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Abstract
The distribution feeder reconfiguration represents a major process of operation in 
the distribution system utilized to enhance grid performance. Given disparities in 
the electricity price as well as smart networks’ load pattern, the distribution system’s 
operational problems are much more time-dependent and more complex than before. 
For this purpose, the dynamic distribution feeder reconfiguration with diverse objec-
tives such as energy not supplied, energy loss and operational cost is formulated 
in this research. Time of use service of demand response program is suggested to 
change customers’ consumption patterns. Given the innate intricacy of this issue, an 
improved particle swarm optimization (IPSO) algorithm is presented to address the 
problem of dynamic distribution feeder reconfiguration in the presence of energy 
storage systems, distributed generation units, and solar photovoltaic arrays. In this 
paper, the presented algorithm is tested in the IEEE 95-node test system, and discuss 
its advantages by drawing analogy with other evolutionary algorithms.

Keywords  Distribution feeder reconfiguration (DFR) · Improved particle swarm 
optimization (IPSO) · Distributed generation (DG) · Energy not supplied (ENS) · 
Smart distribution networks

1  Introduction

The design of distribution systems is mesh-like in shape, they operate in a radial 
configuration. This is because several distribution networks’ operation and control, 
such as voltage protection and control, are based on the premise regarding the radial 
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shape of the distribution systems. Hence, in these networks, voltage drop and line 
losses are higher than transmission networks. A variety of methods could be used 
to minimize distribution system’s losses. In most of these methods, it is essential 
to install and commission new equipment. Besides imposing a financial burden 
on companies, this extra equipment may provoke novel network faults that may to 
the disruption of the customer service. In the distribution systems, there are sev-
eral switches for feeding nodes from various paths, among which distribution feeder 
reconfiguration (DFR) is an operation process in the distribution systems that looks 
for the radial topological configuration of the best feeder through the management 
of the “Open” or “Close” modes of switches and tie-switches to optimize differ-
ent objective functions while all operational and technical limits are satisfied [1]. 
In some studies, DFR has been adopted for the optimization of different objective 
functions such as power loss reduction, reliability indices enhancement, voltage sta-
bility improvement and operational cost reduction in the distribution network. In [2], 
the DFR approach was presented to minimize the operational cost, power loss and 
energy not supplied (ENS). In [3], the DFR technique was presented to diminish 
power loss, cost of operation and boost trans,ient stability. In [4], the DFR approach 
was utilized to improve voltage stability index (VSI) and reduce power loss. In [5], 
the DFR method was utilized to decrease power loss and distribution system’s reli-
ability indices.

Over the past decade, several methods that rely on mathematical optimization 
concepts have been utilized for the optimization of the DFR problem, including inte-
ger programming (IP) [6] and distance measurement (DM) [7] methods. Given the 
non-continuous and convex nature of the optimization problem, mathematical opti-
mization methods are not appropriate to address these problems due to their short-
comings. One of techniques used over the past decade is evolutionary algorithms 
(EAs). Given their flexibility, these algorithms can resolve optimization problems 
irrespective of their features and complexities. These characteristics have promoted 
the adoption of optimization algorithms to address DFR and several other optimi-
zation problems. The literature review of past shows that diverse EAs have been 
employed to find a solution to different types of DFR problem. Alonso et al. used 
the method of artificial immune systems (AIS) and graph theory in order to solve the 
multi-objective DFR (MODFR) problem to diminish power loss and boost network 
reliability [8]. In [9], a runner-root algorithm was presented to solve the MODFR 
problem as a way of decreasing the power loss, load balancing, and switching num-
bers. In [10], a firefly algorithm was suggested in order to solve the MODFR prob-
lem in the unbalanced network to decrease the network loss and voltage deviation of 
nodes.

Recently, a significant part of the studies has been devoted to the effects of distrib-
uted generations (DGs), energy storage systems (ESSs) and electric vehicles (EVs) 
on distribution power system operation, the extensive use of renewable sources of 
energy in power distribution systems has given rise to several issues in operation 
and management of power systems to be challenged, the distribution power systems 
with a variety of renewable energy sources are more affected by uncertainty than 
before of adding renewable sources, a limited part of the research has looked into 
the uncertainty effect of distributed generation sources in solving the DFR problem. 



1053

1 3

A dynamic model for multi‑objective feeder reconfiguration…

In [11], an improved shuffled leaping frog algorithm (ISFLA) was suggested to solve 
the DFR and DGs placement problem to decrease the power loss, voltage devia-
tion, and switching number. In [12], a grey wolf optimizer (GWO) was proposed to 
solve the DFR problem integrated with EVs in order to reduce the active loss. Fathi 
et  al.[13] proposed a novel method that could solve DFR problem by considering 
uncertainties related to demand consumption and DGs power generation as a way of 
reducing the power loss. Kavousi et al. [14] presented a stochastic DFR and optimal 
coordination of EVs to grid by accounting for the impact of wind power uncertainty. 
[15] proposed a decimal coded quantum particle swarm optimization (PSO) to in 
order to resolve the DFR problem considering DGs for the minimization of power 
loss. Kavousi et al. [16] presented a self-adaptive evolutionary swarm algorithm that 
is reliant on social spider optimization (SSO) algorithm for solving the stochastic 
DFR problem to optimally coordinate plug-in electric vehicles operation. Moham-
mad-Reza Kaveh et al. [17] presented a spiral dynamic algorithm based on bacterial 
foraging as a way of solving the DFR problem and DGs placement to reduce power 
loss and improve the voltage profile. [18] presented a hybrid big bang-big crunch 
(HBB-BC) for DGs placement and solving of the DFR problem in a distribution 
grid to decrease the power loss, operational cost and maximize the VSI. [19] pre-
sented an EA based on the algorithm of uniform voltage distribution (UVD) and 
constructive reconfiguration in order to solve DG sizing and DFR problem as a way 
of decreasing the power loss. Larimi et al. [20] suggested a risk-based distribution 
network configuration with a penalty /reward scheme by accounting for uncertainty 
of generation and load to diminish the power loss and enhance the reliability.

The literature on the DFR problem has been unsuccessful in accounting for 
daily load variations and finding a solution for DFR over a predefined time inter-
val. Because pattern variations over the studied period constitute a major distinc-
tion of dynamic and static reconfiguration methods in real systems, electricity 
price and loads are constantly changing and dynamic distribution feeder recon-
figuration (DDFR) is vital to guarantee the safety and security of an optimized 
network. In [21, 22], a dynamic model that relies on two heuristic algorithms 
was presented for stochastic feeder reconfiguration to decrease the energy loss, 
switching number and operational cost. [23] introduced a hybrid method, which 
combines PSO and SFLA in order to solve DFR and capacitor allocation prob-
lem by accounting for DGs to reduce operational cost and power loss. In [24], 
a shuffled leaping frog algorithm (SFLA) was presented to find solution for the 
DDFR by accounting for DGs and ESSs uncertainty as a way of decreasing ENS 
and boosting VSI. In [25], load variations are predicted in one or multiple con-
stant load steps during the study, and in each step, a solution is found for the 
DFR problem statically. According to this approach, the validity of the obtained 
optimal solution cannot be guaranteed for the optimization DDFR problem. In 
[26], a novel model was suggested to solve the DDFR problem by accounting for 
switching number restriction to diminish the operational cost. These constraints 
decrease the number of switching operations in different stages of reconfigura-
tion, and the optimum solution might not be achieved during the study period. In 
[27], a new hybrid algorithm, which combines IPSO and GWO was presented to 
find a solution for the DDFR problem with DGs to reduce the ENS, operational 



1054	 H. Lotfi, A. A. Shojaei 

1 3

cost and power loss. Shariatkhah et  al. [28] introduced a new hybrid algorithm 
that combined dynamic planning (DP) and harmony search (HS) method to find 
a solution for the DFR problem as a way of reducing the loss and enhance the 
network reliability. In [29], a genetic algorithm (GA) was presented to identify 
the optimal time intervals for DDFR to diminish power loss in the network. In 
[23, 24, 27], a solution was found for the DDFR problem by accounting for time-
dependent loads and constant electricity prices. One major drawback of these 
studies is considering fixed electricity price at all-time intervals, which may fail 
to provide an optimal solution for objective functions like operational cost. In 
[28, 29], the ultimate topology of a network is heavily dependent on the initial 
network topology.

In this study, in the presence of solar PV units, DGs and ES systems, the multi-
objective DDFR problem is formulated and developed in the distribution grid. 
Also, the effects of uncertainty resources and demand response program (DRP) 
is accounted for to accurately evaluate the DDFR problem and enhance the dis-
tribution system performance. The time of use (TOU) mechanism of DRP is uti-
lized to evaluate consumer attitudes to various energy prices in a day. Indeed, 
by setting varying tariffs for daily energy use, consumers can be stimulated to 
amend their consumption patterns to accomplish optimal economic performance. 
The DDFR problem’s objective functions are to reduce energy loss, operational 
cost, and energy not supplied (ENS) index. with advancements in technology and 
automation, smart grids have infiltrated in diverse aspects of modern life, so that 
any interruption in the electricity consumption of subscribers would be costly. 
Therefore, reliability enhancement is a major contribution of this paper, which is 
quantified using the ENS index. The DFR is an intrinsically complicated and non-
differentiated optimization problem and its extension to several intervals makes 
it even more complicated. Hence, appropriate proper technique to solve the pro-
posed problem is of utmost importance. To this end, a robust and powerful algo-
rithm, (IPSO) is presented to address the proposed DDFR problem’s complexi-
ties. The PSO algorithm is broadly used in studies on power system optimization 
due to its simple execution. This algorithm has several shortcomings like pre-
mature converge or entrapment into local optima in certain cases. Accordingly, 
a novel initiative is attached to the IPSO algorithm in order to enhance its popu-
lation diversity and search-ability. Since the problem addressed here is a multi-
objective problem, a tool is required for the optimization of all objectives. Thus, 
in this study, a Pareto optimization approach has been adopted to present a series 
of optimal solutions. Additionally, an external repository is considered to store 
Pareto solutions in the search process. On top of that, the fuzzy decision-making 
technique is adopted to detect the optimum tradeoff.

Accordingly, the distinguishing features of this study in solving the DDFR prob-
lem are as follows:

•	 The multi-objective DDFR problem is modelled by accounting for the ENS, 
operational cost and energy loss as objective functions.
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•	 Investigating the impacts of DGs, ESSs and solar photovoltaic (PV) units on var-
ious objective functions.

•	 Investigating the uncertainties of electricity market price (EMP) as well as power 
generation of solar PV units to solve the DDFR optimization problem.

•	 Investigating the impact of DRP on various objective functions based on TOU 
service.

•	 Presenting an evolutionary and powerful algorithm, IPSO for solving the multi-
objective DDFR.

This study is organized as follows. Section 2 and 3 elaborate on uncertainty char-
acterization, problem formulation such as objective functions and constraints and 
TOU modeling. In Sect. 4, a multi-objective optimization problem and meta-heuris-
tic algorithms are introduced. Sections 5 and 6 presents the simulation results and 
conclusion, respectively.

2 � Uncertainty characterization

Uncertainty is an adherent attribute of most phenomena. From a theoretical per-
spective, uncertainty is used as a way of modeling predicted errors in the future or 
measured values. As a result, most engineering issues are investigated in a stochastic 
environment that is characterized by uncertainty. The DDFR problem considered in 
this study investigates the impact of uncertainty sources such as electricity market 
price (EMP) and solar photovoltaic units power generation. The uncertainty mod-
eling of solar PV units power generation.

The solar irradiance is characterized by a beta distribution function [30] hourly 
based on beta distribution function and historical data, as follows:

where, fb(s) is the beta distribution function, � and � are obtained from solar irra-
diance’s historical data. The constant hourly beta PDFs are divided into different 
intervals:

where  si+1 and si are ending and starting points of ith interval, respectively.

•	 EMP in the uncertainty modeling

EMP is calculated hourly using a log-normal distribution function [24].

(1)fb(s) =

{
Γ(�+�)

Γ(�) ⋅Γ(�)
⋅ s�−1 ⋅ (1 − s)�−1 0 ≤ s ≤ 1 �, � ≥ 0

0 otherwise

(2)�i =

si+1

∫
si

fb(s)dsi
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where � is the mean value and � is standard deviation; Epr denotes a parameter of 
probability distribution function. In power systems, one of the uncertainty modeling 
approaches is scenario generation [31]. Like the Monte Carlo, this method generates 
random numbers equivalent to the number of uncertainty parameters and the prob-
ability of each uncertainty source associated and error value are computed by the 
roulette wheel relative to each random number generated [31]. For the generation 
of the first scenario, all errors of each uncertainty source are aggregated, and the 
entire scenario’s probability is obtained by multiplying probabilities linked to uncer-
tain parameters. The burden of random programming based on scenario generation 
is reliant on the number of scenarios; therefore, the suitable method for decreas-
ing the number of scenarios is significant. Hence, the backward reduction technic 
[31] is used to reduce the number of the scenarios based on eliminate the duplicate 
scenarios.

3 � Problem formulation

To implement the proposed DDFR problem, it is essential to have some decision 
variables, three objective functions coupled with multiple limitations. In the follow-
ing section, the objective functions and their constraints are discussed in detail.

3.1 � Objective functions

Three objective functions are energy loss, ENS and operational cost, which are 
defined in this study.

3.1.1 � Energy loss

We can formulate the distribution network’s energy loss [23] at all-time intervals as 
described below:

(3)fp(E
pr, �, �) =

1

Epr�
√
2�

exp

�
−
(lnEpr − �)2

2�2

�

(4)f1(X) =

24∑
t=1

Nbrch∑
i=1

Ri
||Iti ||2

(5)X =

[
XTie XSW XPDg

XPES

]
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where Ri is the resistance and It
i
 is the ith branch current at tth time interval and Nbrch 

indicates the number of branches. Also, Tiet
i
 denotes the status of ith tie switch at tth 

time interval, SWT
i
 is the sectionalizing switch number creating a loop with Tiet

i
 and 

X indicates the vector of control variables. Ntie is the number of tie switches and NSW 
indicates the number of switches. Pt

ESSu
 is the active charge/discharge power for uth 

energy storage system at tth time interval. Lastly, NESS is the number of energy stor-
age system.

3.1.2 � Energy not supplied (ENS)

A major reliability indicator, ENS shows the total energy load that is not distributed in 
outage [32]. ENS formulation at each node is as follows:

where k = {0, 1.… .n − 1}  is the distribution network’s set of nodes, Ui,j is the una-
vailability of services pertained to the reparation time in branches linked to node i 
and U′

i,j
 is service unavailability pertained to the time of restoration for branches 

linked to node i. Also, Bi,j is the failure rate of the branch between node i, j (fail/
year), ti,j and  t′

i,j
 denote the average reparation and restoration time of the branch 

between node i, j (h/fail). di,j is the length of the line (km). The following formula 
can be used to calculate ENS of the entire distribution network

(6)XTie =

[
Tiet

1
, Tiet

2
… .Tiet

Ntie

]

(7)XSW =

[
SWt

1
, SWt

2
… .SWt

Ntie

]

(8)XPDg
=

[
Pt
Dg1

,Pt
Dg2

… .Pt
DgNDg

]

(9)XPES
=

[
Pt
ESS1

,Pt
ESS2

… .Pt
ESSNESS

]

(10)ENSi = Pi

∑
i,j∈k,i≠j

(
Ui,j + U�

i,j

)

(11)Ui,j = Bi,j × ti,j

(12)U�
i,j
= Bi,j × t�

i,j

(13)f2(x) =

NBus∑
i=2

ENSi
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3.1.3 � Operational cost

The operational cost [2] is an objective function of this study, which can be formulated 
as follows:

In the objective function presented in (14), the first term is concerned with electric-
ity expenses produced by DGs. The second term is the expenses of electricity purchase 
from sub-stations and the third term is switching costs. Moreover, Pricet

DG,i
 is the price 

of ith DG and Pricet
Sub,s

 is the price of sth sub-station at tth time interval. Ndg is the 
number of DG, Nsw is the number of switches and Pricet

Sw,k
 is the switching cost at the 

tth time interval. The novel and original modes of kth switch at tth time interval and 
t − 1th time interval are represented by SWt

k
 and SWt−1

k
 , respectively.

3.2 � Constraints and limitations

This section proposes all equality/inequality constraints for the DDFR problem that 
must be satisfied. Some equality constraints are described in 3.2.1 and 3.2.2 and several 
inequality constraints are presented in 3.2.3–3.2.8.

3.2.1 � The distribution network’s radial structure

The radial structure of the network can be expressed according to (15):

where Nbus is the number of buses and Nsub is the number of sub-stations. Nbrach is 
the number of branches.

3.2.2 � Distribution power flow equations

Power balance can be expressed by (16):

(14)

f3(X) =

24�
t=1

⎛
⎜⎜⎝

Ndg�
i=1

Pricet
DG,i

Pt
DG,i

+

Nsub�
s=1

Pricet
Sub,s

Pt
Sub,s

+

Nsw�
k=1

PriceSw,k
���SW

t
k
− SWt−1

k

���
�

(15)Nbrach = Nbus − Nsub

(16)Si,t =

NBus∑
j=1

Vi,hVj,hYij∠
(
�ij − �i,t + �j,t

)
, i = 2, 3,… ,Nbus
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where Si,t is the net injected power by ith bus at the tth time interval. Vi,h and δi,h indi-
cate voltage magnitude and angle at ith bus at the tth time interval, Yij is the admit-
tance magnitude and �ij is the angle between ith and jth buses.

3.2.3 � Bus voltage limit

where Vmax and Vmin indicate the maximum and minimum allowable voltage of ith 
bus and Vt

i
 is the magnitude of voltage in ith bus at the tth time interval.

3.2.4 � Feeder limits

where It
fdr,i

 c is the current amplitude at the tth time interval and IMax
fdr,i

 is the maxi-
mum acceptable current of the ith feeder. Nfdr indicates the number of feeders.

3.2.5 � Transformers limits

where It
trns,i

 is the amplitude of current at the tth time interval and IMax
trnsi

 is the maxi-
mum acceptable current of the ith transformer. Ntrans is the number of transformers.

3.2.6 � Distributed generation unit’s constraints

where Pmin
Dg

 and Pmax
Dg

 indicate the minimum and maximum accepted active power 
values of the ith DG at the tth time interval.

3.2.7 � Energy storage systems constraints

There are some restrictions followed by energy storage units during the period of this 
problem [33], which include:

(17)Vmin ≤ Vt
i
≤ Vmax

(18)
|||I

t
fdr,i

||| ≤ IMax
fdr,i

i = 1, 2,… ,Nfder

(19)
|||I

t
trans,i

||| ≤ IMax
trans,i

i = 1, 2,… ,Ntrans

(20)Pmin
Dg

≤ Pt
Dg,i

≤ Pmax
Dg

(21)
Et
k
= Et−1

k
+ �ch,kP

t
ch,k

× Δt −
1

�dis,k
Pt
dis,k

× Δt

Δt = 1 hour, k = 1, 2…NESS, t = 1, 2,… , 24

(22)Emin
k

≤ Et
k
≤ Emax

k

(23)Pt
ch,k

≤ Pmax
ch,k
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where Et
k
 is the energy reserved in the kth energy storage unit at tth time interval. 

Pt
ch,k

 is the allowed charge rate and Pt
dis,k

 is the allowed discharge rate of  kth energy 
storage unit at tth time interval. Similarly, �ch,k / �dis,k indicates the efficiency of kth 
energy storage unit in charge/ discharge during. Pmax

ch,k
/Pmax

dis,k
 indicates the maximum 

charging/discharging rate of kth energy storage unit at the tth time interval, respec-
tively. Emax

k
 / Emin

k
 is the maximum/minimum energy reserved in the kth energy stor-

age unit, respectively.

3.3 � Time of use modeling

Demand response refers to a series of proceedings executed to alter the patterns 
of energy use to improve network reliability and inhibit price rise, particularly 
during peak network loads. The DRP participants are customers who are in 
charge of modifying their energy consumption patterns to minimize their costs, 
and as a reward, their energy cost falls. In general, DRP can be split into two 
sections: price-based programs and motivational programs [34, 35]. In the for-
mer, programs such as Critical Peak Pricing (CPP), Time of Use (TOU) rate, and 
Real-Time Pricing (RTP) are used by dynamic pricing rates. The latter is further 
divided into classical and market-based programs. Here, the TOU rate of (DRP) 
has been used to change the consumer consumption patterns to enhance system 
performance. The mathematical modeling of TOU ‌mechanism has been presented 
in (25)–(27). Based on this mechanism, the overall changed energy cannot sur-
pass a fixed value (presuming 15% of the base demand). Besides, there must be a 
balance between the overall power rise and drop over a specific period [36].

where PMDF
t,i

 is the current modified demand for ith feeder at the tth time interval 
after applying the TOU mechanism. PTOU

t,i
 and PINI

t,i
 are the rise/drop rate of load in 

TOU mechanism and initial demand of ith feeder at the tth time interval without 
TOU mechanism, respectively. TOUmax is the maximum rise/drop rate of load in the 
TOU mechanism.

(24)Pt
dis,k

≤ Pmax
dis,k

(25)PMDF
t,i

= PTOU
t,i

+ PINI
t,i

(26)
|||P

TOU
t,i

||| ≤ TOUmax × PINI
t,i

(27)
T∑
t=1

PTOU
t,i

= 0
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4 � Proposed optimization approach

Contrary to mathematical methods, EAs are not dependent on initial conditions. 
Thus, it is necessary to consider the continuity of, integral operators, objective 
functions and derivatives. This section briefly describes the multi-objective strat-
egy and improved particle swarm optimization (IPSO) algorithm.

4.1 � Multi‑objective optimization strategy

From a mathematical perspective, we can define a multi-objective optimization 
problem in the presence of inequality and equality constraints as follows:

where fi(X) is the ith the objective function, also hj(X) is equal constraint and gi(X) 
is unequal constraint. In the multi-objective optimization, the Pareto-optimal solu-
tion idea takes the place of the optimal solution idea [37, 38]. The solution X1 is 
dominated by X2 when the two conditions are satisfied:

An external memory known as the repository is used to save detected Pareto-solu-
tions in the optimization process. An increase in the number of Pareto-solutions 
may slow down the optimization algorithm. Therefore, a fuzzy clustering method is 
employed to avoid the high computational burden [39]. Accordingly, each objective 
function’s fuzzy membership function is as follows:

where the fuzzy set of the ith objective function fi(x) is shown by �i and f max
i

 and 
f min
i

 are the objective function’s upper and lower bounds, respectively. Based on 
(32), the non-dominated solutions are sorted in the repository to identify the optimal 
compromise solution.

Min fi(X) =
[
f1(X), f2(X),… fn(X)

]T

(28)gi(X) ≤ 0, hj(x) = 0

(29)∀i ∈
{
1, 2,… ,Nobj

}
, fi

(
X1

) ≤ fi
(
X2

)

(30)∃j ∈
{
1, 2,… ,Nobj

}
, fj

(
X1

)
< fj

(
X2

)

(31)�fi
(X) =

⎧⎪⎨⎪⎩

1 fi(X) ≤ f min
i

0 fi(X) ≥ f max
i

f max
i

−fi(X)

f max
i

−f min
i

f min
i

≤ fi(X) ≤ f max
i

(32)�j =

∑n

i=1
�i × �fi

�
Xj

�
∑m

j=1

∑n

i=1
�i × �fi

�
Xj

�
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where m is the number of non-dominant solutions and n is the number of objective 
functions; �i is the weight factor of ith objective function.

4.2 � Improved particle swarm optimization

The PSO algorithm is an evolutionary method first used by Eberhart and Kennedy to 
solve various optimization problems [40]. In this algorithm, which is modeled based on 
the herd life of fish and birds, each particle represents a potential solution for the opti-
mization problem where the optimum location is identified by particles based on prior 
experiences and the optimal particle in the entire population. The velocity and position 
of particles in each repetition are obtained from (33) to (34):

where Xk
i
 is the position, and Vk

i
 is the velocity of ith particle at kth iteration; c1 and 

c2 are two positive constants, r1 and r2 denote a random number between 0 and 1, pbk
i
 

and gbk are the optimum personal fitness of ith particle and the best value among all 
optimal personal fitness at kth iteration. Also, W denotes the inertia weight, which 
often falls from 1 to 0 linearly following to (35):

iter and itermax are current and maximum iteration number. The maximum and mini-
mum boundaries of inertia weight are indicated by Wmax and Wmin , respectively 
[41, 42].

In this section, a variety of mutation strategies are introduced to reinforce the IPSO 
algorithm’s ability to preclude premature local convergence by deterring over-corre-
spondence of particle population to each other. The mutation operator could be imple-
mented by randomly change particles. The IPSO algorithm’s mutation is intended to 
maintain and offer diversity. When there is no mutation, it is possible for the particle 
evaluation to be slowed down or even stopped. In the following section, mutant parti-
cles could be determined:

(33)Vk+1
i

= W × Vk
i
+ c1 × r1 ×

(
pbk

i
− xk

i

)
+ c2 × r2 ×

(
gbk − xk

i

)

(34)Xk+1
i

= Xk
i
+ Vk+1

i

(35)W = Wmax −
Wmax −Wmin

itermax
× iter

(36)X1
mut

= Xrand 1 + � ×
(
XGb − Xrand 2

)
+ � ×

(
Xrand 3 − Xrand4

)

(37)X2
mut

= XGb + � ×
(
Xrand 1 − Xrand 2

)
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Fig. 1   Flowchart of IPSO algorithm

Fig. 2   The pseudo code of IPSO algorithm
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where Xrand1 ≠ Xrand2 ≠ Xrand3 ≠ Xrand4 are mutant particles randomly selected from 
the population, and � is the mutation constant equivalent to 2 [43], rand is a random 
number between 0 and 1. Afterwards, three mutant particles are randomly selected 
in each iteration ( X1

mut
,X2

mut
 and X3

mut
 ). If the generation cost of mutation particles 

is lower than the selected particles, the selected particles are substituted by mutant 
particles in the next iteration. Otherwise, the chosen particles may remain in the 
upcoming iteration. Figures  1 and 2 show the flowchart and pseudo code of the 
IPSO algorithm.

5 � Simulation results

In this section, first the validation of the proposed method in optimizing a sam-
ple objective function is performed and after providing the parameters of optimi-
zation methods and test network specifications, the proposed method is used to 
solve the problem of dynamic feeder reconfiguration in the absence and presence 
of DG units, ESSs and demand response program.

5.1 � Evaluation of the IPSO to optimize the benchmark function

The standard objective function for optimization is used to validate the IPSO and 
PSO methods. This section shows the ability of the IPSO algorithm to minimize 
the Lévi function (a complex function with several local Optima) with two deci-
sion variables. It is noteworthy that the iteration number and the population size 
of IPSO and PSO algorithms are considered 30 and 10 to optimize the Lévi func-
tion. The simulation is done in MATLAB R2016b environment using a core-i7 
processor laptop with 2.4 GHz clock frequency and 8.0 GB of RAM. The formu-
lation of this function is as follows:

(38)X3
mut

= Xrand 1 + rand ×
(
XPb
rand2

− Xrand 2

)
+ r ×

(
XGb − Xrand 2

)

(39)f (x, y) = sin23�x + (x − 1)2
(
1 + sin23�y

)
+ (y − 1)2

(
1 + sin22�y

)

Fig. 3   T 3-D surface of Lévi function
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The 3-D surface of Lévi function with two decision variables is shown 
in Fig.  3. It should be noted that both decision variables and are bounded in 
[– 4, + 4]. The results of the proposed IPSO and PSO algorithms for solving the 
Lévi function in two-dimensional spaces are shown in the following Figs. 4 and 5, 
respectively. It is clear that from Fig. 5b, after the final iteration, all particles are 
focused on a global optimum. While in Fig. 4b, there are solutions that are away 
from the global optimal even in the final replication. The results demonstrate high 
exploitation and exploration capability of the proposed IPSO algorithm and also 
the supremacy of the IPSO algorithm compared to the PSO method.

5.2 � Solving the DDFR problem using the proposed method

The presented IPSO algorithm’s performance in solving the DDFR problem is 
assessed on the 95-node test system [44] as depicted in Fig. 6. The test system 
consists of 5 DGs (diesel generators) on nodes # 6, # 10, # 25, # 34 and # 45. 
All DGs have a capacity of 1000  kW, the test system includes three solar PV 
units of 3000 kW and their relevant ESSs which are located on nodes # 41, # 88 
and # 85. The cost of DGs is 0.042 $/kWh and the cost of switching is 0.041 $/

(a) After the first iteration

(b) After the final iteration

Fig. 4   Results of PSO algorithm for optimizing the Lévi function
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(b) After the final iteration

(a) After the first iteration 

Fig. 5   Results of IPSO algorithm for optimizing the Lévi function

Fig. 6   Single-line diagram of the 95-node test system
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kWh. The MATLAB code is developed for the IPSO concerning the objective 
functions and constraints. The TOU mechanism is executed in 12 nodes of test 
network containing #4, #5, #6, # 8, #30, #33, # 46, #47, #73, # 81, # 86 and 
# 91 nodes. The idea of using TOU is to cut the operational cost and enhance 
the performance of system by shifting the electrical loads from peak to off-peak 
times. The average hourly load profile and average electricity price for a 24-h 

Fig. 7   Average hourly load in the test network

Fig. 8   Average hourly electricity market price

Table 1   Parameters of the 
proposed algorithms

Parameters IPSO ICA PSO SFLA GEM

Population size 1000 1000 1000 1000 1000
Maximum iteration 150 150 150 150 150
r1, r2 [0–1] – [0–1] – –
C1,C2 1.49 – 1.49 – –
W [0.4–0.9] – [0.4–0.9] – –
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time interval are shown in Figs.  7 and 8. 50 scenarios are applied to simulate 
the uncertainty parameters in solving the DDFR in the stochastic environment. 
To demonstrate the IPSO algorithm’s higher power and performance, a com-
parison with other EAs including the Grande explosion method (GEM), shuffled 
frog leaping algorithm (SFLA), particle swarm optimization (PSO) and imperi-
alist competitive algorithm (ICA) is drawn. The parameters of the optimization 
algorithms are depicted in Table 1. The initial values of energy loss, operational 
cost, and ENS before the DDFR are 31,869.54 kWh, $140,651.91, and 345.56 
kWh/year, respectively. In the next section, the simulation findings are proposed 
in two cases to determine the impacts of DGs, ESSs, solar PV units and DRP in 
the deterministic and stochastic frameworks. All simulations of this study are 
done in Matlab software (ver. 2016a) on a core-i7 CPU laptop with a frequency 
of 2.4 GHz and 8 GB of RAM.

Table 2   Best results derived from the IPSO algorithm for various objective functions

Objective functions ENS (kWh/year) energy loss (kWh) operational cost ($) CPU time (S)

ENS (kWh/year) 294.31 31,935.12 133,739.32 245
Energy Loss (kWh) 313.45 29,889.23 133,844.25 156
Operational cost ($) 325.31 30,845.12 133,611.15 141

Table 3   Findings of IPSO and other algorithms for operational cost optimization for 30 Trials

Algorithm Operational cost ($) CPU time (S)

Best Mean Worst Standard 
deviation

GEM 133,685.83 133,743.72 133,809.23 45.84 178
SFLA 133,661.41 133,721.72 133,775.45 44.86 165
PSO 133,651.23 133,710.23 133,769.65 44.65 174
ICA 133,642.25 133,705.63 133,752.23 44.34 181
IPSO 133,611.15 133,659.35 133,705.15 42.65 141

Table 4   Findings of IPSO 
and other algorithms for ENS 
optimization for 30 Trials

Algorithm ENS (kWh/year) CPU time (S)

Best Mean Worst Standard 
deviation

GEM 314.23 318.89 326.23 4.15 319
SFLA 309.78 314.15 321.25 3.98 299
PSO 303.56 306.84 312.56 3.78 278
ICA 299.85 302.35 306.89 3.20 285
IPSO 294.31 296.52 300.19 2.92 245
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Table 5   List of open switches derived from the IPSO for the optimization of operational cost

LL load level

L.L Open switches

Sw1 Sw2 Sw3 Sw4 Sw5 Sw6 Sw7 Sw8 Sw9 Sw10 Sw11

1 77 7 10 81 49 84 18 86 85 32 30
2 4 43 79 81 82 35 80 63 85 32 30
3 4 43 79 20 82 84 19 86 85 71 83
4 77 78 14 81 82 35 19 62 85 32 27
5 77 43 79 81 82 35 19 86 85 87 30
6 4 78 15 81 82 52 80 86 85 32 30
7 70 43 79 22 26 35 80 86 85 32 30
8 4 78 79 81 82 84 80 86 55 32 30
9 3 78 15 81 82 84 19 86 85 32 30
10 77 78 15 81 82 35 80 86 55 32 30
11 4 78 79 81 82 84 19 86 72 32 83
12 77 43 15 81 82 84 80 86 55 71 30
13 68 78 79 81 82 84 19 86 55 87 30
14 68 43 79 81 82 84 80 65 55 32 83
15 68 7 15 81 26 84 19 86 85 32 27
16 4 78 79 81 82 84 19 86 55 32 30
17 4 43 15 81 82 84 19 86 85 32 30
18 77 78 79 81 82 84 19 65 85 32 30
19 4 78 79 81 82 35 19 86 55 87 30
20 4 78 15 22 82 52 19 86 55 87 83
21 4 78 79 81 82 84 19 86 55 32 30
22 77 43 15 81 82 84 19 86 85 32 30
23 4 78 79 81 82 84 80 86 85 87 30
24 77 7 15 22 82 84 19 86 85 87 83

Fig. 9   Convergence plot of operational cost optimization by different algorithms



1070	 H. Lotfi, A. A. Shojaei 

1 3

5.2.1 � DDFR problem without DGs, ESSs and solar PV units (Case 1)

In this case, the DDFR problem is solved irrespective of the effects of ESSs, DGs, 
and solar PV units in a 95-node test system. Moreover, the effect of TOU mecha-
nism as one of the DRP programs is considered in the evaluation of objective func-
tions. Table 2 shows the best results derived from the presented IPSO algorithm for 
all objective functions. To compare the outcomes of the single-objective optimiza-
tion introduced in the presented algorithm and other algorithms, the results of opera-
tional cost and ENS optimization acquired by various algorithms are displayed in 
Tables 3 and 4. As shown in Tables 3 and 4, the presented IPSO algorithm is capa-
ble of identifying the optimal solution compared to the GEM, SFLA, PSO and ICA 
algorithms. The obtained optimum scheme of switches for the operational cost opti-
mization in 24-h intervals is depicted in Table  5.

Table 2 displays that ENS, operational cost and energy loss derived from the 
IPSO algorithm have dropped by approximately 17%, 7%, and 6% in compari-
son to their initial values prior to the DDFR. Figure 9 shows the operational cost 

Table 6   Findings of IPSO and other algorithms for different objectives without and with applying TOU

Objective function Algorithms Before applying TOU After applying TOU
Best solution Best solution

GEM 30,695.85 30,448.75
energy loss (kWh) SFLA 30,487.54 30,248.95

PSO 30,409.56 30,188.65
ICA 30,374.65 30,139.45
IPSO 30,129.45 29,889.23
GEM 133,981.23 133,685.83

operational cost ($) SFLA 133,965.45 133,661.41
PSO 133,948.56 133,651.23
ICA 133,911.15 133,642.25
IPSO 133,851.15 133,611.15
GEM 321.35 314.23

ENS (kWh/year) SFLA 317.45 309.78
PSO 315.36 303.56
ICA 312.35 299.85
IPSO 305.45 294.31

Table 7   Best results derived from the IPSO algorithm for various objective functions

Objective functions ENS (kWh/year) Energy loss (kWh) Operational cost ($) CPU time (S)

ENS (kWh/year) 276.51 30,248.21 133,798.65 268
Energy Loss (kWh) 289.62 28,563.21 133,885.52 188
Operational cost ($) 296.42 29,489.25 133,664.14 155
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optimization’s convergence curve by GEM, ICA, SFLA, and IPSO algorithms. 
According to Fig. 9, the presented IPSO algorithm converges on an optimal solu-
tion before SFLA, GEM and ICA algorithms. To demonstrate the effect of DRP 
on the evaluation of objective functions, the results of various objective func-
tion optimizations obtained from IPSO and other algorithms in the absence or 
presence of TOU mechanism are outlined in Table 6. According to Table 6, it is 
clear that applying TOU program in solving the DDFR problem reduces ENS, 
operational cost and energy loss. For example, objective function’s values cal-
culated from the IPSO algorithm before considering the TOU mechanism are 
305.45 kWh/year, 30,129.45 kWh and $133,851.15, respectively. These values 
are reduced to 294.31 kWh/year, 29,889.23 kWh and $133,611.15, respectively, 
taking into account the TOU program.

5.2.2 � DDFR problem with DGs, ESSs and solar PV units (Case 2)

In this section, the DDFR problem is solved by considering ESSs, DGs, and solar 
PV units as single and multi-objective optimization problems. The goal of this sec-
tion is to underscore the impacts of DGs, ESSs and solar PV units on various objec-
tives, as well as the uncertainties of EMP and power generation of solar PV units 
are accounted for in the objective functions’ evaluation. Table 7 highlights the opti-
mal results derived from the IPSO algorithm presented for each objective function, 

Table 8   Findings of IPSO 
and other algorithms for ENS 
optimization in 30 Trial

Algorithm ENS (kWh/year) CPU time (S)

Best Mean Worst Standard 
deviation

GEM 282.64 286.15 290.35 3.78 305
SFLA 279.45 283.36 287.19 3.42 288
PSO 279.19 282.93 286.99 3.38 275
ICA 278.64 282.86 286.54 3.35 279
IPSO 276.51 279.68 282.15 2.84 268

Table 9   Findings of IPSO and other algorithms for operational cost optimization for 30 Trials

Algorithm Operational cost ($) CPU time (S)

Best Mean Worst Standard 
deviation

GEM 133,751.22 133,808.56 133,867.56 4.76 193
SFLA 133,715.19 133,767.25 133,824.25 4.15 181
PSO 133,699.33 133,750.89 133,805.62 3.65 169
ICA 133,682.25 133,731.26 133,782.23 3.23 176
IPSO 133,664.14 133,710.52 133,759.19 2.96 155
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Moreover, to show the power of the presented IPSO algorithm, the results of the 
ENS and operational cost optimization obtained from various algorithms are shown 
in Tables 8 and 9. According to Tables 8 and 9, IPSO can achieve an optimal solu-
tion compared to other algorithms including ICA, PSO, SFLA and GEM.

The optimal values derived from the IPSO algorithm for ENS, operational cost 
and energy loss objective functions in the deterministic framework regardless of 
the uncertainty resources are 271.23 kWh/year, $133,623.25 and 28,521.41 kWh, 
respectively. Further, the standard deviation values derived from the presented IPSO 
algorithm for ENS, operational cost and energy loss are 3.65 kWh/year, $42.75 and 
36.61 kWh, respectively. The comparison of these results with the stochastic frame-
work findings exhibits the effect of uncertainty resources on increasing the objective 
functions’ optimal values. This surge seems to place the network farther from the 
optimal operating point, but the novel solution would be the system’s desired operat-
ing point.

Table 10   Results of IPSO and 
other algorithms for different 
objective functions optimization

Objective function Algorithm Best solution Standard 
deviation

GEM 274.56 3.65
ENS (kWh/year) SFLA 271.56 3.54

PSO 271.19 3.29
ICA 270.45 3.15
IPSO 263.00 2.72
GEM 28,469.41 38.43

Energy loss (kWh) SFLA 28,432.56 37.15
PSO 28,422.23 36.85
ICA 28,415.78 36.46
IPSO 28,386.85 35.15
GEM 133,696.84 44.35

Operational cost ($) SFLA 133,678.45 43.88
PSO 133,672.32 43.69
ICA 133,664.62 43.36
IPSO 133,652.25 41.25

Fig. 10   Pareto-front for optimizing ENS and energy loss
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By looking at the outcomes of case 2 and case 1, it becomes obvious that DGs, 
ESSs and solar PV units, decreases ENS and energy loss values. For instance, the 
ENS and energy loss values derived from the proposed IPSO algorithm in case 1 are 
294.31 kWh/year and 29,889.23 kWh, respectively. In case 2, these values reached 
276.51 kWh/year and 28,563.31 kWh, respectively, which indicates a 5% drop. 
Also, ENS, operational cost and energy loss calculated from the IPSO algorithm 
in case 2 dropped by about 20%, 9% and 5.5% in comparison to their initial values 
prior to the DDFR.

In the following section, the effect of DRP along with DGs, ESSs, solar PV units, 
capacitor units are also considered simultaneously on the evaluation of objective 
functions. For this purpose, four 100 kVAr capacitors are installed on nodes # 10, 
# 20, # 34 and # 70. Table 10 shows the results of the single objective optimization 
of all objective functions derived from various algorithms including GEM, ICA, 
SFLA, PSO and IPSO for solving the DDFR problem.

As shown in Table 10, ENS, operational cost and energy loss derived from the 
IPSO algorithm in the presence of DRP along with DGs, capacitors, solar PV units 
and ESS declined by approximately 31%, 12% and 6% in comparison to their base-
line values prior to the DDFR.

To satisfy diverse objective functions, it is needed to solve the multi-objective 
DDFR problem for this case. Figures 10, 11 and 12 display all 2D and 3D Pareto-
optimal solutions related to the multi-objective DDFR problem with ESSs, DGs, 
capacitors, and solar PV units. Table  11 and Fig.  13 show the obtained opti-
mum scheme of switches and optimal capacity of capacitors for three-objective 

Fig. 11   Pareto-front for optimizing operational cost and energy loss

Fig. 12   Pareto-front for optimizing ENS, operational cost and energy loss
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Table 11   List of open switches derived from the IPSO for three-objective DDFR problem

LL load level

L.L Open switches

Sw1 Sw2 Sw3 Sw4 Sw5 Sw6 Sw7 Sw8 Sw9 Sw10 Sw11

1 70 43 15 39 26 35 80 86 85 32 30
2 4 43 15 22 82 84 18 86 85 31 30
3 4 40 15 22 49 35 66 86 85 71 30
4 77 43 79 22 82 35 80 86 85 32 30
5 68 43 15 81 82 52 19 86 54 87 30
6 4 43 15 81 82 84 80 65 55 32 30
7 4 78 13 81 49 84 80 57 55 32 30
8 4 78 15 39 26 52 67 86 85 32 30
9 70 78 79 81 82 84 19 86 85 32 83
10 70 7 15 81 26 84 19 86 55 71 30
11 4 43 15 22 26 35 19 86 85 32 27
12 4 78 79 81 26 35 19 86 72 87 30
13 77 78 79 81 26 84 19 86 55 71 30
14 68 7 15 22 49 84 19 86 72 32 30
15 70 43 15 39 26 33 19 86 85 87 29
16 77 7 79 39 49 84 19 86 85 32 83
17 77 43 15 39 82 35 80 86 55 71 30
18 77 43 15 81 82 35 19 65 55 87 30
19 77 43 15 39 26 35 19 86 85 32 83
20 77 43 79 39 82 84 19 86 74 87 30
21 4 7 15 21 49 52 67 60 85 87 30
22 77 43 15 22 82 84 19 86 72 32 83
23 4 43 79 39 82 35 80 60 85 32 29
24 77 78 15 22 26 84 19 86 85 32 29

Fig. 13   Reactive power of capacitors derived from by the IPSO algorithm for three-objective DDFR 
problem
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optimization in the 24-h. The optimal schemes of ESSs and the optimal scheduling 
of DGs’ output in the 24 h are shown in Figs. 14 and 15.

It is worth mentioning that in each time interval, the radial limitation is satisfied. 
As shown in Figs. 13, 14 and 15, it is clear that the DGs has the highest and lowest 
active power generation at nodes #25 and #10 from 4 to 8 pm. Similarly, the high-
est and the lowest reactive power generation from 4 to 8 pm belong to capacitors at 
nodes #20 and #34. Furthermore, the maximum discharge and charge of all ESSs 
belong to 11 am-3 pm and 4 pm-8 pm, respectively.

Fig. 14   Active power of ESSs during charging / discharging derived from the IPSO algorithm for three-
objective DDFR problem

Fig. 15   Active power of DGs derived from the IPSO algorithm for three-objective DDFR problem

Fig. 16   Voltage profile of 95-node test system at 4 pm
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As shown in Figs. 10, 11 and 12, the best value achieved for objective func-
tions in the Pareto-fronts closely resembles the optimal value, while the optimi-
zation of each objective function is performed separately. Based on Fig. 10, the 
minimum ENS value and energy loss are 267.85 kWh/year and 28,582.356 kWh, 
respectively. For ENS and energy loss, the optimal values for the best-compro-
mise solution are 274.35 kWh/year and 28,868.65 kWh, respectively. Figure 11 
shows that the minimum operational cost and energy loss are 28,430 kWh and 
$133,659.23, respectively. Also, the optimal values of operational cost and energy 
loss for the best-compromise solution are 28,542.50 kWh and $133,743.43, 
respectively. The difference between objective function values in the best-com-
promise solution and the optimal values is less than 2%, indicating the efficacy 
of the presented IPSO algorithm in finding the best solution to the problems of 
multi-objective optimization.

Figures 14, 15 exhibit the impact of ESSs, DGs, capacitors, and solar PV units 
as along with DRP on the profiles of voltage in the distribution test system at 
4 pm. In this study, the five scenarios are defined and investigated their impacts 
on the distribution test system’s voltage profile.

According to the initial condition of distribution networks, scenario 1 is defined, 
scenarios 2 is defined based on simultaneous presence of capacitors and DRP and 
scenario 3 based on the single presence of capacitors. Also, scenarios 4 is defined 
based on the simultaneous presence of ESSs, DGs, solar PV units, and DRP and 
scenario 5 based on the simultaneous presence of ESSs, DGs and solar PV units. 
According to Figs. 16 and 17, it is possible to improve voltage profile by using the 
above-mentioned devices and the impact of DRP. The improvement of voltage pro-
file is more salient in Fig. 17 than in Fig. 16, indicating that the simultaneous pres-
ence of DGs, ESSs, solar PV units and DRP has a huge impact on enhancing the 
voltage profile compared to the simultaneous presence of DRP and capacitors in 
finding solution to the DDFR problem.

Fig. 17   Voltage profile of 95-node test system at 4 pm
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6 � Conclusion

Increasing high penetrations of distributed generation (DG) units in distribution net-
works as well as electricity price and demand volatility create challenges for distri-
bution system operators. This paper presents, a dynamic distribution feeder reconfig-
uration (DDFR) based on time-variable load and electricity market price by taking 
into account the DGs, energy storage systems (ESSs) and solar photovoltaic (PV) 
units in the smart distribution network to improve the distribution network reliability 
besides minimizing operational cost. Besides, the impacts of uncertainty resources 
and time of use (TOU) mechanism of demand response program (DRP) are consid-
ered in solving the DDFR optimization problem. Furthermore, the energy not sup-
plied (ENS) index, operational cost and energy loss as separate objective functions 
are considered to have an optimal operation in a reliable environment. Also, con-
straints include preservation of the network radial topology, limits of buses voltage, 
transformer capacity and lines current.

An improved particle swarm optimization (IPSO) based on novel mutation is 
introduced to find a solution to the DDFR problem in single and multi-objective 
frameworks and the presented approach is tested on the 95-node test system. Then, a 
comparison is drawn between the findings of the IPSO algorithm and other heuristic 
methods such as GEM, SFLA, PSO and ICA. Based on the simulation results, the 
results obtained by the IPSO algorithm are superior to other evolutionary methods. 
In other words, The IPSO algorithm presented in this study has a favorable perfor-
mance in finding a solution to the DDFR problem in single and multi-objective opti-
mization frameworks irrespective of their complexity and scale.

According to the optimization results, the DDFR reduces energy loss and ENS. 
For instance, the values of these objective functions obtained by the IPSO algorithm 
are reduced by approximately 6% and 17% compared to objective functions values 
before the DDFR. Moreover, considering DGs, PV units and ESSs in solving the 
DDFR problem has had a significant impact on reducing ENS and operational cost. 
For instance, the values of these objective functions obtained by the IPSO algorithm 
are dropped by about 20% and 9% in comparison to their initial values prior to the 
DDFR. By incorporating the DRP impact along with capacitor, DGs, PV units and 
ESSs in solving DDFR problem, ENS, operational cost and energy loss derived 
from the IPSO algorithm are declined by approximately 31%, 12% and 6% in com-
parison to their baseline values prior to the DDFR. In addition, the voltage profile is 
also significantly improved under the optimal reconfiguration of distribution feeders 
considering DGs, PV units, capacitors, ESSs, and DRP effect.

Some suggestions for future studies of this research are as follows:

•	 Stochastic optimal distribution feeder reconfiguration with the sporadic nature of 
distributed generation units and electrical vehicles according to the optimal loca-
tion of charging stations.

•	 Protection constraints, reconfiguration the feeder topology in the distribution 
network may challenge the distribution network protection system and cause 
changes in the status of the protection relays.
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