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Abstract
Cold supply chains produce and distribute goods that perish and deteriorate over 
time. To keep such goods fresh, the temperature must be constantly and continu-
ously controlled, which in turn requires more fuel consumption. In this study, a 
mixed-integer optimization model is presented in which the goal is to minimize 
costs assuming that vehicle speed can be variable and considering the traffic con-
gestion. In addition, it is assumed that the travel time and fuel consumption of each 
route depend not only on the distance travelled but also on the time of day when that 
route is travelled. In the proposed model, minimizing costs including the fixed cost, 
transportation, damage to new products, the refrigerator cost, carbon emissions, and 
penalties is considered. By solving the proposed model, the optimal route and travel 
time of vehicles are determined. A hybrid method based on Benders decomposition 
and PSO algorithms is applied to solve the proposed model. Finally, in addition to 
solving several test instances with different sizes to investigate the performance of 
the algorithm, a relatively comprehensive sensitivity analysis has been performed 
on the model. The obtained results indicate that the proposed algorithm can obtain 
the optimal solution for all small-size cases, and the average optimality gap ranges 
for medium sizes are from 0 to 0.12. For larger size cases, an optimal solution is 
not available, by the CPLEX within the given time limit. In most of these cases, 
the proposed algorithm introduces a better solution to the upper bound provided by 
CPLEX.
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1  Introduction

Today, due to the improvement in people’s living standards, the demand for fresh 
goods and materials such as fresh food has increased. It is difficult to keep these 
products fresh at environmental temperature, hence cold supply chain logistics 
networks are needed to distribute these goods [31]. The specific characteristics 
of cold chain products make many effective factors to be considered in the trans-
portation process [5]. Unfortunately, in cold chain logistics, as the temperature 
must be constantly controlled, energy consumption and consequently greenhouse 
gas emissions are high. The accumulation of greenhouse gases is one of the main 
causes of global warming caused by human activities [17]. Global warming and 
greenhouse fuel emissions are the century’s most pressing problems. Since trans-
portation is one of the most important factors in pollutant production in green-
house gas emissions, researchers have continuously focused on vehicle routing 
(VRP) to maximize environmental impact [26]. About 20% of total global emis-
sions are related to the carbon emission of the transportation industry [8].

To reduce the emissions of environmental pollution caused by transportation 
activities, cold chain logistics companies should also consider reducing the emis-
sion of harmful gases to provide better services in satisfying customers’ demands. 
In cold chain transportation, the temperature is controlled continuously so that 
the quality and safety of materials and goods are not compromised. Unexpected 
temperature changes in cold chains can cause a loss of safety or quality of prod-
ucts, which ultimately leads to a loss of customer trust [18]. Therefore, cold chain 
routing requires more fuel to maintain the temperature than conventional routing. 
This, in turn, emits more greenhouse gases. Refrigerated trucks are estimated to 
emit 30% more greenhouse gases than other trucks [12]. Proper distribution chan-
nel planning can effectively improve sales efficiency and reduce energy consump-
tion and carbon emissions. [1].

In recent years, cold chain logistics has developed rapidly. Numerous authors 
have proposed various improvements for vehicle routing problems (VRP) in green 
cold chain logistics, both in terms of modeling and solution methods, taking into 
account different hypotheses. Wang et  al. [30] investigated the effect of carbon 
taxation on carbon emissions in a cold chain routing problem. A comprehensive 
mathematical optimization model has been proposed by Qin et al. [20] to coor-
dinate cost reduction and carbon emissions and increase customer satisfaction 
in the cold chain VRP. Liu et al. [13] have proposed a cooperative distribution-
green VRP, in which distribution companies can work together to reduce carbon 
taxes on the servicing of goods. Their results indicate that cooperative distribu-
tion is an effective rule to reduce total costs and carbon emissions. Wang and 
Wen [31] investigated the problem of low-carbon VRP in a real cold-chain logis-
tics network. In the case study, the vehicles were heterogeneous and of course, 
two-layered, and customer service with a mixed time window was considered. 
The authors have proposed a comparative genetic-based algorithm method and 
evaluated the performance of the algorithm, which was done by some numerical 
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benchmark tests. Li et  al. [12] proposed a model for green cold VRP in which 
many factors involved in greenhouse gas (GHG) emissions were investigated.

While distance and cost reductions have a major impact on achieving low car-
bon emissions, there are other important factors in transportation, including vehicle 
speed, vehicle load, traffic congestion, uncertain demand, and time window [27]. Ma 
et al. [15], developed the stochastic model for the distribution of perishable goods 
based on uncertain customer demand. In the model presented by Sun et  al. [25], 
a hard time window for service is considered to satisfy the customer and keep the 
products fresh. Bao and Zhang [2] examined the optimal path of a cold supply chain 
in joint distribution, they concluded that joint distribution works better in reduc-
ing distribution costs and pollution emission costs than segmentation distribution. 
Based on considering customer consent for cold chain distribution, Ren et al. [22], 
restricted the vehicle load, customer time window, and deterioration rate to build 
a cold chain VRP model with the least carbon emission as the objective inside the 
customer benefit time frame. Zhang et al. [33], under two different time constraints, 
the cold chain logistics distribution problem was considered. Based on the specs 
of high energy consumption when transporting cold chain goods, Wang et al. [29], 
developed a VRP model for cold chain logistics, taking into account product fresh-
ness and quality loss costs during the delivery process. Song et al. [24], proposed a 
metaheuristic algorithm for VRP with time windows, different types of vehicles, and 
different energy consumption in cold chain logistics. Tsang et al. [28], investigated 
food quality and arrival times windows and proposed a multi-temperature delivery 
planning system based on the Internet of Things.

Because of the particularity of cold chain logistics, the necessities for time are 
very strict. The freshness of the goods will be significantly reduced if they are kept 
in cold storage for a long time, hence it is significantly impacted by traffic conges-
tion. According to relevant statistics, in the carbon emissions from transportation, 
traffic congestion leads to an increase in energy consumption, resulting in additional 
carbon emissions. The increase in carbon emissions due to road congestion is more 
than 20% [14]. Therefore, when the distribution for cold chain logistics is investi-
gated, it is necessary to account for traffic congestion. Some researchers combined 
the traffic congestion with the actual road conditions in a cold VRP model [4]. Zhao 
et al. [34], geared toward the effect of traffic congestion on vehicle operating costs, 
the cold chain logistics vehicle route optimization model was incorporated with 
road congestion factors. The problem was then solved using an improved ant colony 
algorithm, genetic algorithms, and a two-stage optimization algorithm. A multi-
objective nonlinear dynamic green vehicle routing problem of perishable products 
was presented by Talouki et  al. [27], wherein green traffic conditions are consid-
ered. In this dynamic case, the randomness of the traffic congestion and considering 
the average speed for a vehicle have been the main hypotheses of the problem. The 
authors developed a robust model based on uncertainty demands and then proposed 
a heuristic approach to solve it. Despite some nonlinearity terms from the model, 
there was no effort to linearize them.

Chen et  al. [4] studied the cold chain logistics of front warehouses and pro-
posed a traffic congestion green vehicle routing problem with an approach of low-
carbon based on the economy. To solve the model, a hybrid algorithm based on a 
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simulated annealing and tempering algorithm was applied. It is worth mentioning 
that, the addressed model was nonlinear and the speed vehicle of each period was 
supposed to be constant. To study the vehicle routing optimization of urban cold 
chain logistics based on the real-time traffic of the Internet of Things, Huang and 
Pan [10] divided the road sections. Bai et al. [1] proposed a multi-objective non-
linear model for cold chain logistics by considering the complexity of the road 
network, the time-varying traffic conditions, and optimizing the distribution cost 
and carbon emission. The non-dominated Sorting Genetic Algorithm II algorithm 
was modified to solve the mathematical model. Cui et al. [5], studied the problem 
of optimizing the multi-distribution center cold chain route considering the traf-
fic congestion index. Also, they analyzed the total cost of cold chain transport 
vehicles, the traffic congestion index, and the improved particle swarm algorithm 
introduced to solve the mathematical model. Zhang et al. [32] developed a model 
to optimize distribution routes in cold chain logistics by considering road imped-
ance, to minimize the overall cost. An improved PSO algorithm is used to solve 
the model.

Traffic congestion in urban areas is a common phenomenon, and speeds usually 
decrease significantly in the morning and evening. This means that the travel time 
between two points depends not only on the travel distance but also on the speed 
of the vehicle and the time of day [21]. Some products, such as food and medicine, 
have a limited lifespan and must be transported as soon as possible. In this sense, 
time constraints and existing traffic conditions make the cost of this system prohibi-
tive. Therefore, optimizing the vehicle speed for the supply of perishable products 
by considering traffic volume is necessary [27]. Pollution, time window, and traffic 
congestion are integral factors in the cold chain problem. According to the literature 
review, cold chain logistics is addressed with time window, with traffic congestion, 
or both time window and traffic congestion. However, the most important factor 
influencing pollution, time window, and traffic congestion, which is ignored in the 
literature, is the speed of vehicles. By adjusting the speed of the vehicle properly, 
it is possible to reduce the pollution of the vehicle, and customers can be served 
according to the traffic congestion on time.

Table 1 summarizes the findings of this study. Accordingly, it can be observed 
that there is no mathematical model for a Time-dependent cold chain with a time 
window to consider the variable speed in a different time-dependent congested 
urban area.

In this study, a new optimization model for the cold chain green VRP is presented 
by considering the traffic and variable speed of vehicles. The hypotheses considered 
in the proposed model are closer to reality and include consideration of periodic 
traffic and the variability of vehicle speed in each traffic period. In traffic congestion, 
there is usually an interval range of speed limits. In the proposed model, the fixed 
cost of vehicles, the losing quality cost, the keeping the product fresh cost, the pen-
alty costs, the fuel consumption, and the emissions costs are minimized simultane-
ously. Since the speed of the vehicles is variable, so the model is nonlinear. To solve 
the model in large-scale tests, first, we try to linearize the model by presenting lin-
earization techniques, and then a solution hybrid method based on Benders decom-
position and Binary Particle Swarm Optimization (BPSO) algorithms is presented to 
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solve the obtained mixed-integer problem. The main contributions of this work are 
as follows:

(1) Providing a nonlinear mixed-integer model for the cold chain VRP, which 
includes vehicle load constraints, traffic time congestion, variable speed, and time 
window simultaneously.

(2) Calculate the pollution caused by fuel consumption in a general and compre-
hensive way and try to minimize it.

(3) By using some linearization techniques, an equivalent mixed integer linear 
programming (MILP) model is delivered.

(4) Developing the hybrid method (based on Benders decomposition and BPSO 
algorithms) for solving the linearized model.

(5) Computational analyses of the model to evaluate the performance of the 
hybrid method and some sensitive analysis to verify the effect of some factors of the 
model are conducted.

The organization of this research paper is described in this paragraph. Section 2 
is assigned to the definition and explanation of the problem and then the proposed 
model will be stated. Section 3 is dedicated to the solution method for the proposed 
model so that firstly the linearization part of the model will be presented and then 
the hybrid Benders Decomposition and PSO method will be adopted for solving the 
linearized model. In Sect. 4, computational results are presented to show the effi-
ciency of the model and solution method. Finally, in the final section, conclusions 
and future suggestions are stated.

2 � Problem formulation

In this section, the green VRP in a cold chain considering traffic congestion is 
described. For this purpose, first, a general description of the problem is given, then 
how to calculate the travel time, formulate the problem, and calculate the relevant 
costs that exist in the target function are described.

2.1 � Problem description and formulation

A complete network with the main depot and a set of customers I (with indexes I, j) 
with deterministic demands is considered for the problem of cold chain time-depend-
ent green VRP. The demand of the customers must be met by the number (at most m) 
of homogeneous refrigerated vehicles with limited capacity in a soft time window. No 
more than one vehicle can serve a customer. If the vehicle serves the customer outside 
the time window, then a penalty must be paid for this delayed or early arrival. The 
central depot is indicated by index 0. Each vehicle must start its journey from the depot 
and return to it after serving the visited customers. The set including customers and 
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depot is shown with I0 = {0} ∪ I . The duration traveled time by each vehicle (includ-
ing travel time and service) cannot exceed the specified time Tmax (in minutes or hours) 
that indicates the duration time of the service activity. For the time windows and ser-
vice time at the node i ∈ I the notations 

[
Li,Ui

]
 and si are applied respectively. Stopping 

at each node involves spending time. These stops are for customer service, unloading, 
or waiting if the customer node arrives early. The distance from the node i ∈ I0 to node 
j ∈ I0 is denoted by dij . Since traffic is an unavoidable phenomenon, the speed of the 
vehicle will not be constant during the day and it will inevitably have to move at dif-
ferent speeds level at different times of the day. Furthermore, each arc has its speed 
limitations. So, in addition, to consider the vehicle speed as a variable, the restrictions 
on the speed of vehicles during the day are taken into account. In this paper similar to 
Hooshmand and MirHassani [9], three planning horizon periods are considered for traf-
fic hours; i.e., morning traffic peak, free flow, and evening traffic peak periods. In each 
period there are different permissible speed levels. The first and third periods are for the 
peak hours of morning and evening traffic, in which the speed is relatively low. In the 
second period, which is in the middle of the day, the traffic congestion is lower and the 
speed can be relatively high.

In Fig. 1. the planning horizon time for any arc (i, j) is denoted by 
[
0, Tmax

]
 and a1 

and a2 with 0 < a1 < a2 < Tmax are the breakpoints of 
[
0, Tmax

]
.

It should be noted that the departure time of vehicles from the depot may start from 
a non-zero time. This is because, given the existence of early and late service penalties, 
it makes sense for the vehicle to have a non-zero travel time. The main assumptions of 
the optimization model are as follows:

1. There is a main depot and each vehicle must start its journey from the depot and 
return to it after serving the customers.

2. There are a certain number of homogeneous refrigerated vehicles with limited 
capacity.

3. The rate of perishability of products in a closed refrigerator is different from an 
open refrigerator.

4. The departure time of vehicles from the depot, as well as the time of their entry 
and exit to the customer points is variable. Also, the duration traveled time by each 
vehicle (including travel time and service) cannot exceed the specified time.

5. There is a soft time window for each customer. If the vehicle serves the customer 
outside the time window, then a penalty must be paid for this delayed or early arrival.

6. Three planning horizon periods are considered for traffic hours; i.e., morning traf-
fic peak, free flow, and evening traffic peak periods.

7. The vehicle speed in each traffic period is variable and has a minimum and 
maximum limit for speed in each traffic period.

Fig. 1   different speed levels on 
three planning horizon periods 
for the arc (i, j)

[ ) [ ) [ ]
1 2 3

1 1 2 2 max
0, , , , ,

ij ij ijv v v

a a a a T
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8. The cost of fuel consumption and the cost of pollution are calculated and con-
sidered separately.

To present the proposed model, first, the symbols used in it are introduced:
The Indexes.

I The set of Customers I = {1, 2, ..., n} with the indexes i, j
{0} The node corresponding to the depot
I0 A set of nodes corresponding to customers and depot I0 = I ∪ {0}

A The set of all arcs (i, j) which i, j ∈ I0

K The set of vehicles K = {1, 2,… ,m} with the index k
P The set of periods P = {1, 2, 3} with the index p

Parameters and notations 

qi The amount of demand from customer i
Q Capacity for each vehicle
dij distance on arc (i, j)
Tmax Duration of availability of each vehicle during the day
si The customer service time i ∈ I which is equal to the amount of demand divided by the 

unloading speed[
Li,Ui

]
The acceptable time window for servicing the customer i ∈ I[

0, a1
)

Morning traffic time interval[
a1, a2

)
In the middle of the day when the speed is faster[

a2,Tmax

]
Evening traffic time interval

v1, v2, v3 Vehicle speed in 3 time periods
�1 The rate of the perishability of products in the closed refrigerator when the vehicle is moving
�2 The rate of the perishability of products in the opened refrigerator when the vehicle is 

stopped
�1 The fuel consumption of the stopping vehicle per unit of time
cij Transportation cost of the vehicle from point i to point j
M The Big number
F1 Fixed cost of using the vehicle
F2 The damage cost unit of products for a vehicle in the cold supply chain
F3 The refrigerating cost unit of products during the path for a vehicle
F4 The Keeping fresh cost unit of products during the unloading of a vehicle
F5 The penalty cost unit for vehicle acceleration
F6 The penalty cost unit for vehicle delay
F7 Fuel cost unit
ER The unit of combining fuel consumption and pollution emission costs
Variables:
xk
ij

The binary variable equals 1 if a vehicle travels on an arc (i, j) ∈ A , and 0 otherwise

wk
ij

The nonnegative variable indicates the volume of the load carried by the vehicle travels on 
an arc (i, j) ∈ A

v
pk

ij
Nonnegative variable speeds of the vehicle k on the arc (i, j) ∈ A regarding the period p

t
pk

ij
The variable travel time of the vehicle k regarding variable speed vp

ij
 on the arc (i, j) ∈ A
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z
pk

ij
The variable covered the distance with speed vpk

ij
 is associated with a period p via vehicle k 

on the arc (i, j) ∈ A

�1k
ij
, �2k

ij
The binary variable is associated with the period p = 1, 2 and it means that if �p

ij
= 1 , then 

z
p+1

ij
≥ 0

�k
i

The nonnegative variable service start time of the vehicle k at a node i ∈ N

�k
′

i0
The nonnegative variable indicates the return time of the vehicle k from the node i ∈ N to 

the node depot

According to the explanations given, the problem model is expressed as:

(1)P1 ∶ Z1 = minC1 + C2 + C3 + C4 + C5 + C6 + C7

(2)S.T
∑
k∈K

∑
i∈I

xk
ij
= 1 ∀i

(3)
∑
j∈I

xk
ij
=
∑
j∈I

xk
ji

∀ i ∈ I, i ≠ j,∀k

(4)
∑
k∈K

∑
j∈J

xk
0j
≤ m

(5)
∑
j∈J

xk
0j
≤ 1 ∀k

(6)dijx
k
ij
=
∑
p∈P

z
pk

ij
∀ i, j ∈ I, i ≠ j,∀k

(7)z
pk

ij
= t

pk

ij
v
pk

ij
∀ i, j ∈ I, i ≠ j,∀k,∀p

(8)�
(p−1)k

ij
v
p

ijl
≤ v

pk

ij
≤ �
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Function (1) is the objective function of the problem, which includes fixed use 
costs of the vehicles, quality loss costs of products, keeping products fresh costs, 
energy costs, pollution emission costs, and transportation costs. Equality (2) shows 
that each customer is serviced by a vehicle. Constraint (3) states that the number of 
vehicles entering a node must be the same as the number of vehicles leaving that 
node. Inequality (4) indicates the maximum number of active vehicles in the net-
work that starts from the depot. Constraint (5) shows that each vehicle can only start 
moving from the depot only once. The sixth constraint is about the total distance 
traveled by the vehicle, in different traffic periods on the arc (i, j). And the seventh 
constraint shows the travel distance passed by the vehicle, in different traffic periods. 
Inequality (8) indicates the minimum and maximum speed allowed in each time traf-
fic period. Constraints (9)–(16) specify the time spent in each period to travel the 
distance of an arc (i, j). Relation (17) indicates the arrival time of vehicle k from 
customer node i to customer node j in the network, and relation (18) determines the 
arrival time of vehicle k from the depot to customer node j in the network. Constraint 
(19) indicates the maximum travel time allowed on an arc. Constraint (20) indicates 
the return time of the vehicle to the depot. Inequality (21) indicates the maximum 
admissible time for the return of the vehicle to the depot. The hard period is demon-
strated by constraint (22). Constraints (23)–(25) indicate that customer demand will 
be met. Constraints (26) and (27) specify the sign of the variables.

2.2 � The objective function costs

In the presented model, 7 types of costs are considered. These costs are divided into 
3 separate categories. Logistics costs (the fixed and transportation cost and penalty), 
refrigerator and refrigeration costs (quality to loss, keeping fresh cost), fuel and pol-
lution emissions costs (Energy cost).

1. The fixed cost of vehicles: A fixed cost can be considered the cost of buying 
vehicles or renting them also the depreciation cost, and the drivers’ salary which has 
been shown by C1.

The above formula assumes that if a vehicle starts moving from the depot, a fixed 
cost must be paid.

2. Transportation costs directly affect variable costs, such as labor costs and fuel 
consumption costs. Distance traveled plays an important role in determining ship-
ping costs. The transportation cost of the products is considered as follows:
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3. The quality loss cost: Over time, products that need a cold environment lose 
their quality, even if it is stored in the refrigerator and maintained at the proper tem-
perature. There are two general modes for products before they reach their final des-
tination. The first condition is when the refrigerator door is closed and the vehicle is 
moving; in this case, the degree of quality is specified as follows.

Another situation in which products may lose their quality is when the vehicle 
stops to unload and the truck’s refrigerator door opens. In this case, the cost of los-
ing product quality is considered as follows:

As a result, the total cost of losing product quality is estimated by C3 = C�
3
+ C��

3
.

4. The cost of keeping fresh: This cost is related to the refrigeration of products 
by refrigerators. It depends on how long the products stay in the refrigerator, while 
the vehicle is moving, and when they are unloaded, which varies depending on the 
type of refrigerator.

In which t̂pk
ij

= t
pk

ij
+max{Li − 𝜏k

i
, 0}.

5. Penalty: In cold chain logistics, the condition of the product when received 
from the customer is very important. If the vehicles arrive too early, they have to 
wait until customers start receiving the products. The product’s condition may dete-
riorate in the meantime. If the vehicle arrives too late, customers may encounter 
replenishment and sales problems. Therefore, a penalty will be imposed if the vehi-
cle arrives outside of the customer’s time window [13]. The cost of the late or early 
arrival of the vehicle to customer nodes is expressed as follows:

6. Energy cost: To calculate the energy cost, some preliminary is required, which 
are stated below.

Calculation of the fuel consumption and pollution In this section, based on refer-
ence [7] calculation of the fuel consumption and pollution rate is presented. Since 
the amount of pollution is directly related to fuel consumption, calculating emis-
sions is done after calculating fuel consumption. The preeminent model in the lit-
erature for calculating emissions takes into account other more precise parameters 
of the vehicles such as the engine friction coefficient, engine speed, and the speed 
of the moving vehicle. Dukkanci et  al. [7] used a comprehensive modal emission 
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F5 max
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model (CMEM) to calculate emissions. In this model, we tried to take into account 
all the factors that influence fuel consumption and emissions. To present and display 
the CMEM model, it is necessary to define the following symbols:

� The fuel-to-air mass ratio
� The efficiency parameter for diesel engines
� The heating value of a typical diesel fuel
ntf The efficiency of the vehicle drive train 

is related to the overall efficiency of all 
engine transmission components to the 
wheels

pacc The engine power demand is related to 
engine losses and the performance of 
vehicle accessories such as the use of air 
conditioning

ptract The total tensile power required (in kW)
� Weight of vehicle
a The instantaneous acceleration
S The frontal surface area (in m2)
g The gravitational constant (in m/s2)
� The road angle
Cd The coefficient of aerodynamic drag
Cr The coefficient of rolling resistance
� The air density (in kg/m3)
� The conversion factor of fuel
V The engine displacement (in L)
K The engine friction factor
Υ The engine speed

It can be said that the main measure of CMEM is fuel consumption. So the fuel 
consumption per cycle is almost a linear function of the work output per cycle for 
the power level of less than two-thirds of the power at open throttle. This is directly 
related to the engine power demand ( p ) and engine speed ( Υ ). According to the 
symbols used and based on [6], the basic fuel consumption module is introduced as 
follows:

Fr = �
(
KΥV +

P

�

)/
� in which, p = ptract

/
ntf + pacc and ptract where ptract is 

obtained from the following relationship:

Now the new parameters are defined to simplify the above formula of Fr(in L). It 
is assumed that the vehicle with a speed v travels a distance of d units (in meters), 
and � = �∕�� , � = 1

/
1000ntf � , � = a + g sin � + gCr cos � , � = 0.5Cd�S , then:

ptract =
(
Ma +Mg sin � + 0.5Cd�Sv

2 +MgCr cos �
)
v
/
1000

Fr = ���dM + ��d�v2 + �KΥVd∕v
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The above function Fr is a double differentiable function in terms of v and also 
has a mean point v according to the values K . Therefore, if the speed of the vehicle 
increases to an acceptable level, fuel consumption will decrease, and if it exceeds 
this value, it will increase fuel consumption. Now, the energy emissions cost is 
defined as:

The cost of pollution emissions is as:

Some nonlinear expressions exist in the objective functions and constraints (7). 
In the next section, firstly, some linearization techniques are applied to linearize the 
model, and then the solution procedure will be described.

3 � Solution method

The proposed model is nonlinear and also belongs to NP-hard problems that cannot 
be solved by exact methods. Below we first try to use some linearization techniques 
to linearize P1 . The purpose of this work is to prepare the structure of the prob-
lem in a form suitable for the application of Bender’s solution method. Then, the 
Benders decomposition algorithm and BPSO are combined to obtain the optimal or 
near-optimal solution. This method can be applied to other models with the same 
structure. The calculation results obtained in Sect. 5 confirm the superiority of this 
method over other methods in terms of the quality of the solution in the appropriate 
time.

3.1 � Linearization phase

This section deals with the linearization of the model. In the objective function and 
the expressions related to the costs of quality loss, keeping fresh the products, the 
pollution emissions, and the penalties, as well as the constraint (7), exist non-linear 
terms.

Without loss of generality, the speed of the vehicle can be considered discretely 
[7], and the linearization procedure is applied based on this hypothesis. Among all 
the different methods that exist for linearizing expressions containing integer varia-
bles, it can be said that the use of binary variables is the most common. There are 
two important widely used ways to represent a discrete variable based on binary 
variables. In one of the methods, for each possible value that the discrete variable 
can take, a binary variable is defined and a constraint is added to the problem. And 
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only one of these binary variables is allowed to take the value of 1. The problem 
with this method is increasing the number of binary variables. The second method is 
to display integers in base 2. For the variable vpk

ij
 that is considered as discrete, finite 

sets with Spk
ij

= {1, 2, 3, ...r, ..} which r ∈ R , for speed levels are defined to corre-

spond to a fixed value,vpk
ijr

 , i.e., vpk
ij

∈
{
v
pk

ij1
, v

pk

ij2
, ..., v

pk

ijr
, ...

}
 . If Ω be the smallest num-

ber ( Ω =

[
ln v

pk

iju

ln 2

]
+ 1 ) that applies to the relation vpk

iju
≤ 2Ω , then  vpk

ij
 can be written as 

v
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�=0
2�Ψ
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ij�
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Now, consider the nonlinearity term vpk
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 for every i, j, p, k, � . And accord-

ing to the definitions made, the equivalent constraints to these definitions are also 
added to the model:
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And so, C′
3
 approximated as F2

∑
k∈K

∑
i∈I0

∑
j∈I
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k
ij
− qj�1�
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.

Now, consider nonlinear terms xk
ij
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 and xk
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i
, 0} in function C4 . To line-

arize the first multiplication function, we have to define the new continuous variable 
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 and new constraints as:

For the second term firstly, the new continuous variable WLk
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In the case of linearization of early and late penalties, the process is simi-
lar to the previous case. Thus, continuous variables WLk
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Finally, it is time to linearize the pollution emission cost function. To linearize 
(v
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)2 , a new integer variable vp
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 is applied in the following way:
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3.2 � Solving the linearized model:

In this section, a heuristic hybrid method based on Benders Decomposition and PSO 
algorithms is presented.

3.2.1 � Benders decomposition phase

The structure of the linearized model is such that Benders decomposition can be 
applied to solve it. In the Benders decomposition method, the mixed integer pro-
gramming problem is decomposed into two sub-problems called a master problem 
and a sub-problem. And each of these sub-problems is solved iteratively until reach-
ing the optimal solution [3]. The sub-problem is a continuous linear model involv-
ing continuous variables and their constraints from the main problem. The master 
problem is a mixed-integer model that includes the integer variables of the main 
problem and their constraints as well as a continuous variable that links the two sub-
problems. The optimal solution obtained from solving the master problem is a lower 
bound for the main problem. Also, by using the solution obtained from the master 
problem placing the obtained values of the integer variables of this problem in the 
sub-problem, and solving the dual problem of the sub-problem, an upper bound can 
be obtained for the main problem. In the next iteration, one or more cuts are gener-
ated. These cuts are added to the master problem, and the master problem is solved 
again with new constraints, to obtain a new and better lower bound. This process 
continues until the upper and lower bound gaps are reduced to an acceptable value 
or a zero. It is worth mentioning that, in several finite iterations, the Benders decom-
position algorithm finds an optimal solution. Next, the main problem P′

1
 that is used 

to create the master problem and the sub-problem is presented:
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In which H(.) is the Benders’ sub-problem and how to develop it are presented in 
the next section.

3.2.2 � Benders sub‑problem

The Benders sub-problem H(.) includes continuous variables hijk,�
pk

ij�
,WLk

i
,WUk

i
,

R
pk

ij
,R

′k
ij
, � k

ij
, �

′k
ij
, �

pk

ij�
 and an optimal value of them is obtained by solving the sub-

problem with the fixed values ṽpk
ij
, 𝜎̃

pk

ij𝜃
, x̃k

ij
, 𝛿0k

ij
, 𝛿1k

ij
, 𝛿2k

ij
, Ψ̃

pk

ij𝜃
 . This problem can be rep-

resented as:

It is worth mentioning that solving the P2 , it decomposed into |I| independent 
sub-problems for each i ∈ I.

3.2.3 � Benders master problem

Let are the dual variables of constraints from the sub-problem P2 , Whose optimal 
value is specified by 𝜛̃1′

ijk
, 𝜛̃1

ijk
, 𝜛̃2

ijpk
, ..., 𝜛̃36

ij𝜃pk
 . Then the Benders master problem is 

presented as:
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The Eq.  (54) shows the objective function of the Benders master problem. The 
Eq. (55) demonstrated the optimality cut and added to the master problem when the 
sub-problem is solved. Also, the Benders master problem is solved by the BPSO 
algorithm.

3.2.4 � Binary PSO phase

Particle Swarm Optimization is a population intelligence-based optimiza-
tion algorithm. PSO algorithm is reasonable for high dimensional optimiza-
tion models, with information-sharing components fast convergence speed, 
and straightforward and helpful parameter settings [5]. Kennedy and Eber-
hart [11] proposed the BPSO method. Let the particle’s length and N’s popula-
tion size be named by D and N respectively and XPn = (xp1

n
, xp2

n
, ..., xpd

n
, ..., xpD

n
)

,VPn = (vp1
n
, vp2

n
, ..., vpd

n
, ..., vpD

n
) which are the position vector and velocity 

vector of the nth particle. Also, let Pbestn = (Pbest1
n
,Pbest2

n
, ...,PbestD

n
) and 

Gbest = (gbest1, gbest2, ..., gbestD) specifies the best position of the nth particle 

(55)
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and the best position of the group until now respectively. The other notations are 
defined below:

� Known as inertia weight which is applied as a speed parameter factor to create a better 
search capability and it’s usually valued between 0.4 to 0.9

c1(c2 ) Acceleration coefficients which represent the rating trust in the particle’s own experience
r1(r2 ) Random values in the range [0, 1]

So, based on these notations the position and velocity of each particle are 
updated regarding the following equations:

Regarding the decoding scheme in [16] the above velocity equation remains 
unchanged until the following equation of the position updating is replaced:

In that sigmoid function S(vpd
n
(t)) = 1∕(1 + exp(−vpd

n
(t)) is applied to deter-

mine the probability of the d-th element of the n-th particle swarm.
Now, it is time to adapt the BPSO algorithm to solve the master problem.
In the first step, initial values of �, c1, c2, r1, r2 are set and the initial values of 

particle binary variables XPn = (xk
ij
, �0k

ij
, �1k

ij
, �2k

ij
, Ψ

pk

ij�
)n are randomly initialized by 

using the equation of the updating position. It is worth mentioning that the value 

of vpk
ij

 and then �pk

ij�
 are determined according to equations vpk

ij
=

Ω∑
�=0

2�Ψ
pk

ij�
 and 

v
p

ij
Ψ

pk

ij�
= �

pk

ij�
 . Then the value of the fitness function at the current position n-th 

particle is calculated via Z3(XPn) . According to the fitness values of particles, the 
best personal position of each particle named Pbestn , and the best collection of all 
particles is considered to be Gbest . In the second step XPn will be updated and in 
the third step, the best personal position is updated if the current position of the 
particle is better than Pbestn . In the next fourth step, the best global position is 
updated if the current positions are better than the solutions Gbest . The algorithm 
should be repeated from the second step until the specified iteration.

4 � Performance analysis and results

To evaluate the performance of the proposed model and proposed solution algo-
rithm, some experiments were carried out. At first, the proposed model was tested 
on a real case study model. Implementing a real model makes it possible to see the 
results in a concrete example. In the following, some practical examples and ran-
domly generated samples are considered to evaluate the proposed solution method. 

XPn(t + 1) = XPn(t) + VPn(t + 1)

VPn(t + 1) = �VPn(t) + c1r1
(
Pbestn − XPn

)
+ c2r2

(
Gbest − XPn

)

xpd
n
(t) =

{
1 if ud

n
(t) > S

(
vpd

n
(t)
)

0 otherwise
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Finally, sensitivity analysis on changes in the main parameters of the model is to be 
done in the best possible way. All calculations have been performed using GAMMS 
25.2 software on a system with Intel (R), Core (TM) 2 specifications, 2.40 GHz 
CPU, and 3.00 GB RAM.

4.1 � Validation of the proposed model via a real case study

In this subsection, to show the efficiency of the proposed model, experiments were 
run using a network from the literature (i.e. a simple version of the Chongqing city 
Fig. 2. from [12]). This is the cold distribution chain case for a Chongqing city. This 
system distributes fresh vegetables from DC (depot center) to its customers in 16 
central areas (1 to 16) of the city. Table  2 shows the location and coordinates of 
these 16 points as well as the amount of demand and time window for them, respec-
tively. The other related parameters of the model are extracted from [12].

Three allowed speed periods [vp
ijl
, v

p

iju
] = [20, 40], [45, 80] and [20, 40][20, 40] are 

considered for 3 time periods [4 ∶ 30, 5 ∶ 30), [5 ∶ 30, 6 ∶ 30), [6 ∶ 30, 7 ∶ 30] of 
traffic. Supposed that the service time to each customer is 2 min and the shipping cost 
for each arc is a fixed unit ( cij = 1 ). The capacity of vehicles is the same and equal to 
1.7. The obtained results from the proposed model are compared with the best solution 
reported in [12] which solved their model with constant speed. For a better comparison, 
5 types of objective function costs considered in both models, as well as the length of 
the route traveled and the load capacity moved by each vehicle, have been reported. 
These 5 types of costs include fixed vehicle costs, losing quality, refrigeration, penalty, 
and environmental costs. It is worth mentioning that emissions cost only includes CO2 
emissions. The results are given in Table 3.

Fig. 2   Customer distribution point location
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The results show that 3 vehicles have been used and 3 service routes have been cre-
ated in the network. The presented model has been able to serve customers with the 
lowest cost by observing the speed of the vehicle in any traffic period and related time 
window. Note that considering the variable speed in traffic periods, in addition to being 
close to reality, led to reduced costs. The proposed model identifies the most optimal 
route to prevent traffic jams and reduce pollution, which is different from the obtained 
routes in [12]. The optimal paths obtained from solving the model are shown in Fig. 3.

4.2 � Comparison and validation of the hybrid method

This section tries to evaluate the performance of the proposed solution algorithm. 
For this purpose, several test instances from [23] are considered. These samples are 
categorized based on the number of customers. There are 9 categories of instances 
with different sizes and 5 samples from each category. Eight modes of 10, 15, …, 
200 are considered for the number of customers, and corresponding to each of these 
cases, several vehicle devices from 2 to 25 are considered. In the considered sam-
ples, the service time (unloading) and time windows are known, for each customer. 
The horizon time starts at time 0, points a1, a2, and Tmax are set as 2, 7, and 9, 
hours respectively, and allowable speed periods are considered and [20, 40].

Table  4 reports the calculation results. For each category, the average solution 
of 5 samples is reported. The first column indicates the name of each instance, for 
example, UK10 means a network with 10 clients. The maximum number of vehicles 
used is shown in the second column.

Table 2   Customer information

Customer 
number

X coordinate (km) Y coordinate(km) Demand (t) Earliest time Latest time

1 652.962 3,272.595 0.4 5:00 7:00
2 641.474 3,269.611 0.2 5:00 7:00
3 651.208 3,268.814 0.1 5:30 7:00
4 655.236 3,271.702 0.35 5:00 6:30
5 644.652 3,275.904 0.2 5:00 6:00
6 640.402 3,277.821 0.4 5:30 7:00
7 647.522 3,270.582 0.25 6:00 7:00
8 644.408 3,263.427 0.35 6:00 6:30
9 646.248 3,275.309 0.15 5:00 6:00
10 642.683 3,272.029 0.45 5:00 7:00
11 647.325 3,267.129 0.2 6:00 7:00
12 648.584 3,279.836 0.3 5:30 7:30
13 645.184 3,270.182 0.25 6:00 7:00
14 647.937 3,275.885 0.15 5:00 6:00
15 651.609 3,275.103 0.2 5:30 7:00
16 654.799 3,276.070 0.1 6:00 7:00
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Now, to show the quality of the obtained solution from the proposed method, a 
comparison has been made with the software optimization CPLEX. The best objec-
tive value corresponding to the feasible solution obtained by CPLEX for the P′

1
 

within a time limit of 9000s is considered. CPLEX solver can be obtained to the 
desired optimal solution for small instances up to UK25. For medium-size tests up 
to UK100, CPLEX could not complete the solving process promptly (9000 s) and 
therefore the best value obtained from the objective function was reported as the 
best solution detected. Of course in large-scale cases, no optimal solution is obtained 
by CPLEX. Indeed, by increasing the size of the problem, the computing time per-
formed by CPLEX increases too rapidly.

So, for doing better evaluation a Benders decomposition method, a Meta heuristic 
FA algorithm [21], and an artificial intelligence SA algorithm [19] are applied, and 
they enable solving larger-scale problems. Let ZCP , ZBP , ZB , ZFA and ZSA are the best-
obtained solution by CPLEX, the proposed method, Benders decomposition, and the 
firefly algorithm respectively. Based on these symbols the label GapCP&BP(GapCP&B

,GapCP&FA and GapCP&SA ) demonstrates the gap between ZCP and the ZBP(ZB,ZFA and 
ZSA ) which is calculated by ZBP(ZB or ZFA or ZSA)−ZCP

ZCP
 , and the min, max, and average gaps 

from 5 solved tests of each category are reported in Table 4. The labels TCP,TBP , TB , 
TFA and TSA , show the average time required for solving the model by the five 
methods.

According to the achieved results, the proposed algorithm can obtain the optimal 
solution for small cases (up to UK25), which is proof of the effectiveness of the pro-
posed algorithm in obtaining the optimal solution for these cases. For some medium 
cases in particular, for size instances with 50 and 75 nodes, an optimal solution is 
not available, by the CPLEX within the given time limit. In most of these cases, 
the proposed algorithm introduces a better solution to the upper bound provided by 

Fig. 3   Optimal routes based on the proposed model
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CPLEX. For larger sizes instances (especially larger than the UK100), a feasible 
solution with CPLEX is not available within 9,000  s. In most of these cases, the 
proposed method, Benders Decomposition, Firefly algorithm, and Simulated anneal-
ing algorithm obtained a better solution compared to the upper bound which they 
are obtained by the CPLEX solver. Of course, the obtained negative gaps reflect 
this fact. However, the results show that the quality of the obtained solution from 
the proposed and Benders methods is higher than the FA. The quality of the solu-
tion obtained by the SA algorithm is better than the Benders and FA methods and 
lower than the proposed solution method. At the same time, the calculation time of 
the proposed hybrid method is reasonable and less than the Benders method, and 
it’s more than the FA and SA methods, but it is not much different from them. If 
we want to make a general comparison between the proposed method, FA, and SA 
methods, we can say that the SA method works relatively faster, but the proposed 
method obtains more accurate solutions. Remarkably, the existing time difference 
(albeit small) is related to the additional operation of the solution of Benders’ master 
problem. Generally, the time required increases as expected but is still reasonable.

4.3 � Sensitive analysis of the model

This section is dedicated to the sensitivity analysis of the model from the point 
of view of changes in the main assumptions regarded in the model that have been 
investigated. For this reason, we will provide a summary of the results for some 
examples (based on the example in 4.1) that differ in only one parameter that has 
been considered.

4.3.1 � The effect of capacity vehicles

This evaluation tries to show the effect of capacity vehicles concerning the different 
costs as well as average speed. To this end, several test examples with different load 
capacities have been considered and the calculation results are reported in Table 5.

According to Table 5, it can be said that by increasing the capacity of vehicles, 
regarding the shipping cost, the vehicles may choose a better route with more vol-
ume. Therefore, the total distance between these cases has decreased. This route 
may be delayed or even accelerated to serve some customers in the promised time 
window and it in turn causes to increase in the penalties. Of course, the total cost 
should be reduced. Because the model identifies the optimal solution, if changes in 
routing lead to increasing the overall cost, the model considers the same path as the 
lower capacity. Based on the results, when the vehicle’s capacity increases, a smaller 
number of vehicles can be used to cover customer demand, which will reduce the 
environmental, refrigeration, and fixed costs (the cost of keeping the material). But 
by reducing the number of vehicles, the penalty cost and cost of losing the quality of 
material increases. On the other hand, by increasing the number of vehicles (to more 
than 4), the penalty cost is zero, but environmental costs reach their maximum value. 
These results indicate that meeting only one particular purpose cannot maximize the 
interest of the company. So, to obtain the best performance, optimization should be 
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considered for several goals. As you can see, with increasing vehicle load capacity, 
the number of vehicles used is reduced from 5 to 2. This gives the direct relationship 
between the maximum load capacity, the number of vehicles, and the total cost. The 
results and the relationship between the cost functions are shown in Fig. 4. Based 
on this figure, increasing the load capacity, losing quality (C3), and penalties (C5) 
costs have increased, but the costs of refreshing (C4) and environmental (C6) have 
decreased. Finally, it is suggested that companies should check all distribution con-
ditions in the process of routing paths with the appropriate maximum load capacity 
and number of vehicles.

4.3.2 � The impact of variable speeds at traffic periods:

This subsection is dedicated to the effect of variable speed. For this reason, the 
previous example with different constant speeds in time traffic period and variable 
speed is considered. The computational results are shown in Table 6. It should be 
noted that in each example, the capacity of all vehicles is the same and equal to 1.7, 
so the optimal number of vehicles in all scenarios is 3.

From Table 6, it can be concluded that having a constant and low speed of the 
vehicle leads to an increase in fuel consumption, emission costs, and an increase in 
the number of penalties for early or late servicing, and in general, it can be said that 
the total cost is far from the optimal cost. Meanwhile, the high speed reduces the 
early or late service penalty. Note that increasing the speed to a certain extent leads 
to a reduction in fuel consumption and emission costs, and if the speed increases too 
much, fuel consumption and emission costs will increase. According to the results, 
it can be said that the closest solution to the optimal solution is obtained with speed 
(35, 70, 35), but again, in no case with constant speed, the optimal value obtained 
with variable speed was not achieved. These results show that considering the vari-
able speed, the model seeks to find a balance between the cost of penalties, emis-
sions, and other costs. The results and the relationship between the cost functions 
are shown in Fig. 5.

Table 5   Results from changes in vehicle capacity

Load 
Capacity

Number 
of vehi-
cles

Average 
speed

Total 
distance

Total C1 Total C3 Total C4 Total C5 Total C6

1 5 55.61 240.16 1000 62.49 160.49 0.00 291.94
1.3 4 58.41 212.69 800 64.16 143.50 0.00 252.18
1.7 3 60.47 182.76 600 73.20 116.67 5.44 192.47
2 3 60.47 182.76 600 73.20 116.67 5.44 192.47
2.5 3 60.07 181.91 600 80.97 121.18 10.94 190.42
3 2 64.72 174.16 400 86.15 110.91 32.47 180.03
3.5 2 64.19 173.19 400 85.43 111.27 31.25 180.15
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4.3.3 � The impact of congestion periods

One of the factors influencing the costs related to early or late penalties, fuel costs, 
and pollution is traffic periods which we will verify in this section. So, 5 different 
scenarios on the network related to the example are considered. The two first cases 
are related to free-of-traffic periods with free speed and constant speed, respectively. 
The other 3 modes are shown in Table 7.

The results show that considering traffic congestion intervals can lead to different 
results. Free speed and constant speed lead to two completely different solutions that 
in the first case imposes the lowest possible cost and in the second case the highest 
possible cost to the objective function. Considering the traffic intervals, the results 
seem more logical.

In the case where the free traffic period has more time, the average speed is higher 
and as a result, the penalties, the cost of losing quality, and the cost of refrigera-
tion are reduced. On the other hand, because a longer path may be chosen to reduce 
the penalties, the distance traveled is longer than in the fourth case, and the cost of 
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Fig. 4   Sensitivity analysis based on vehicle capacity on objective costs

Table 6   Comparison of different fixed speeds and variable speeds

Scenario (v
1

, v
2

, v
3

) Total 
distance

Average 
speed

Total C3 Total C4 Total C5 Total C6

Variable speed (20,40),(45,80),(20,40) 182.76 60.47 73.20 116.67 5.44 192.47
1 (25,50,25) 181.33 35.89 90.46 135.19 38.06 227.82
2 (30,60,30) 181.33 44.12 81.19 126.61 25.13 211.93
3 (35,70,35) 182.76 59.80 75.01 118.87 9.55 198.17
4 (37,75,37) 185.31 62.39 73.19 116.70 4.81 201.25
5 (40,80,40) 187.54 63.17 72.85 115.11 6.19 202.36
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fuel consumption and environmental pollution is higher. Also, for the case where the 
second period is smaller (fifth case), the average speed has decreased and as a result, 
the costs of penalties, losing quality, refrigeration, fuel consumption, and environ-
mental pollution have increased in comparison to the fourth case.

4.3.4 � The impact of time windows

In this part, the impact of time windows has been investigated. To this end, expand-
ing and narrowing the time windows up to 20% are considered. That is the distance 
from the upper and lower time bounds decreases or increases by this percentage. 
The computational results are reported in Table 8.

The computational results confirm that narrowing or expanding up to 10% has the 
minimum effect on solutions, such that it had a maximum 1% effect on total costs. 
While, narrowing or expanding time windows by 20%, have a considerable effect on 
the objective function. If time windows are expanded by 20%, the penalty will be 
zero, while narrowing the time window by 20%, leads to an increase in the penalty 
significantly. Also, it can be concluded from the output results that, narrowing the 
time window causes to increase in the average speed of the vehicle to avoid paying 
penalties, and vice versa.

4.3.5 � The effect of penalty cost

In this section, the effect of penalty cost of late or early time windows has been con-
sidered. For this purpose, increasing and decreasing the penalty by up to 50% has 
been examined. The calculation results are reported in Table 9.
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The results show that increasing or decreasing the penalty up to 10% does not 
have much effect on the solutions. While increasing or decreasing the penalty by 
50% has a significant effect on the solution and the objective functions. If the late-
ness or early arrival penalty is reduced by 50%, the penalty cost is significantly 
reduced. In this case, the cars are not in a hurry to arrive at a certain time, and the 
average speed of the car is lower than in other cases. While increasing the penalty up 
to 50% leads to a significant increase in the cost. It can also be concluded from the 
results that increasing the penalty rate increases the average speed to avoid paying 
the penalty and vice versa.

4.3.6 � The effect of the fuel consumption cost

In the previous analysis, it was shown that determining an appropriate speed 
causes it to go down fuel consumption and greenhouse gas emissions and hence 
the related costs. In this section, we try to check the sensitivity of the resulting 
solutions to changes in fuel consumption costs. For this reason, we consider dif-
ferent amounts of costs in the range that we have an increase or decrease of up 
to 50%. Table 10 reports a summary of the results, the results show that minor 
changes in unit fuel consumption do not significantly change the emission cost, 
penalty cost, and overall solutions obtained.

The more drastic changes in fuel cost may lead to significant differences in 
the solution obtained. The higher fuel cost leads to a decrease in average speed, 
a decrease in fuel consumption, and consequently a decrease in emission cost, 
an increase in the amount of late and early penalties, and the total increase in the 
objective function value. Also, the lower fuel cost leads to an increase in average 

Table 8   Analysis of time window changes in the results

Narrowing Total distance Average speed Total C3 Total C4 Total C5 Total C6

-20% 181.33 62.83 71.38 115.17 14.13 194.97
-10% 182.76 60.61 72.75 116.01 7.35 192.76
0 182.76 60.47 73.20 116.67 5.44 192.47
 + 10% 182.76 60.21 73.81 116.91 3.17 192.53
 + 20% 184.32 58.66 75.29 118.64 0.00 193.88

Table 9   Analysis of penalty cost changes on the results

Changes Total distance Average speed Total C3 Total C4 Total C5 Total C6

– 50% 184.32 59.07 75.17 119.28 3.28 193.37
– 10% 182.76 60.11 73.91 116.85 4.39 192.51
0 182.76 60.47 73.20 116.67 5.44 192.47
 + 10% 182.76 60.98 72.61 116.12 7.14 192.39
 + 50% 180.71 64.19 70.37 113.19 32.85 195.11
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speed, an increase in fuel consumption, and consequently an increase in emission 
cost, a decrease in the amount of late penalties, and a total increase in the objec-
tive function value. Of course, it can also be inferred that the effect of fuel con-
sumption on the objective function is almost less than the soon and late penalty. 
In fact, in some cases to serve customers within the soft time windows (with high 
penalties for delayed and early), vehicles are forced to increase their speed even if 
it leads to the need for more fuel and so emissions.

4.3.7 � The impact of the cost of keeping fresh

In this section, the effect of the cost of keeping fresh has been investigated. Since 
the customer service time, i.e. the time when the refrigerator is open is consid-
ered as fixed, increasing or decreasing the fresh cost for the refrigerator to be 
open does not affect the solutions. So, only increases and decreases the total cost 
of refrigerating during the path has been investigated and its change has been 
considered up to 50%. The calculation results are reported in Table 11.

The results show that increasing or decreasing the refrigerating cost has a sig-
nificant effect on the answers. although, by increasing or decreasing the cost of 
keeping fresh up to 10%, the path has not been changed, it affects the cost of 
refrigerating and the average speed. When the increase or decrease is 50%, we 
have a significant effect on the answers. If we reduce the cost of refrigerating by 
50%, the costs of penalty, fuel, and quality will increase, but the average speed 
and cost of refrigerating will decrease significantly. The increase in refrigerat-
ing cost by up to 50% leads to a significant increase in all costs except the cost 
of quality. When the cost of refrigerating increases, to pay cost less, the vehicle 
moves faster.

4.3.8 � The impact of departure time

In the model presented, the time of departure from the depot is considered as a vari-
able. In this part, we examine the effect of constant departure time. Assume that all 
vehicles start moving at the initial time. Table 12 shows the obtained results.

Table 10   Analysis of the effect of the cost of fuel changes on the results

Changes Total distance Average speed Total C3 Total C4 Total C5 Total C6

– 50% 183.67 64.28 70.37 114.47 5.48 195.37
– 10% 182.76 60.83 72.79 115.73 4.73 192.94
0 182.76 60.47 73.20 116.67 5.44 192.47
 + 10% 182.76 59.71 74.43 117.38 8.47 193.51
 + 50% 180.71 57.38 78.38 120.47 17.47 190.38
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The results show that if the start time is constant, it affects lateness and earliness 
penalties, and as a result, the speed of the car increases, which leads to an increase 
in emissions.

5 � Conclusion and discussion

This work presented a green VRP model for a cold chain with traffic intervals and 
variable speed. The main objective is to minimize the total costs including the fixed 
cost of using vehicles, the transportation, and the quality loss, the keeping refresh-
ing cost of products, the penalties, the energy, and greenhouse emissions costs. Fuel 
consumption and travel time on each route depend on the distance traveled as well 
as the speed of the vehicle at the time of day that route is traveled. Traffic is differ-
ent at different times of the day and it is not always possible to move at a constant 
speed. Therefore, the optimal distribution path by the objective model considering 
vehicle speed is closer to reality. In this study, three traffic periods are considered 
based on traffic congestion. The proposed model is nonlinear, which has been trans-
formed into a mixed-integer linear optimization one, by using some linearization 
techniques. To solve the linearized model, a hybrid solution method based on the 
Benders decomposition method and PSO algorithm was proposed.

The presented model was implemented as a practical example. The results 
showed that considering all GHG emission costs is better for target performance 
and can reduce total costs. The sensitivity analysis was also checked out based 
on the change in some existing parameters and assumptions. The overall results 
show how much the fuel consumption, emissions, and objective functions are 
affected by these parameters.

Table 11   Analysis of the cost of keeping fresh changes in the results

Changes Total distance Average speed Total C3 Total C4 Total C5 Total C6

– 50% 183.18 58.82 75.49 71.47 7.38 193.17
– 10% 182.76 60.26 73.59 107.72 5.86 192.83
0 182.76 60.47 73.20 116.67 5.44 192.47
 + 10% 182.76 61.38 72.93 124.36 5.10 192.40
 + 50% 180.71 65.36 71.38 156.19 9.92 197.39

Table 12   Analysis of the departure time of vehicles from depot on the results

The departure time Total distance Average speed Total C3 Total C4 Total C5 Total C6

Variable 182.76 60.47 73.20 116.67 5.44 192.47
Constant 181.17 63.85 71.29 115.38 17.39 193.81
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The results showed that increasing the maximum load capacity of the vehi-
cle led to increasing both penalties and the loss of quality costs, and the other 
costs were decreased. Also, reducing or increasing the speed of the vehicle too 
much will increase the emission costs and fuel consumption. Changes in traffic 
intervals have the conclusion that if the free speed traffic period has more time, 
the average vehicle speed will increase, and as a result penalty, the losing qual-
ity cost, and the cost of refrigeration will be reduced. On the other hand, for the 
case where the free speed traffic interval is smaller, the average speed decreases, 
and as a result, all costs (except transportation) increase. Furthermore, expanding 
or narrowing the time window up to 10% had no significant effect on solutions 
other than the penalties. While increasing or decreasing the time window further 
than 10% increases the fuel consumption and emission costs. The more drastic 
changes in fuel cost, refrigerating cost, and departure time may lead to signifi-
cant differences in the solution obtained. A higher fuel cost leads to a decrease 
in average speed, a decrease in fuel consumption, and consequently a decrease 
in emission cost, an increase in the amount of late and early penalties, and the 
total increase in the objective function value and vice versa. If we reduce the 
refrigerating cost by 50%, the costs of penalty, fuel, and quality will increase, 
but the speed and cost of refrigerating will decrease significantly. In the end, to 
examine the proposed hybrid algorithm, a sample set with different sizes that are 
available in the literature was evaluated. Also, the results of the proposed method 
have been compared with four other methods, namely the CPLEX method, Bend-
ers decomposition, firefly algorithm, and Simulated annealing algorithm in terms 
of solution quality and time. The results showed that the proposed hybrid method 
obtains optimal and near-optimal solutions in a reasonable time. By overall com-
parison between the methods, the SA method performs relatively faster and the 
proposed method obtains more accurate solutions.

For future work, as a suggestion, the model can be brought closer to the real 
problems by considering the conditions of uncertainty. There are uncertainty fac-
tors such as road and weather conditions, as well as customer demand patterns 
that cannot always be considered constant. In addition, a wider network with sev-
eral types of services or several depots can be considered. Also, it seems that the 
proposed model can be used for problems with alternative fuels, which can be 
considered as a suggested work for future research. The discussion of the com-
petitive market and the two-level model can also be considered on the problem.
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