilistic design and 740.3 for the deterministic approach. The higher value 
for the probabilistic design is due to the increased control effort required to ensure 

Fig. 23  New-England test system
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Fig. 24  Fitness function evolution—New England test system

Table 12  Designed parameters 
for MB-PSS (deterministic 
approach—central 
frequencies—New England)

Generator FL (Hz) FI (Hz) FH (Hz)

30 0.02874 0.53469 6.4613
31 0.019191 0.96661 4.0490
32 0.085262 0.51747 3.9448
33 0.047169 0.25629 4.2840
34 0.064422 0.27426 3.4189
35 0.098322 0.88478 6.9181
36 0.07895 0.38012 10.0000
37 0.080941 0.52311 3.4329
38 0.042355 0.60414 5.2529

Table 13  Designed parameters 
for MB-PSS (deterministic 
approach—central gains—New 
England)

Generator KL (pu) KI (pu) KH (pu) KG (pu)

30 17.394 0.010 120.000 13.958
31 19.817 6.4876 44.105 9.4976
32 5.3292 2.2012 45.021 4.6594
33 0.010 12.607 49.915 3.0165
34 1.0402 17.810 16.627 8.2441
35 20.682 0.021017 44.005 6.7611
36 0.010 24.437 50.666 9.0492
37 6.4717 16.016 96.185 4.809
38 3.2573 19.762 37.222 3.1986
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that the security probability exceeds the required confidence level (95%). Tables 12, 
13, 14 and 15 present the MB-PSS parameters considering the deterministic and 
probabilistic approaches.

Table 14  Designed parameters 
for MB-PSS (probabilistic 
approach—central 
frequencies—New England)

Generator FL (Hz) FI (Hz) FH (Hz)

30 0.035989 0.66537 3.4451
31 0.041553 0.79252 6.4613
32 0.071798 0.55841 4.7447
33 0.060337 0.56664 6.0087
34 0.050435 0.32625 4.6337
35 0.073635 0.48188 6.2160
36 0.040460 0.36701 9.1179
37 0.043975 0.35137 4.4955
38 0.033315 0.87970 4.9708

Table 15  Designed parameters 
for MB-PSS (probabilistic 
approach—central gains—New 
England)

Generator KL (pu) KI (pu) KH (pu) KG (pu)

30 6.9505 4.2155 111.010 11.018
31 12.824 4.0122 50.428 8.919
32 10.373 5.7613 41.807 1.9259
33 6.0361 20.429 57.186 8.3482
34 4.4656 21.885 30.943 6.0644
35 13.589 0.010 50.233 11.337
36 2.0523 22.572 47.612 6.6916
37 16.230 23.629 82.537 3.9466
38 4.899 32.120 54.027 2.0451

Table 16  Mean and standard deviation of damping ratio (New England)

Deterministic design Probabilistic design

�� min
�� min

Pr

{

�
min

≥ �d
}

�� min
�� min

Pr

{

�
min

≥ �d
}

9.9745 0.063883 34.465 10.202 0.11973 95.433

Table 17  Mean and standard deviation of spectral abscissa (New England)

Deterministic design Probabilistic design

�� max
��max

Pr

{

𝜎
max

< 0
}

�� max
��max

Pr

{

𝜎
max

< 0
}

− 0.11113 0.00031856 100 − 0.18073 0.00072418 100
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4.2.3  Probabilistic assessment

The results presented in Sect. 4.2.2 are validated using the two-point estimation method 
(Algorithm 3). Tables 16 and 17 illustrate that the deterministic design may not ensure 
safe operation under uncertainties. In contrast, the probabilistic approach matches the 
required confidence level.

4.3  General discussion

The proposed approach can play a crucial role in modern power systems, where sta-
bility analysis under uncertainties is essential to ensure secure operation, as discussed 
in [67]. The first advantage of the proposed approach is its ability to provide multi-
band PSS parameters that ensure security and stability under uncertainties. The second 
advantage is the employment of the Unscented Transformation, which allows for exe-
cuting probabilistic analysis with a reduced number of samples compared to the Monte 
Carlo simulation. Finally, the proposed approach is formulated to be solved by any type 
of metaheuristic, and future work will focus on identifying other metaheuristics that 
could yield promising results. Another advantage of the proposed methodology is its 
practical applicability in modern systems, as it is based on the simulation of various 
deterministic stability analysis cases (which can be performed by software already used 
in the electric sector, maintaining the various models and components developed over 
the years).

It is important to emphasize that probabilistic small signal stability analysis requires 
a significant computational burden compared to the deterministic approach. However, 
parallel computation can be employed to address this issue, as the evaluation of each 
sample and each individual is independent of the others.

5  Conclusions

The approach proposed in this study for the probabilistic tuning of Multi-Band Power 
System Stabilizers (MB-PSS) successfully met the desired probabilities for security 
and stability requirements. Although deterministic tuning demonstrated a low compu-
tational demand, the performance of the MB-PSS designed through this method did not 
satisfy the requirements under uncertain conditions. In contrast, the proposed approach 
converged in a reasonable computational time and achieved the required confidence 
level. A comparative analysis between Monte Carlo Simulation (MCS) and the Two-
Point Estimate Method (2PEM) revealed that MCS needed between 2000 and 3000 
samples to achieve accurate results, whereas 2PEM required only 28 samples (for the 
Brazilian test system). Moreover, as anticipated, it was observed that the performance 
of the MB-PSS could deteriorate under high load uncertainty levels, which were not 
considered during the tuning phase. Finally, time-domain simulations demonstrated 
that the MB-PSS designed through this approach effectively ensured angular transient 
stability.
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Appendix 1

Tables 18, 19 and 20 present data pertaining to the South-Southeastern Brazilian 
equivalent system [52, 61]. The base power is set at 100 MVA. Specifically, in 
Table 20, the reactances are expressed in per unit (pu), time constants are listed in 
seconds, inertia constants in per unit (pu), and gains are also provided in per unit 
(pu). The analysis incorporates a static excitation system with constants KA and 
TA . A third model represents generators, and the loads follow a constant imped-
ance model in dynamic studies.

For nonlinear time domain simulations in Anatem software [63], the following 
limits have been considered [25, 59]:

Table 18  Bus data

Node Type V (pu) Gen (MW) Load (MW) Load (MVAr) Shunt (MVAr)

01 PV 1.030 1658 2405 − 467 179.2
02 PV 1.030 1332 692.3 − 184 149.1
03 PV 1.029 1540 688.2 − 235 114.2
04 PV 1.039 6500 62.6 24.3 36.8
05 PQ – – 845.8 − 9.2 33
06 PQ – – − 4.9 79.8 2142
07 V� 0.966 – 2884 − 196 42

Table 19  Branch data From To Resistance (%) Reactance (%)

01 03 0.0300 0.3800
02 03 0.0500 0.7600
04 06 0.0290 0.7340
05 01 0.1900 2.4500
05 02 0.1500 2.2500
06 05 0.0000 0.3900
06 07 0.0400 0.5700

Table 20  Generator data Gen Xd Xq X′
q

H D T ′
d0

KA TA

01 0.044737 0.036842 0.0157890 85.50 0 5.0 30 0.05
02 0.060714 0.050000 0.0214290 63.00 0 5.0 30 0.05
03 0.045267 0.035494 0.0154320 87.48 0 5.0 30 0.05
04 0.013569 0.010252 0.0045228 336.29 0 7.6 30 0.05
07 0.016667 0.011667 0.0050000 300.00 0 8.0 30 0.05
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• Excitation systems: EFDmin = −5.0pu and EFDmax = 6.0pu.
• MB-PSS (see Fig.  2): VLmax = −VLmin = 0.075pu , VImax = −VImin = 0.60pu , 

VHmax = −VHmin = 0.60pu , and VST max = −VST min = 0.15pu.

Appendix 2

Multi-Band Power System Stabilizers can also be designed using the deterministic 
approach detailed in (50)–(53). This solution utilizes the particle swarm optimiza-
tion method, applying the Algorithm 1 for deterministic small signal stability analy-
sis. Furthermore, the constraints outlined in (51)–(52) are addressed through penali-
zation, as described in Sect. 3.2.
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