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Abstract
We consider the classical power management problem: There is a system or “device” 
which has two states—ON and OFF—and one has to develop a control algorithm 
for changing between these states as to minimize cost (energy or some other hybrid 
cost) when given a sequence of service requests. We analyze this problem in terms 
of online competitive analysis to obtain worst-case guarantees. Although an optimal 
2-competitive algorithm exists, that algorithm does not result in good performance 
in many practical situations, especially in case the device is not used frequently. To 
take the frequency of device usage into account, we construct an algorithm based on 
the concept of “slackness degree”. Then by relaxing the worst-case competitive ratio 
of our online algorithm to 2 + � , where � is an arbitrary small constant, we make 
the algorithm flexible to slackness. The algorithm thus automatically tunes itself to 
slackness degree and gives better performance than the optimal 2-competitive algo-
rithm for real world inputs. In addition to worst-case competitive ratio analysis, a 
queueing model analysis is given and computer simulations are reported, confirming 
that the performance of the algorithm is high. We show how the approach can be 
generalized to a situation where the system has a number of intermediate states. Our 
model can be used to facilitate renewable energy integration into the electrical grid 
and we highlight that an online competitive approach can yield techniques for grid 
resiliency.
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1  Introduction

1.1 � The power‑down problem

We consider a device, which has two power states, ON and OFF, and a number of 
intermediate states I = {INTj|j = 1,… ,�} . For example, such a device could be a 
cell phone, a workstation, an HVAC unit, or a power generation system. If I = ∅ , 
the device is called a two-state device, else it is called an � + 2 state device, i.e. 
ON/OFF plus the number of intermediate states in I  . In the OFF-state the device 
consumes zero amount of energy (or amount of resource in the case of a power 
generation system) and the running cost of the device in the ON state is propor-
tional to the time of usage. The intermediate states serve as sleep states, where 
the running cost is also proportional to time, but at only smaller cost rj ∈ (0, 1) per 
time unit. Thus the cost to remain in INTj for time Δt is Δt ⋅ ri . There is no cost to 
switch from ON to OFF or any of the intermediate states. But a fixed power cost 
of a > 0 occurs to switch to ON from OFF and a smaller cost aj ∈ (0, 1) occurs to 
switch to ON from any of the intermediate states INTj . Table 1 summarizes this 
system. In this paper we will mainly focus on two- and three-state systems.

At any time the device may be in any state but it must be turned to the ON 
state when service is requested. More precisely, for some n ∈ ℕ , let tb

1
,… tb

n
 and 

te
1
,… te

n
 be non-negative real values with tb

1
< te

1
< tb

2
< te

2
… < tb

n
< te

n
 that represent 

requests for service Si between begin of service times tb
i
 and end of the service 

times te
i
 ( i = 1,… , n ) which means that at time tb

i
 the state of the device must be in 

ON until time te
i
 . Between requests the device can remain in the ON state, go to the 

OFF state or any of the intermediate states. If the device goes to an intermediate 
state for a certain duration, we say it is standing by and refer to this duration as the 
standby time. The duration from the end of service Si to the beginning of service 
Si+1 (i.e. tb

i+1
− te

i
 ) is called the waiting time. Clearly, if the waiting time is small, 

rather than switching off, it may be better stand by in anticipation Si+1.
It is not known in advance when and how many service requests occur, thus an 

algorithm has to decide whether to switch states without knowing what the next 
request will be. Such an algorithm is called online; an online algorithm makes 
its decisions without knowledge of future input. This is in contrast to on offline 
algorithm which operates under full knowledge of the entire request sequence in 
advance. We say that an online algorithm A has competitive ratio C for a given 
request sequence � , if

Table 1   Costs when running 
and for switching

State Costs

Running/Standby Switching

OFF 0 a
⋯ ⋯ ⋯

INTj sj ∈ (0, 1) aj ∈ (0, 1)

⋯ ⋯ ⋯

ON 1 0
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where cost
A
(�) is the cost of A to serve � and costopt(�) is the cost of the opti-

mal offline algorithm on that same request sequence. (As mentioned above, for the 
power-down problem 𝜎 = tb

1
< te

1
< tb

2
< te

2
… < tb

n
< te

n
 for some n.) If the inequal-

ity holds for all possible input sequences, then we say that the online algorithm is 
C-competitive; furthermore the competitive ratio for a given algorithm A is defined 
as the smallest such C possible. (For a comprehensive overview over online com-
petitive analysis see [14].) The goal is thus to find an online algorithm with competi-
tive ratio best possible, i.e. an online algorithm with the smallest competitive ratio. 
We refer to such an algorithm as an ‘optimal worst-case competitive ratio algorithm’ 
denoted here by OWCR with the stipulation that we break ties arbitrarily if more 
that one optimal online algorithm exists.

Under competitive analysis, for the two-state problem, an optimal online algo-
rithm OWCR is well known for this problem [18, 24, 25]: OWCR switches to ON 
at a service request. After the service, OWCR remains on to stand by for time a. 
This means that if another service is requested within the standby period, OWCR 
simply remains in state ON. Only if the waiting time is larger than a, will OWCR 
go to OFF after a standby time of a. Algorithm OWCR is 2-competitive, which is 
optimal.

This situation is analogous to the noted ski rental problem [25]. In the ski rental 
problem a “friend” invites an invitee to go skiing, one can rent skis at cost $r or 
purchase them at cost $ a = k ⋅ $r , for some k ∈ ℕ . Unlike the inviter, the invitee 
does not know how often they will be invited. Thus the invitee has to decide how 
often to rent and when to buy. It is easy to see that the best competitive ratio of the 
invitee cost versus the inviter cost achievable by any online algorithm for the ski 
rental problem is 2; the strategy is to rent k times before buying. The ski rental prob-
lem is analogous to the two-state power-down problem in the following way. Both 
problems are about when to commit to a higher cost in anticipation of future sav-
ings. In the ski-rental problem, this commitment is when buying skis, in the power-
down problem the commitment is to accept a (large one-time) switching-on cost 
next when the system is switched off.

Though OWCR has the best possible worst-case competitive ratio this does not 
mean that it will perform well in most situations. For example, if the service requests 
Si are infinitesimally short and all Si are spaced far apart, then OWCR remains in 
the ON state for an extra a units for each service. This is quite wasteful as the cost 
for OWCR is 2a (the switching cost and running cost are both a), whereas the opti-
mal offline algorithm “OPT” turns off immediately after each service is finished. 
OPT pays only the switching cost a (and the infinitesimal running cost). Although 
OWCR does not seem clever at all, under worst-case competitive analysis this algo-
rithm has the best performance, namely a ratio of 2.

Basic concept of our algorithm Since OWCR is optimal it appears there is no 
improvement possible, unless we leave the online competitive model altogether. 
This is undesirable as described above. Our idea, instead, is to consider algo-
rithms with competitive ratio only worse from best by a small positive constant � : 
such an approach allows for the design of an entire spectrum of algorithms with 

cost
A
(�) ≤ C ⋅ costopt(�)
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“almost-best” competitiveness. We call such algorithms �-OPT. In this paper then 
we present such �-OPT algorithms—algorithms which maintain close to an opti-
mally competitive ratio while additionally performing better for a multitude of 
instances. The type of algorithms we design react adaptively to fluctuations: they 
gradually decrease the duration of the standby time when waiting times are large (in 
a two state system this means longer than a) until the waiting time becomes short 
again (a value within a for two-states) at which point standby times are reset. Infor-
mally this can be described as “decrease and reset” – standby times are successively 
tapered down in an “off peak” situation when the frequency of requests is low and 
then reset if the frequency goes up.

We introduce a parameter called “slackness degree,” which represents the fre-
quency of serviced requests and we construct �-OPT algorithms, which have supe-
rior competitiveness (i.e.  lower than 2 + � ) in the presence of slackness. The com-
petitive ratio improves when the frequency of requests within any time period is 
small—something very desirable in practice, while maintaining a guarantee of com-
petitiveness within � of best possible competitiveness in the worst-case. We empha-
size that the algorithm is online and, as such, need not know the actual slackness 
degree.

1.2 � Related algorithmic work

As mentioned above, the tight optimal competitive ratio of the two-state power-
down problem is 2; this has been observed in various contexts, see [22, 24, 25, 
32]. In that sense the problem is settled and therefore there are no further results. 
When a probability distribution for the service requests is given, the expected cost 
is minimized; these algorithms are called probability-based. Such an algorithm uti-
lizes knowledge of the probability distribution and the competitive ratio improves 
to e∕(e − 1) ≈ 1.582 ; this bound is tight for probability-based algorithms [22–24]. 
It is important to note that such an algorithm is not defined for arbitrary data and 
an algorithm designed for a specific distribution will perform poorly for arbitrary 
request sequences. In contrast, or algorithm performs with close to optimal com-
petitiveness while performing well for a range of sequences which we parameterize 
using a slackness parameter.

There is a body of work regarding multiple intermediate states as declared in 
Table 1. Irani et al. [21] show that the ski-rental approach for two state systems can 
be generalized to multiple states both in the deterministic case using a “lower enve-
lope” techniques resulting in a 2-competitive algorithms as well as in the probabil-
ity-based situation with tight competitiveness e∕(e − 1).

There are customized algorithms for a specific number of intermediate states, see 
our papers [7] for systems with one extra state, i.e. three-state systems, [8] for sys-
tems with finitely many but few states, [6] for systems with a continuous number of 
states, and our survey paper [9]. More generally, Augustine et al.  [10, 11] give an 
algorithm that, given a system, produces a deterministic strategy whose competitive 
ratio is arbitrarily close to optimal.
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We note that online competitive algorithms for power-down are related to earlier 
work on “speed-scaling” of CPUs [4, 22]. Furthermore, there is a body of work from 
the embedded systems community where a number of adaptive strategies were pro-
posed in the literature. In particular, Chung et al. [15] address multiple-state systems 
in this way.

1.3 � Electric power systems and renewable energy management

Power-down mechanisms are common in electronic control, such as power optimi-
zation for hand-held devices, laptop computers, work stations and data centers [2, 3, 
30, 33]. But the model is also useful to handle power-down phenomena in a future 
electrical grid, which predominantly relies on renewable energy, see our paper [12] 
for a survey. In the traditional energy grid, when renewables produce a surplus of 
energy, such surplus generally does not affect the operation of traditional power 
plants. Instead, renewables are throttled down or the surplus is simply ignored. But 
in the future when the majority of power is generated by renewables this is not ten-
able. Rather, traditional power plant output needs be throttled down or switched off 
in response to less predictable renewable supplies. Online competitive models have 
the advantage that little statistical insight is needed. We note that online competitive 
algorithms were developed to model an emerging internet where requests are not 
driven by a well-defined distribution but requests which are largely unpredictable. 
Similarly energy management in a distributed smart grid will benefit from models 
which are rooted in such online competitive models; for example, network design 
has been studied extensively in the online competitive setting; see Meyerson [29] for 
work on dynamic network design.

It could be argued that a game-theoretic approach which assumes an omnisci-
ent adversary may not be so realistic for modeling the grid, however this kind of 
modeling gives performance guarantees in the absence of reliable forecasting. For 
example, climate scientists have noted unusual weather patterns related to a change 
in the Arctic Oscillation (OA) and North Atlantic Oscillation (NAO) [19]. Recently, 
unprecedented winter storms across Texas in February 2021 caused wide-spread 
power outages [40]. See also Maimó-Far et  al.  [26] for unpredictability issues 
around renewables. In order to guarantee a resilient grid, worst-case assumptions 
must be taken into account.

There is a large body of work on the unit commitment problem in electrical 
power production, see Padhy [31] for a bibliography, and Huang, Pardalos and 
Zhang [20] for a comprehensive review of unit commitment problems in electri-
cal power generation. The introduction of renewables has significantly increased 
the underlying uncertainty in the system, an aspect which has been recognized 
increasingly in the literature, see Tahanan et al. [1, 36] for a comprehensive sur-
vey on recent work and algorithmic techniques. A recent survey on integrating 
renewables and the unique challenges involved is in [34]. Ben-Tal, Bertsimas, 
and Brown give models which provide some measure of robustness against dis-
tributional variation [13]. However, renewable energy management can benefit 
from online competitive modeling where algorithms allocate resources in hard 
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to predict circumstances and where reliable distributional assumptions cannot be 
made.

Budischak et  al.  [16], for example, model many combinations of renewable 
electricity sources (inland wind, offshore wind, and photovoltaics) with electro-
chemical storage (batteries and fuel cells), incorporated into a large grid sys-
tem. One of the components available to manage variable generation is (limited) 
fossil backup where conventional power is cycled as needed to fill gaps. More 
precisely, cycling refers to the operation of electric generating units at varying 
load levels, including on/off, load following, and minimum load operation, in 
response to changes in system load [28]. There are technical limits and costs 
associated with cycling conventional power plants. Van den Bergh and Delarue 
[38] point out the importance of including full cycling costs in unit commit-
ment scheduling. They also discuss the different ways of quantifying various 
types of cycling costs, such as direct start costs, indirect start costs, forced out-
age costs, ramping costs and efficiency costs. Very recently, de Mars et al. [17] 
have estimated the impact of variable renewable energy on base-load cycling in 
the UK and it is expected that such impact will only be larger in the future. As a 
result there are numerous studies on the costs of cycling itself [27, 35, 38, 41], 
including Integrated Solar Combined Cycle Power Plants [5]. We also mention a 
recent study conducted at Sandia National Laboratories, which described impli-
cations of power plant idling and cycling on water use intensity [37]

Cycling costs can be avoided by the obvious method of not cycling a unit and that 
may include staying on at a loss and we are modeling this tradeoff by abstracting 
the problem as a power-down problem in the online competitive setting. While we 
are mainly concerned with decrease and reset techniques in the two-state situation 
(Sects. 3 and 4) our method can be adapted to situations where there is partial load 
operation [38], i.e. where there are “intermediate states” other than on/off (Sect. 5).

1.4 � Organization of the paper

Though we have described the general problem earlier in the introduction we give 
a concise statement of the two-state problem (and further notations) in Sect. 2. Sec-
tion 3 presents the decrease and reset algorithm and gives the concept of slackness 
degree. We study the competitive ratio under this concept. In Sect. 4 we analyze the 
cost performance of the decrease and reset algorithm using queueing theory. After 
deriving the model, we run the model with specific parameters. Furthermore, we 
report results of experiments conducted using Monte Carlo simulation in order to 
validate the results obtained through the analysis. We also compare our approach to 
a number of simplified reset algorithms. The decrease and reset concept can be gen-
eralized to systems with more than two states, i.e. systems with intermediate states. 
We discuss the use of the decrease and reset approach in a three state system in 
Sect. 5. We conclude and give further outlook in Sect. 6.
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2 � Problem statement

We now define our system in detail. In this paper we consider a device or system 
with infinite capacity that has two states, an ON-state and an OFF-state (simply 
ON and OFF), for which we design a control algorithm for changing between 
ON and OFF.

Let tb
1
,… , tb

n
, te
1
,… , te

n
 be non-negative real values that represent the ser-

vice times t_b and end-of-service times t_e for n requests and which sat-
isfy 0 ≤ tb

1
< te

1
< tb

2
< te

2
< ⋯ < tb

n
< te

n
 . The input for this problem is given 

as � = ⟨(ts
1
, te
1
), (ts

2
, te
2
),… , (ts

n
, te
n
)⟩ . For this input, the device must be kept ON 

between times ts
i
 and te

i
 for each i = 1,… , n.

The state of the device can be switched at an arbitrary time. There is no cost 
for switching from ON to OFF, while there is a switching cost a (> 0) when 
switching from OFF to ON. For keeping the ON-state, it takes running cost of 
one unit per unit time.

The strategy of the optimal offline algorithm (OPT) for this prob-
lem is clear: If the period between the current request and next one is less 
than a, the device is kept ON. Otherwise, it is turned off immediately. 
Therefore OPT’s total cost for the input � = ⟨(tb

1
, te
1
), (tb

2
, te
2
),… , (tb

n
, te
n
)⟩ is 

a +
∑n

i=1
(te
i
− tb

i
) +

∑n−1

i=1
min{tb

i+1
− te

i
, a}.

For some i-th request (ts
i
, te
i
) , we consider the sum of the i-th running cost 

and the next ( i + 1)-th switching cost. Let ALG be any algorithm. Let u be the 
period between the end of the request and the start of the next request (i.e., 
u = ts

i+1
− te

i
 ). Then the optimal offline algorithm pays te

i
− ts

i
+min{u, a} . If ALG 

turns the device off after v (< u) standby time, the cost is te
i
− ts

i
+ v + a . Other-

wise, it must pay te
i
− ts

i
+ u . In each case, the smaller te

i
− ts

i
 is, the worse the 

competitive ratio becomes. Therefore, from the standpoint of competitive analy-
sis, it is enough to consider that usage times of the device (i.e., te

i
− ts

i
 for each i) 

are tiny. We call this the short-job assumption. On the basis of the above discus-
sion, we redefine this problem as follows:

Let t1,… , tn be non-negative real values satisfying 0 ≤ t1 < ⋯ < tn repre-
senting the time of service of the device for n requests. An input is given as 
� = ⟨t1, t2,… , tn⟩ . We do nothing if the state is ON at ti ( i = 1,… , n ), and should 
turn a device ON if it is OFF at that time.

For a given input � = ⟨t1, t2,… , tn⟩ (n may be ∞ ), the action of an algorithm 
is determined by a sequence ⟨w1,w2,… ,wn⟩ , where wi is standby time after ith 
request is leaving. In other words, the problem is how to determine wi from 
⟨t1, t2,… , ti⟩ . For each i = 2,… , n , let ui = ti − ti−1 be an idle period. OPT’s cost 
for this redefined problem is OPT(�) = a +

∑n−1

i=1
min{ti+1 − ti, a} . We denote 

ALG’s cost for input � by ALG(�) and the competitive ratio of ALG for � by 
R ALG(�) = ALG(�)∕OPT(�) . Let Σ be the set of whole inputs � . For a subset 
Σ�

⊆ Σ , we define R ALG(Σ
�) = sup

�∈Σ� R ALG(�) . And we represent R ALG = 
R ALG(Σ) , which is the (worst-case) competitive ratio of ALG.
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3 � The decrease and rest approach

3.1 � Decrease and reset algorithm (DRA)

We propose an algorithm which decreases the standby time gradually when the 
frequency of the device usage becomes low.

Decrease and Reset Algorithm (DRA)
Let x1, x2,… , be an infinite non-increasing sequence of non-negative values. In 

DRA, wi = xf (i) such that

If xi = a for all i, DRA is equivalent to OWCR​. Setting xi be larger than a is clearly 
wasteful, and hence we consider cases such that xi ≤ a for all i = 1, 2,… . From a 
simple observation we see that x1 gives a lower bound of R DRA:

Observation 1  R DRA ≥ 1 + a∕x1.

Proof  Let m be an integer. For an input � = ⟨x1, 2x1,… ,mx1⟩ , OPT’s total cost is 
a + (m − 1)x1 and DRA’s total cost is m(a + x1) . Thus the competitive ratio of them 
is the following:

                                                                  □

From this observation, it follows that x1 cannot be much smaller than a, other-
wise R DRA becomes very large. In other words, if the difference between a and x1 
is small, the effect to R DRA is not so large. Thus we relax the worst-case competi-
tive ratio from 2 to 2 + � for small 𝜀 > 0 , i.e., we let x1 = a∕(1 + �).

The above observation is easily extended to the other values x2, x3,… , as 
follows.

Observation 2  For any integer k,

Proof  Let m be an integer and t1, t2,… , tmk be a sequence such that
t1 = a and if i = 1 mod k then ti = ti−1 + xk , otherwise ti = ti−1 + a . For input 

� = ⟨t1, t2,… , tmk⟩ , DRA sets wi = xg(i) for all i, where g(i) = ((i − 1) mod k) + 1 . 
OPT’s total cost is a + m(k − 1)a + (m − 1)xk and DRA’s total cost is 
mka + m

∑k

i=1
xi . Thus the competitive ratio of them is the following:

f (i) =

{
f (i − 1) + 1 if ui ≥ a and i ≠ 1,

1 otherwise.

R DRA ≥ R DRA(�) =
m(a + x1)

a + (m − 1)x1

(m→∞)
−−−−−→1 +

a

x1
.

R DRA ≥ ka +
∑k

i=1
xi

(k − 1)a + xk
.
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So this observation is satisfied.                                         □

Our upper bound of the competitive ratio is 2 + � , and thus, the following ine-
qualities must be satisfied for every k = 1, 2,…:

Solving this equation for xk , we have

By elementary induction, we obtain

This is a necessary condition for keeping the competitive ratio less than or equal to 
2 + � . But this condition is not sufficient to guarantee optimality within the � bound. 
We propose next an algorithm that sets exact values for x2, x3,… , to guarantee opti-
mality within the � bound.

3.2 � How to set the coefficients for “optimality”

Before turning to this problem, we need to define what “optimal” means here. 
Our motivation is to give a better algorithm for slack systems. Thus we introduce 
a measure, “slackness degree” for representing the slackness of input sequences. 
For an input sequence � = ⟨t1, t2,… , tn⟩ , request i is called a busy request if ui ≤ a 
or a slack request, otherwise. The first request is neither busy nor slack one. We 
denote the number of slack requests in � by s(�) , and that of busy requests in � by 
b(�).

Definition 1  For an input � , if s(�)∕b(�) ≥ d (b(�) ≠ 0) for a real number d ≥ 0 , � 
is called d-slack. The slackness degree d(�) is defined as the maximum d such that � 
is d-slack.

The slackness degree describes how busy the inputs are. Clearly if d(�) is larger, 
� has more slack. We will optimize DRA under the assumption that an input is 
d-slack without knowing the value of d.

We consider asymptotic performance, and assume that � is large enough. In other 
words � has a sufficient number of busy requests, i.e., b(�) = �(1) if b(�) ≠ 0.

R DRA ≥ R DRA(�) =
mka + m

∑k

i=1
xi

a + m(k − 1)a + (m − 1)xk

(m→∞)
−−−−−→

ka +
∑k

i=1
xi

(k − 1)a + xk
.

ka +
∑k

i=1
xi

(k − 1)a + xk
≤ 2 + �.

xk ≥ 1

1 + �

(
(2 + �)a +

k−1∑

i=1

xi

)
− ka.

(1)xk ≥ −�
(
2 + �

1 + �

)k

a + (1 + �)a.
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Note that for b(�) = 0 (i.e., all arrivals are slack), we can easily get the upper 
bound of the competitive ratio of 1 +

∑���
i=1

xi

���a  , which is close to 1 when |�| is large 
and limi→∞ xi = 0 . This case is so particular that we ignore it in the following. We 
will show that it is sufficient to consider inputs which end with a busy request:

For a detailed analysis, let us separate an input � = ⟨t1, t2,… , tn⟩ into some 
( b(�) or b(�) + 1 ) blocks as follows. Assume that tb1 , tb2 ,… , tbb(�) 
(0 ≤ b1 < b2 < ⋯ < bb(𝜎) ≤ n) are the busy requests in � . The blocks are defined 
as B1 = {t1,… , tb1} , B2 = {tb1+1,… , tb2} , … , Bb(�) = {tbb(�)−1+1,… , tbb(�) } . If 
bb(𝜎) < n , then Bb(�)+1 = {tbb(�)+1,… , tn} also exists. For analyzing the worst-case 
competitive ratio we will show that the final block Bb(�)+1 can be ignored even if it 
exists. Let �(�) be the number of blocks in � . (Then �(�) = b(�) or b(�) + 1 .) Let 
s(Bi) be the number of slack requests in block Bi.

Lemma 1  If s(Bb(�)) ≤ s(Bb(�)+1) − 2 holds, then R DRA(�) ≤ R DRA(�
�) , where �′ is 

obtained from � by exchanging tbb(�) with tbb(�)+1 , i.e., �� = ⟨t1,… , tbb(�)−1, tbb(�)+1, 
tbb(�) , tbb(�)+2,… , tn⟩ . (Note that tbb(�)+1 is a slack request from s(Bb(�)) (≥ 2).)

Proof  The competitive ratio of DRA for �′ is

Since x1, x2,… is a non-increasing sequence and s(Bb(�)) ≤ s(Bb(�)+1) − 2 , 
xs(Bb(�))+2

≥ xs(Bb(�)+1)
 and xs(Bb(�))+1

≥ xs(Bb(�))+2
 hold. Thus we get

� □

Lemma 2  For any d ≥ 0 and sufficiently long inputs, there exists an input which fin-
ishes with a busy request and gives the worst competitive ratio in the same slackness 
degree d.

Proof  By Lemma 1 for a d-slack input � we can shift the last busy request later as 
long as the last two blocks satisfy s(Bb(�)) ≤ s(Bb(�)+1) − 2 without decreasing the 
competitive ratio (Operation 1). We can clearly exchange the two subsequences in � 
which begin with a slack request and end with a busy request without changing the 
competitive ratio (Operation 2).

When we apply Operation 1 and Operation 2 for a sufficiently long input � repeat-
edly and let the result be �∗ , which is d-slack and gives the worst competitive ratio, 
approximately we can assume that �∗ finishes with a busy request.             □

Lemma 3  For any input � , if each xi satisfies inequality (1) then R DRA(�) ≤ 2 + �.

R DRA(�
�) =

DRA(�) − xs(Bb(�)+1) + xs(Bb(�))+2

OPT(�) − xs(Bb(�))+1 + xs(Bb(�))+2
.

R DRA(�
�) =

DRA(�) − xs(Bb(�)+1) + xs(Bb(�))+2

OPT(�) − xs(Bb(�))+1 + xs(Bb(�))+2
≥ DRA(�)

OPT(�)
= R DRA(�).
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Proof  In Observations 1 and 2, the given input is clearly the worst for the competitive 
ratio among one-block input � (i.e., � includes one busy requests at the end) and the 
slackness degree is fixed. This means R DRA ≤ 2 + � for any one-block input. From 
Lemma 2, R DRA ≤ 2 + � for any long enough input.                       □

Lemma 4  For a sufficiently long input � , if � is d-slack (d > 0) and x1, x2,… (xi ≤ a) 
satisfy inequality (1), the following inequality holds:

And the equality holds for d ≥ h − 1 where h = min{i | xi = 0}.

Proof  To analyze the worst-case input, we define �(k) as an input in which one busy 
request arrives after (k − 1) slack requests, where k = 1, 2,… , is any positive integer. 
Then we find that all the worst-case input instances are described as the combination 
of �(k) by Lemma 2. Let the combination of them be �w , which can be represented 
by a sequence of �(⋅) , i.e., �w = �(f (1))�(f (2))⋯ �(f (n)) where n = b(�w) , and each 
f(i) is a positive integer (i = 1,… , n).

Against this input, DRA must pay the switching cost for all the requests. The cost 
of DRA for �w is a +

∑n

i=1

�∑f (i)

j=1
(xj + a)

�
+ x1 . OPT keeps the ON-state during xf (i) 

for the last input in each �(f (i)) and switches to OFF immediately for the other 
inputs. The cost is a +

∑n

i=1
xf (i) +

∑n

i=1
(f (i) − 1)a . Therefore the competitive ratio 

is

Since 
∑n

i=1
(f (i) − 1)∕n = s(�w)∕b(�w) ≥ d and �w is d-slack, we have

The inequalities are tight when 
∑n

i=1
xf (i) = 0 , and such input exists only when ∑n

i=1
f (i)∕n ≥ h . Thus for a sufficiently long input when d ≥ h − 1 , we find that the 

bound is tight.                                                     □

(2)R DRA(�) ≤ 1 +
1

d
+

∑∞

i=1
xi

ad
.

R DRA(�w) =
a +

∑n

i=1

�∑f (i)

j=1
(xj + a)

�
+ x1

a +
∑n

i=1
xf (i) +

∑n

i=1
(f (i) − 1)a

≤a +
∑n

i=1

∑f (i)−1

j=1
xj +

∑n

i=1
f (i)a + x1

a +
∑n

i=1
(f (i) − 1)a

≤a + n
∑∞

i=1
xi +

∑n

i=1
(f (i) − 1)a + an + x1

a +
∑n

i=1
(f (i) − 1)a

.

R DRA(�) ≤ R DRA(�w) ≤ 1 +

∑∞

i=1
xi + a + x1∕n

a∕n + ad

(n→∞)
−−−−−→1 +

1

d
+

∑∞

i=1
xi

ad
.
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Note that even for 0-slack inputs (s(�) = 0) , if x1, x2,… satisfy (1), the competi-
tive ratio is guaranteed to be 2 + � according to Observation 1.

We get the upper bound of the worst competitive ratio with parameter d. To mini-
mize it, we should minimize each xi such that they satisfy (1).

Theorem  1  We set the coefficients xi as xi = max{−�((2 + �)∕(1 + �))ia

+(1 + �)a, 0} . Then for any sufficiently long d-slack input � , DRA guarantees the 
following competitive ratio:

where Σd is the set of sufficiently long d-slack inputs, and h = ⌊(log(1 + �) − log �)∕ 
(log(2 + �) − log(1 + �))⌋ + 1.

Proof  Let h be defined as in Lemma 4. Then the value of h is obtained as shown 
above. From Lemmas 4 and 3 we get

To optimize the competitive ratio we should minimize each xi in range of satisfying 
inequality (1). So we get

This means 
∑∞

i=1
xi =

∑h−1

i=1
xi.

Furthermore, from Lemma 4, when d ≥ h − 1 there are inputs which hold the 
equation in (2) tightly. On the other hand, from Lemma 3, when d < h − 1 , there 
are inputs such that DRA uses only x1,… , xd (i.e., they satisfy (1) tightly.) and then 
achieve 2 + �-competitive ratio tightly. Therefore we obtain the desired equation (3)
.                                                               □

From this, we will call the DRA satisfying the condition of Theorem 1 the opti-
mal DRA (ODRA).

Corollary 1  For the value that 0 < 𝜀 < 0.2,

We also get such a heuristic bound, but skip the details of proof. If d → ∞ then 
RODRA → 1 . Therefore we confirm that the competitive ratio is close to 1 when the 
frequency of requests within any time period is small enough.

(3)R DRA(Σd) = min

�
1 +

1

d
+

∑h−1

i=1
xi

ad
, 2 + �

�
,

R DRA(Σd) ≤ min

�
1 +

1

d
+

∑∞

i=1
xi

ad
, 2 + �

�
.

(4)xi =

{
−𝜀

(
2 + 𝜀

1 + 𝜀

)i

a + (1 + 𝜀)a if i < h,

0 otherwise.

R ODRA ≤ min

{
1 +

(1 + �)2 + 2(1 + �) log
1

�

d
, 2 + �

}
.
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4 � Queueing analysis

4.1 � Analysis

In this section, we analyze the cost performance of DRA using queueing theory. 
We consider a huge space in a public building, called a system hereafter. Customers 
arrive at the system, stay for a while, and then leave the system. An on-off device is 
equipped with the system. At first, the device is turned off, and then turned on if the 
first customer arrives at the system. The device is kept on as long as there exists at 
least one customer in the system. When all customers leave the system, the device is 
turned off according to DRA whose coefficients {xi ∶ i = 1, 2,…} are given by (4). 
In the following, we say the system is in ON (resp. OFF) state when the device is on 
(resp. off).

We assume that customers arrive at the system according to a Poisson process 
with rate � . The sojourn time of a customer is independently and identically distrib-
uted (i.i.d.) with a general distribution with mean 1∕� . As we mentioned before, the 
system capacity is infinity. Then the system we consider here is an M/G/∞ queueing 
model.

In the M/G/∞ model, the busy period is defined as the time interval during which 
the number of customers in the system is greater than zero, while in the idle period, 
no customers are in the system. For analytical simplicity, we assume that the system 
is in equilibrium at time 0, and that the first busy period starts at time 0. Let Bn and 
In denote the nth busy period of the system and the nth idle period, respectively. 
Note that both busy periods and idle periods are i.i.d., and hence independent of n. 
The mean busy period and the mean idle period of the M/G/∞ system are given by

respectively, where � = �∕� . We define the nth cycle as the time interval consisting 
of Bn and In.

The power control process under DRA with coefficients (4) evolves as follows. 
When the first busy period B1 starts, the initial power cost a is required. During 
the busy period, the power cost per unit time is one. When B1 ends, the system is 
kept ON state for the standby time of x1 . Note that x1 is the power cost of the first 
idle period I1 . If I1 > a , the next standby time for I2 is set to x2 . If I1 ≤ a , then the 
standby time for I2 is initialized to x1 . Similarly, if I1 > a and I2 > a , then the the 
standby time for I3 is set to x3 , while if I1 > a and I2 ≤ a , the standby time for I3 is 
initialized to x1 , and so on. In the following, the time interval from the beginning of 
the busy period with x1 standby time to the end of the idle period which is smaller 
than a is referred to as the reset interval.

Let L ( ≥ 1 ) denote the number of cycles in a reset interval. Consider the amount 
of power consumption during a reset interval. When the number of cycles in the 
reset interval is L = k , the amount of power consumption is given by the power 

(5)E[Bn] =
e� − 1

�

(≡ E[B]), E[In] =
1

�

(≡ E[I]),
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consumption for k busy periods and k standby times. Let Tk denote the total amount 
of power consumption of the reset interval consisting of k cycles. We obtain

where 1
�
 is the indicator function of event � . Then we have the following lemma.

Lemma 5  The mean of the total amount of power consumption of a reset interval 
E[TL] is given by

Proof  Note that the event {L = k} ( k = 1, 2,… ) is such that the first to ( L − 1)st 
idle periods are greater than a and the Lth idle period is smaller than or equal to a. 
Define the following joint probability density function

From the Poisson arrival assumption, we obtain

Let W(k) denote the total amount of power consumption for a reset interval which 
consists of k cycles. W(k) is given by

Taking the mean of W(L) yields

Tk =

�∑k−1

i=1
xi + Ik ⋅ 1{Ik≤xk} + xk ⋅ 1{xk≤Ik≤a}, k = 1, 2,… , h − 1,

∑h−1

i=1
xi, k ≥ h,

(6)

E[TL] = �a(2 + �)e−�a
(
1 − e−�a

)h−2

− �a(2 + �)
(
1 − e−�a

) (2 + �)e−�a

1 + � − (2 + �)e−�a

{
1 −

(
2 + �

1 + �

⋅ e−�a
)h−2

}

+ (1 + �)a ⋅
e−�a

1 − e−�a

{
1 − (h − 1)e−�a(h−2) + (h − 2)e−�a(h−1)

}

+
1

�

⋅
1 − e−�a(h−1)

1 − e−�a
−

h−1∑

k=1

e−�a(k−1)
(
1

�

e−�xk + xke
−�a

)

+

[
�a(2 + �)

{
1 −

(
2 + �

1 + �

)h−1
}

+ (1 + �)a(h − 1)

]
⋅ e−�a(h−1).

(7)𝜋k(y)dy = Pr
{
L = k, y < Ik ≤ y + dy

}
, k = 1, 2,… .

(8)�k(y)dy = e−�a(k−1) ⋅ �e−�ydy, k = 1, 2,… .

W(k) = (k − 1)a + a ⋅ 1{xk<Ik≤a} +

k∑

i=1

Bi + Tk.

(9)
E[W(L)] =E

[
a(L − 1) + a ⋅ 1{xk<Ik≤a} +

L∑

i=1

Bi + TL

]

=a(E[L] − 1) + aE
[
1{xk<Ik≤a}

]
+ E[L]E[B] + E[TL].



459

1 3

Decrease and reset for power‑down﻿	

From (8), E[L] is obtained as

We also have

E[TL] is expressed as

Substituting (4) into (12) yields (6).                                       □

Let QDRA denote the mean power-consumption cost per unit time. Then we obtain 
the following theorem.

Theorem 2  QDRA is given by

where E[TL] is given by (6).

Proof  Let R denote the reset interval. Using L, the number of cycles in a reset inter-
val, we obtain

(10)

E[L] =

∞∑

k=1

k Pr{L = k}

=

∞∑

k=1

k ∫
a

0

�k(y)dy

=

∞∑

k=1

ke−�a(k−1)
(
1 − e−�a

)

=
1

1 − e−�a
.

(11)

E[1{xk<Ik≤a}] =
∞∑

k=1
�

a

xk

e−𝜆a(k−1)𝜆e−𝜆xdx

=

h−1∑

k=1

e−𝜆{a(k−1)+xk} −
e−𝜆a − e−𝜆a(h−1)

1 − e−𝜆a
.

(12)

E[TL] =

∞∑

k=1
�

a

0

{
k−1∑

i=1

xi + y ⋅ 1{Ik≤xk} + xk ⋅ 1{xk≤Ik≤a}
}

�k(y)dy

=

h−1∑

k=2

(
k−1∑

i=1

xi

)
e−�a(k−1)

(
1 − e−�a

)
+

h−1∑

k=1
�

xk

0

y ⋅ �e−�y ⋅ e−�a(k−1)dy

+

∞∑

k=h

(
k−1∑

i=1

xi

)
e−�a(k−1)

(
1 − e−�a

)
+

h−1∑

k=1
�

a

xk

xk ⋅ �e
−�y

⋅ e−�a(k−1)dy.

(13)

QDRA =
1

e�

[
�a

{
(
1 − e−�a

)
⋅

h−1∑

k=1

e−�{a(k−1)+xk} + e−�a(h−1)

}
+ e� − 1 + �

(
1 − e−�a

)
E[TL]

]
,
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where Bn and In are the nth busy period and nth idle period, respectively. Note that 
{Bn} and {In} are independent.

Suppose L = k . Let I∗
n
(s) denote the Laplace-Stieltjes transform (LST) of In . Since 

In for n = 1, 2,… , k − 1 is greater than a and Ik is smaller than or equal to a, I∗
n
(s) is 

yielded as

We define I∗(k, s) as

I∗(k, s) is the LST of the total idle period of the reset interval which consists of k 
cycles. Using I∗

n
(s) , we obtain

Then, the mean amount of idle periods in a reset interval is given by

The mean amount of busy periods in a reset cycle is yielded as

where � = �∕�.
Finally, the mean reset interval E[R] is given by

Now consider the mean power consumption per unit time, QDRA . Note that reset 
intervals are i.i.d., and that the amount of power consumption during the reset inter-
val is also i.i.d. Therefore, we have QDRA = E[W(L)]∕E[R] from the renewal-reward 
theorem [39]. From (9), (10), (11) and (17), we obtain (13).                   □

R =

L∑

n=1

(
Bn + In

)
,

(14)I∗
n
(s) =

{
�

s+�
e−(s+�)a, n = 1, 2,… , k − 1,

�

s+�

(
1 − e−(s+�)a

)
, n = k.

I∗(k, s) = �
∞

0

e−sx Pr

{
L = k, x <

k∑

n=1

In ≤ x + dx

}

(15)I∗(k, s) =

k∏

n=1

I∗
n
(s) =

(
�

s + �

)k

e−(s+�)a(k−1)
(
1 − e−(s+�)a

)
.

(16)E

[
L∑

n=1

In

]
=

∞∑

k=1

(
−
d

ds
I∗(k, s)

)

s=0
=

1

�

(
1 − e−�a

) .

(17)E

[
L∑

n=1

Bn

]
=

∞∑

k=1

kE[B]e−�a(k−1)
(
1 − e−�a

)
=

e� − 1

�

(
1 − e−�a

) ,

(18)E[R] = E

[
L∑

n=1

Bn

]
+ E

[
L∑

n=1

In

]
=

e�

�

(
1 − e−�a

) .
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4.2 � Simplified reset algorithms

It may be advantageous to consider simplified variants of DRA; such algorithms 
may have worse competitive ratio, but still may work well on average. We consider 
here the following family of algorithms: Given parameter k let

ALG(k) be the DRA algorithm where x
1
= x

2
= ⋯ = xk = a , 

xk+1 = xk+2 = ⋯ = 0.

The worst-case competitive ratio of ALG(k) is 2 + 1

k
 , which can be obtained easily. 

In what follows we consider three cases: 

(a)	 ALG(∞) (all xi are equal to a)
(b)	 ALG(1)
(c)	 ALG(10).

Note that ALG(∞) is equal to OWCR​.
Let Q

�
 denote the mean of the power-consumption cost per unit time when the 

algorithm of � ∈ {OPT ,ALG(∞),ALG(1),ALG(10)} is employed. Q
�
 ’s can be 

derived in a straightforward manner, and we obtain

In Table 3 we display competitive ratios of ALG(∞) , ALG(1), ALG(10), as well as 
ODRA for � = 0.1, 0.01 and 0.001 given different degrees of slackness. We use the 
basic set of parameters shown in Table 2 and calculated the average power consump-
tion per unit time of each algorithm and the competitive ratio with Qopt.

Next, we conducted experiments of Monte Carlo simulation in order to vali-
date the results obtained through the analysis. Our simulation program was 

QOPT = 1 − e−(a�+�),

QALG(∞) = 1 + (a� − 1)e−(a�+�),

QALG(1) = 1 + 2(a� − 1)e−(a�+�) − (a� − 1)e−(2a�+�),

QALG(10) = 1 + (a� − 1)e−(a�+�) + (a� − 1)e−(ka�+�) − (a� − 1)e−((k+1)a�+�).

Table 2   Basic parameters Parameter Value

Value of a 1, 3, 10 [unit]
ALG(10) parameter k 10
Value of � 0.1, 0.01, 0.001
Consuming cost while in ON-state 1 [unit]
Customer arrival rate � 0.001, 0.01, 0.1, 0.5, 0.99
Mean sojourn time 1∕� 1
Number of events 100,000
Number of simulations 100
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written in C. For each parameter setting, we performed 100 different simulation 
runs, each one consisting of 100000 arrival events. Then, Q̂

�
 (� ∈ {OPT,ALG(∞), 

ALG(1), ALG(10), ODRA}) , the estimate of Q
�
 , was calculated by taking the aver-

age of the 100 simulation results.
From Tables 3 and 4 we observe that the differences between the analysis and the 

simulations ratios are extremely small, which is summarized in Table 5.
We mention that there are two natural algorithms, namely the algorithm “always-

on”, which always continues to standby in the on state, and the algorithm “always-
off”, which switches off immediately after each request. However, both of these 
algorithms are not competitive.

4.3 � Analysis of results

We now provide further analysis of the algorithms in the previous subsection. It is 
noted that in Sect.  2  “Problem Statement” the power-down problem was formal-
ized under the “short-job assumption” and this assumption was used in Sect. 3 to 
develop the DRA approach. Figure (1a) depicts competitive ratios of the algorithms 
over � in the case where the value of a is large relative to the mean sojourn time 1∕� 
(cf. Table 2), thus modeling the “short-job assumption”. To this end, in Fig. 1a we 
have a = 10 , 1∕� = 1 and � = 0.1.

Comparing ALG(∞) , ALG(10), ALG(1), and ODRA, it is clear that ODRA outper-
forms both ALG(∞) and ALG(10) for small values of � . When � becomes larger, the 

Table 3   Analytical results of competitive ratios

� a QALG(∞)

Q
OPT

QALG(1)

Q
OPT

QALG(10)

Q
OPT

Q
ODRA

Q
OPT

� = 0.1 � = 0.01 � = 0.001

CRworst 2 3 2.1 2.1 2.01 2.001

0.001 1 1.499500167 1.000748917 1.005217540 1.001271437 1.002655881 1.004223251
0.001 3 1.748501000 1.003363768 1.023213298 1.005700441 1.011875363 1.018824733
0.001 10 1.904100076 1.013501416 1.090154187 1.022737696 1.046923893 1.073583298
0.01 1 1.495016667 1.007392352 1.049361599 1.012449439 1.025691967 1.040288636
0.01 3 1.735099997 1.032642545 1.198858383 1.054009659 1.108550126 1.165205808
0.01 10 1.860007391 1.123442676 1.560542526 1.192391007 1.354364280 1.491272831
0.1 1 1.451665557 1.064830612 1.294390205 1.101041447 1.186107865 1.258010593
0.1 3 1.609973435 1.241087434 1.585182262 1.322390871 1.483578065 1.560710753
0.1 10 1.498960659 1.498960659 1.498960659 1.468155678 1.493303595 1.498345837
0.5 1 1.290988353 1.176493358 1.289716429 1.207633090 1.268587916 1.286176758
0.5 3 1.234776464 1.295573382 1.234776547 1.244383268 1.234341587 1.234673050
0.5 10 1.020517708 1.036821277 1.020517708 1.030159311 1.021349348 1.020598886
0.99 1 1.158584136 1.157577489 1.158584000 1.148352929 1.156732850 1.158383505
0.99 3 1.057717729 1.094037776 1.057717729 1.070640985 1.058742869 1.057806889
0.99 10 1.000184576 1.000350501 1.000184576 1.000426862 1.000201666 1.000186226
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Table 4   Simulation results of competitive ratios

� a Q̂
ALG(∞)

Q̂
OPT

Q̂
ALG(1)

Q̂
OPT

Q̂
ALG(10)

Q̂
OPT

Q̂
ODRA

Q̂
OPT

� = 0.1 � = 0.01 � = 0.001

0.001 1 1.499492963 1.000750893 1.005234781 1.001278115 1.002673568 1.004253776
0.001 3 1.748494731 1.003364077 1.022938486 1.005706731 1.011885855 1.018841590
0.001 10 1.904080771 1.013526162 1.086857557 1.022823295 1.04704002 1.073740246
0.01 1 1.495001195 1.007416410 1.047625321 1.012511045 1.025785455 1.040428928
0.01 3 1.735080811 1.032678371 1.180575779 1.054337550 1.108750303 1.165435414
0.01 10 1.860076853 1.123428691 1.463281096 1.195298066 1.354960147 1.491342028
0.1 1 1.451629102 1.064873144 1.243433987 1.102648834 1.186478676 1.258064006
0.1 3 1.609907886 1.241255251 1.499596828 1.335282596 1.486253375 1.561186174
0.1 10 1.499079473 1.499134714 1.499052517 1.499094624 1.499025049 1.499089089
0.5 1 1.290981807 1.176359960 1.265689059 1.219014586 1.270510235 1.286351517
0.5 3 1.234641100 1.295229088 1.242249087 1.257543221 1.236841254 1.234870023
0.5 10 1.020479491 1.036753389 1.022105558 1.030423560 1.021337539 1.020612829
0.99 1 1.158652448 1.157644732 1.158482857 1.158265291 1.158607584 1.158659617
0.99 3 1.057636604 1.093908755 1.061441260 1.071619214 1.058930370 1.057789034
0.99 10 1.000200917 1.000380917 1.000200917 1.000538819 1.000305787 1.000301569

Table 5   Difference between analysis and simulation

� a Q
ALG(∞)

Q
OPT

Q
ALG(1)

Q
OPT

Q
ALG(10)

Q
OPT

Q
ODRA

Q
OPT

� = 0.1 � = 0.01 � = 0.001

0.001 1 7.20367E–06 1.97565E–06 1.72414E–05 6.67816E–06 1.76866E–05 3.05254E–05
0.001 3 6.26900E–06 3.09299E–07 2.74812E–04 6.28975E–06 1.04919E–05 1.68566E–05
0.001 10 1.93047E–05 2.47463E–05 3.29663E–03 8.55985E–05 1.16127E–04 1.56948E–04
0.01 1 1.54716E–05 2.40582E–05 1.73628E–03 6.16060E–05 9.34883E–05 1.40292E–04
0.01 3 1.91863E–05 3.58258E–05 1.82826E–02 3.27891E–04 2.00177E–04 2.29606E–04
0.01 10 6.94621E–05 1.39855E–05 9.72614E–02 2.90706E–03 5.95867E–04 6.91967E–05
0.1 1 3.64546E–05 4.25324E–05 5.09562E–02 1.60739E–03 3.70811E–04 5.34132E–05
0.1 3 6.55485E–05 1.67817E–04 8.55854E–02 1.28917E–02 2.67531E–03 4.75421E–04
0.1 10 1.18814E–04 1.74055E–04 9.18580E–05 3.09389E–02 5.72145E–03 7.43252E–04
0.5 1 6.54643E–06 1.33398E–04 2.40274E–02 1.13815E–02 1.92232E–03 1.74759E–04
0.5 3 1.35364E–04 3.44294E–04 7.47254E–03 1.31600E–02 2.49967E–03 1.96973E–04
0.5 10 3.82174E–05 6.78883E–05 1.58785E–03 2.64249E–04 1.18085E–05 1.39428E–05
0.99 1 6.83124E–05 6.72425E–05 1.01143E–04 9.91236E–03 1.87473E–03 2.76112E–04
0.99 3 8.11251E–05 1.29021E–04 3.72353E–03 9.78229E–04 1.87501E–04 1.78547E–05
0.99 10 1.63405E–05 3.04164E–05 1.63405E–05 1.11957E–04 1.04121E–04 1.15343E–04
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differences among all the algorithms decrease to the point where there is almost no 
difference. It is important to recall that we desire the algorithms to be close to opti-
mally-competitive even for worst-case request sequence instances. While ALG(1) 
performs quite well, its worst-case competitive ratio is 3. Only ODRA combines a 
close-to-optimal worst-case competitiveness with good competitiveness across all 
values of � . Finally, observe the values in the third column of Table 6 which gives 
averages (i.e. the integrals of the curves): Indeed, ODRA exhibits the smallest aver-
age, though—as discussed—this is not its most significant feature.

Figure 1b shows the effect of tightening the value of � for ODRA. To obtain a bet-
ter worst-case guarantee ODRA gives up competitiveness across ranges of � when 

(a) (b)

(c) (d)

Fig. 1   Competitiveness of algorithms

Table 6   Average 
competitiveness

a = 1 a = 3 a = 10

ODRA 1.168412309 1.223852092 1.116581260
ALG(1) 1.144922345 1.237722127 1.129922058
ALG(10) 1.260466135 1.268950391 1.127783885
ALG(∞) 1.303473642 1.291111016 1.135928400
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the value of � is chosen to be smaller. Thus there is a tradeoff between the demand 
on how close to optimality the algorithm in the worst-case should be, and what its 
overall competitiveness is.

Finally, Fig. 1c, d show characteristics for a = 3 and a = 1 . As is expected, the 
competitiveness behavior is similar, though competitiveness is somewhat better for 
small values of �.

5 � Systems with intermediate states

The use of multiple intermediate states, sometimes called “sleep states” affords bet-
ter competitiveness; see our papers [7] for systems with one extra state, i.e.  three-
state systems, [8] for systems with finitely many but few states, [6] for systems with 
a continuous number of states, and our survey paper [9]. In this section we focus on 
three-state systems; for simplicity we assume that a = 1 and consider one extra state 
INT1 with standby cost s1 and switching cost a1 , as in Table 1. As shown in [7] for 
s1 = 0.6 and a1 = 0.4 , for example, the competitive ratio R for this system is 1.8. 
(The values s1 = 0.6 and a1 = 0.4 are significant, as among all parameter values s1 
and a1 for INT1 this choice gives the lowest competitiveness.) Whereas for a two 
state system OWCR switches to OFF after time a=1 to obtain ratio 2, for this three-
state system the OWCR switches to INT1 after idle time x1 = 0.9037 and to OFF 
after idle time x2 = 1 . Just as in the two-state case, OWCR does not result in good 
performance in many practical situations, especially in case the device is not used 
frequently. We will now describe how the DRA approach can be adapted to a system 
with three states (see also Table  7). 

Let u1, u2, u2, ... be an infinite sequence of standby times in the ON state and let 
q1, q2, q3, ... be an infinite sequence of standby times in the INT state. So ui is the dura-
tion of the machine in the ON state and qi is the duration in the INT state and after 
ui + qi time units the machine switches to the OFF state. Since this will be a three state 
machine, there are two switch times when we have the worst-case cost which occurs 

Table 7   Three State Taper 
Down Values for s

1
= 0.6 and 

a
1
= 0.4 , R = 1.8

� = 0.001 � = 0.01 � = 0.1

u q u q u q

0.4993 0.4996 0.4938 0.4959 0.4444 0.4615
0.4970 0.4996 0.4708 0.4959 0.2460 0.4615
0.4918 0.4996 0.4193 0.4959 0 0.3417
0.4799 0.4996 0.3044 0.4959 0 0
0.4534 0.4996 0.0474 0.4959
0.3936 0.4996 0 0.1433
0.2591 0.4996 0 0
0 0.4708
0 0.0390
0 0
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immediately at the switch times. Assuming competitive ratio R we utilize two equa-
tions that we will use to compute these times.

Equation (19) is used to compute uk after k − 1 slack requests, and that uk value is 
used to compute qk in Eq. (20). In the two equations, it is assumed that for state INT, 
s1 + a1 ≥ 1 , which can be seen by the offline cost since constants a and d are absent 
in the offline cost. Similarly to the 2 state DRA, we increase the competitive ratio by 
a small constant � , and we attempt to taper the standby duration of the ON and INT 
state after every slack request, a request that occurs after ui + qi , and the durations 
reset back to u1 and q1 otherwise. We substitute R = R + � and we solve for uk and 
qk , we get

Since the value of uk from (21) is needed to compute the value of qk in (22), if we 
assume that uk > 0 to get:

So qk does not taper down as long as uk > 0 . Initially, only the duration of the ON 
state will taper after each slack request while the duration of the machine in state 
INT does not change. When uk = 0 , several slack requests have arrived consecu-
tively, and then the value of qk will begin tapering down. We will obtain a closed 
form for uk , as was done for the two state system. We can derive (19) to have

Since we know that if any ui > 0 , then the values for qi will never taper down so we 
can substitute qi =

1−a1
R−s1

 and then we have

(19)

∑k−1

i=1
(ui + s1qi + 1) + uk + a1

∑k−1

i=1
1 + uk

= R + �

(20)

∑k−1

i=1
(ui + s1qi + 1) + uk + s1qk + 1

∑k−1

i=1
1 + uk + qk

= R + �

(21)uk = max

�
R(k − 1) −

∑k−1

i=1
(ui + s1qi + 1) − a1

1 − R
, 0

�

(22)qk = max

�
R(k − 1) + uk(R − 1) −

∑k−1

i=1
(ui + s1qi + 1) − 1

s1 − R
, 0

�

(23)qk =
1 − a1

R − s1

(24)
k−1∑

i=1

ui + s1

k−1∑

i=1

qi − (1 − R)uk = (R − 1)(k − 1) − a1



467

1 3

Decrease and reset for power‑down﻿	

Now we can simply substitute k = k − l in (25) to have

If we subtract (26) from (25) we have the following recurrence

Let us substitute the right hand side to � = (R − 1) − s1
1−a1
R−s1

In (28), we can see that (R)∕(R − 1) is multiplied k times so we can rewrite (28)

From Eq. (21) from the last section, we can compute u1 = d∕(R − 1) , substitution 
that for u1 we obtain

For all i < l if ui > 0 , then we know that qi does not change, let l be an index such 
that ul = 0 and ul−1 > 0 , which can be computed from (30), so the index l is the 
first instance such that the duration becomes zero, in which this case the value of 
ql ≤ ql−1 and this holds for all indices larger than l. So we will derive a formula for 
the tapering values for qk , similar to how we derived the formula for uk , we will start 
by deriving (20) by replacing k with l

As done earlier, we will substitute l = l − 1

Once again we subtract (31) from (32)

(25)
k∑

i=1

ui − Ruk = (R − 1)k − R + (R − s1k)
1 − a1

R − s1

(26)
k−1∑

i=1

ui − Ruk−1 = (R − 1)(k − 1) − R +
(
R − s1(k − 1)

)1 − a1

R − s1

(27)(1 − R)uk + Ruk−1 = (R − 1) − s1
1 − a1

R − s1

(28)uk − � =
R

R − 1
(uk−1 − �)

(29)uk − � =

(
R

R − 1

)k−1

(u1 − �)

(30)uk = max

{(
R

R − 1

)k−1

(a1∕(R − 1) − �) + �, 0

}

(31)
l∑

i=1

ui + s1

l∑

i=1

qi − Rul − Rql = R(l − 1) − l

(32)
l−1∑

i=1

ui + s1

l−1∑

i=1

qi − Rul−1 − Rql−1 = R(l − 2) − l + 1

(33)ul + s1ql + R
(
ul−1 − ul

)
+ R

(
ql−1 − ql

)
= R − 1
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So as we assumed before, ul = 0 so we make that substitution into (33)

This ql from (34), will be used to solve the recurrence for ql values. In order to derive 
this formula, we will begin with (33) which was obtained by subtracting (31) from 
(32). We will substitute l for t and t ≥ l , so we have

The difference between (35) and (33) is that in this case both ut = 0 and ut−1 = 0 
since t > l in which at this point ul = 0 and ul+1 = 0 must be true and t > l so ut = 0 
and ut−1 = 0 must be true as well. Now when we solve for qt , we have the following 
recurrence

Let us substitute � =
R

R−s1
 , when we solve the recurrence we have

6 � Conclusions and outlook

With the proliferation of IT devices and the adoption of a smart grid powered by 
renewables, power-down methods are becoming increasingly relevant. The decrease 
and reset approach affords close to optimal performance while guaranteeing good 
performance over a large spectrum of request types. The different types of analysis 
employed in this paper show that the decrease and reset approach achieves signifi-
cant improvements for power-down problems. We suggest that decrease and reset 
should be used in practice across various applications but especially in the context 
of the electrical grid. To ensure resiliency of a majority-renewables grid our work on 
the power-down problem demonstrates that online competitive analysis and meth-
ods from game theory can be useful tools for existing and future modeling. Further 
work is under way to see how decrease and reset approach can be adapted to various 
multi-state systems.

We could further refine our approach by utilizing a budget-based method which 
keeps a tally of gains and losses as requests are processed. This approach would be 
similar conceptually to decrease and reset in terms of how the system tapers down, 
but the adjusted wait times in the budget-based approach would calculate the switch 
time to be even more cost efficient.

(34)
s1ql + Rul−1 + R

(
ql−1 − ql

)
= R − 1

ql =
R − 1 − R

(
ul−1 + ql−1

)

s1 − r

(35)s1qt + Rqt−1 − Rqt = R − 1

(36)qt =
R − 1

s1 − R
+

(
R

R − a

)
qt−1

(37)qt = max

{
�
t−lql +

(
R − 1

s1 − R

)(
�
t−l − 1

� − 1

)
, 0

}
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