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Abstract
Investments in power generation assets are multi-year projects with high costs 
and multi-decade lifetimes. Since market circumstances can significantly change 
over time, investments into such assets are risky and require structured decision-
support systems. Investment decisions and dispatch in electricity spot markets are 
connected, thus requiring anticipation of expected market outcomes. This strategic 
situation can be described as a bilevel optimization problem. At the upper level, an 
investor decides on investments while anticipating the market results. At the lower 
level, a market operator maximizes welfare given consumer demand and installed 
generation assets as well as producer price bids. In this paper, we formulate this 
problem as a mathematical program with equilibrium constraints (MPEC). We con-
sider this model to include a dynamic, rolling-horizon optimization. This structure 
splits the investment process into multiple stages, allowing the modification of wait-
and-see decisions. This is a realistic representation of actors making their decision 
under imperfect information and has the advantage of allowing the players to adjust 
their data in between rolls. This more closely models real-world decision-making 
and allows for learning and other feedback in between rolls. The rolling-horizon for-
mulation also has the beneficial byproduct of computational advantage over a fixed-
horizon stochastic optimization formulation since smaller problems are solved and 
we provide supporting numerical results to this point.
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1 Introduction

1.1  Motivation

Investments in power generation assets are multi-year projects with high associ-
ated costs and lifetimes that usually last several decades. Market circumstances can 
significantly change over those time periods. One important aspect has been the 
restructuring of electricity markets undertaken in Europe, the U.S. and other parts 
of the world since the 1990s. Despite the introduction of competition, market con-
centration in the liberalized electricity markets frequently remains high. E. g. [11] 
report based on data from the European Commission that in 17 out of 25 reviewed 
countries the electricity generation business remains highly concentrated (Herfind-
ahl–Hirschman Index (HHI) between 1800 and 5000) or even very highly concen-
trated (HHI above 5000). Over the last decade, market power of the big, usually 
incumbent firms has probably somewhat declined in Europe due to both new market 
entrants in the national markets and increased cross-border competition. Neverthe-
less (conventional) electricity generation remains a highly concentrated business, 
and in many countries of the world there is one major incumbent player such as EDF 
in France or Vattenfall in Sweden. At the same time, investments into generation 
assets are risky in competitive markets and require structured decision-support sys-
tems. Investment decisions and dispatch in electricity spot markets are connected, 
thus requiring anticipation of expected market outcomes when deciding about 
investments. The methods used in modeling these processes are based on a number 
of uncertain parameters, whose realizations are unknown at the time the decision is 
taken. The use of multiple scenarios is therefore an accepted strategy to ensure deci-
sions lead to acceptable outcomes given a range of potential developments.

The use of scenarios motivates the use of stochastic methods. With asset lifetimes 
that can reach half a century and more, the computational efforts required to solve 
optimization problems can be significant. Methods for reducing these efforts may 
be required, while at the same time limiting the detrimental effect on solution qual-
ity. In this paper, we propose a rolling-horizon formulation for the investments of a 
strategic player which has computational advantages over a fixed-horizon stochastic 
optimization formulation, while supporting numerical results suggest an acceptable 
tradeoff regarding solution quality. The rolling-horizon approach is a more realistic 
representation of actors making their decision under imperfect information and has 
the advantage of allowing the players to adjust their data in between rolls. This more 
closely models real-world decision-making and allows for learning and other feed-
back in between rolls.

1.2  Literature review and contribution

In fully regulated electricity systems, generation expansion planning is a central-
ized optimization problem which takes into account the total cost of construction, 
operation, and electricity production over the optimization horizon. Usually cost 
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minimization or welfare maximization is the objective, while other targets, such as 
sustainability or security of supply, may be considered in a multi-objective setting. 
This planning approach considers investment decisions and market operations in a 
single objective function of the central planner [31].

In liberalized electricity systems, investment decisions and market operations 
are generally decoupled. While private investors make individual decisions about 
new generation assets, the electricity market is run by a market operator or an inde-
pendent system operator (ISO)1. These actors have different goals: while investors 
and producers have incentives to maximize their revenue, market operators aim to 
maximize welfare, as generally they are not profit-oriented. Modeling the investment 
process thus requires consideration of the different goals of these actors. This may 
be formulated as a competitive equilibrium, i.e. a simple optimization problem (e.g. 
[19, 24]) or as a Cournot oligopoly game (e.g. [19, 20]). A dynamic version of the 
latter is found in [21]. Another approach is to formulate a bilevel problem [2, 26]. At 
the upper level, an investor decides on generation capacity additions as well as price 
bids for the electricity market. At the lower level, a market operator maximizes wel-
fare given bids by suppliers and consumers. These types of models are also referred 
to as closed-loop formulations, since they represent a two-stage structure in which 
investment and market bidding decisions are decoupled [30]. In contrast, models 
such as [20, 21] provide open-loop formulations where capacity expansion and oper-
ation are decided simultaneously.

Solving the aforementioned closed-loop, bilevel generation investment problem 
requires advanced optimization techniques. One option is to use the conventional 
formulation and employ an iterative heuristic to solve the problem [27]. Another 
possibility is to reformulate the bilevel problem as a mathematical program with 
equilibrium constraints (MPEC), which allows using more conventional mixed-
integer programming (MIP) solvers. This reformulation has been proposed in [19], 
where the authors compare three different investment models, one of which is a 
bilevel version separating investment decision and spot market operations. Both [14] 
and [29] each propose a stochastic MPEC formulation of the strategic generation 
investment problem. While [14] models demand in discrete load-price blocks, [29] 
uses a conjectured supply function resulting in a nonlinear problem, which in turn is 
linearized by introducing discrete steps.

The extension to multiple investors leads to multiple bilevel models that need to 
be solved simultaneously to form an equilibrium. These are generally formulated as 
an equilibrium problem with equilibrium constraints (EPEC), a structure which is 
significantly more complex than the previously mentioned MPECs [9]. EPEC exten-
sions of the MPEC formulations in [14] and [29] have been proposed by [15, 16] 
as well as [28], respectively. Due to the increased complexity of these equilibrium 
models, there are significant simplifications compared to the previously proposed 

1 Market operators are responsible for the market itself only and primarily exist in zonal pricing markets, 
whereas grid operators are responsible for the transmission system. ISOs generally exist in nodal pricing 
markets, where grid constraints are incorporated into the market-clearing process. Thus ISOs play a more 
comprehensive role beyond market operation itself [25].
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MPECs. While further investigations into these appears worthwhile, we focus our 
analysis on a single-investor MPEC formulation for concreteness.

A number of extensions to these outlined MPEC formulations have been pro-
posed. In [12], the authors extend the MPEC to include a futures market in addition 
to the spot market, while [13] uses a Benders Decomposition algorithm to decrease 
the computational burden of the original problem. [1] proposes a model with a two-
stage setup that includes risk-averse investors using conditional value at risk (CVaR) 
as a risk measure. The authors also focus on investments in fluctuating renewable 
sources rather than conventional generation assets. Extending the model to include 
multiple future time periods has been proposed in [2], among others.

The model used in the current paper is an extension of that in [14] by increasing 
the planning horizon to multiple future time periods and introducing the concepts 
of rolling-horizon optimization and recourse action. Rolling-horizon optimization 
is common in scheduling and dispatch models, where previously made dispatch 
decisions can be altered before physically adjusting power plant production [18]. In 
addition, it is a common tool for the optimization of storage systems such as gas 
[5] and hydropower [10]. In a multi-stage investment framework, it is perhaps more 
realistic to include a rolling horizon to allow changing decisions based on updated 
information. In addition, a limited optimization horizon is a realistic assumption for 
actors making decisions under imperfect information. Additionally, in between each 
roll, such models can allow players to learn and adjust their data (e.g. costs, scenario 
probabilities) which allows for a richer model that is also more realistic. For exam-
ple, after solving for time periods {t, ..., t + n }, only the solutions from the first time 
period t are retained. After this roll, each player can evaluate if they want to adjust 
their data strategically (e.g., lower costs if they lost market share). As described in 
[5], this allows for data to become strategic and endogenous learning by the players 
to be modeled in a dynamic manner.

Additionally, a rolling-horizon approach can avoid “over-optimization” which 
may occur with full-horizon models. That is to say, having the model greatly delay 
an investment to later years since it considers a very long (e.g., 50 year) horizon, 
which seems inconsistent with real-world decision-makers. Lastly, as a side benefit, 
since the sizes of the rolling-horizon problems are reduced, the computation times 
will decrease and in some cases this could be substantial as compared to a full-hori-
zon approach [5].

One benefit of dynamic investment models is the possibility to split investment 
decisions into multiple stages of differing capacity intensity (e.g., planning and con-
struction). This concept has been described as a real-options approach in [6] and 
applied to energy investments in [17] and others. We implement and evaluate this 
stage structure, which allows recourse action, by comparing it to one-time decisions 
that cannot be altered at a later time. Rolling-horizon planning is and established 
concept in energy system modeling. However, to the best of our knowledge it has 
not been applied to the strategic investment problem, or any MPEC formulation, 
thus far. Our main contributions are thus threefold: 

1. Reformulate a dynamic strategic investment problem with a stochastic demand 
tree into a rolling-horizon MPEC.
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2. Conduct a case study over a six-bus system to highlight the computational advan-
tages related to this structure.

3. Evaluate the benefit of the investment-stage structure with the option of recourse 
action when compared to fixed one-time investment decisions.

For our case study, we also make a thorough comparison of the solutions in terms 
of investment compared to full-fledged stochastic programs. We are able to show, 
that in the absence of major structural breaks beyond the rolling planning horizon, 
the solutions of our rolling planning approach are close to those of a full stochastic 
model.

1.3  Paper organization

The remainder of this paper is structured as follows. Section  2 contains our problem 
formulation with emphasis put on the improvements we make over existing models. 
Section  3 contains the mathematical formulation of the strategic investment model 
we use. In Section 4, we define a reference case and use it to test multiple model 
configurations. Section 5 summarizes the results and concludes the paper.

2  Problem formulation

In this section, we briefly describe the strategic generation investment problem as 
it has been proposed in [19]. We discuss the model assumptions and highlight our 
modifications to the original model as proposed in [14]. Those are the introduction 
of a dynamic, multi-period setup with a stochastic demand tree, a rolling-horizon 
optimization, and multiple investment stages.

2.1  Bilevel model and assumptions

The decision framework of a strategic investor in generation capacity can be 
described as a bilevel problem: at the upper level, an investor aims to maximize net 
revenues from investment and operation of a power plant fleet. The investor decides 
how much, at what location, and which kind of generation technology to invest in. 
A number of constraints affect this upper-level problem: there may be a constraint to 
the available budget, and technologies may only be for purchase at discrete capacity 
levels. Given an investment decision (and additional existing plants), the investor 
decides on price-energy bids for the electricity spot market. The fact that strategic 
price bidding rather than marginal cost bidding is allowed constitutes a key differ-
ence between this model and central generation expansion planning.

The electricity spot market is modeled at the lower level. We consider the strate-
gic investor and one or several marginal-cost bidding rival producers who also own 
power plants. A market operator treats generator and consumer price-quantity bids 
as given and maximizes social welfare in the system. Constraints to this problem are 
upper and lower limits to supply and demand as well as the model representation of 
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the electricity grid, which may limit transmissions between different nodes in the 
system. The conflicting objectives of investor/generator (who acts first) and market 
operator give this problem its bilevel structure. Since the lower-level market opera-
tions problem is linear, it can be reformulated and replaced by its necessary and 
sufficient Karush- Kuhn-Tucker (KKT) conditions and included in the upper-level 
problem, thus resulting in an MPEC as described in Sect. 3. Key characteristics of 
our formulation are notably: 

1. We represent the electricity grid through a DC load flow approximation and do 
not consider transmission losses (see [9]).

2. Competitors are assumed to offer electricity to the spot market at marginal cost.
3. In our scenarios, we assume only electricity demand to be stochastic. Including 

further stochastic factors is possible, but increases the computational burden and 
we speculate that it offers limited additional insights.

4. We model two technologies for investment: base load (coal) and peak load (com-
bined-cycle gas). Including renewables is possible (see [1]) but not considered in 
this paper.

5. Modeled time periods encompass 3 years each, while an investment into a power 
plant requires 6 years (3 years each for planning and construction).

2.2  Stochastic demand tree

Demand for electricity is driven by various fundamental factors, such as economic 
development, as well as structural market changes, such as the anticipated wide-
spread rollout of electric vehicles. Given the uncertainty of these factors, the short-
term and long-term level of electricity demand is an uncertain parameter for inves-
tors in generation capacity. The simplest approach to model demand uncertainty 
is to allow for two possible developments per time period: an increase (up) and a 
decrease (down). This binary approach to uncertainty may seem simplistic, but is 
not uncommon in applications such as option pricing [4]. A three-branch (“trinary”) 
decision tree, which could also include a branch with unchanged demand, was also 
considered. However, initial results indicated limited additional benefit but a sig-
nificant increase in computational burden. Therefore, we limit our analysis to two 
demand scenarios per time period.

Modeling this uncertainty over multiple time periods results in a stochastic tree, 
which is known as a binary tree. One problem commonly associated with the use 
of scenarios in stochastic optimization is the “curse of dimensionality”. When con-
sidering a number of uncertain parameters with independent scenario probabilities, 
the number of joint realization scenarios increases exponentially with the number 
of considered uncertainties [8]. The same issue applies when considering a single 
uncertain parameter, in our case demand, and a number of time periods. We initially 
considered the use of recombining trees, which can be used to limit the increase in 
scenarios from one time period to the next [7]. A recombining tree’s defining char-
acteristic is that the order of previous transitions does not matter to a finally reached 
node, as the result is identical for each variation [8]. See the recombining stochastic 
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tree as outlined on the left-hand side of Fig. 1: From N1, an up and a down transi-
tion always leads to N5, no matter which order they occur in.

However, this approach is not feasible for use in an investment problem for the 
following reasons. For an investor in generation technology in a dynamic setting, 
decisions need to be made at multiple points in time. Take for example node N5 in 
the left-hand stochastic tree in Fig. 1. It represents a level of demand that is equal to 
the root node N1. There are two paths that lead to N5, one via N2, the other via N3. 
However, the decision settings in each of these nodes are different: N2 represents a 
higher level of demand than N3, and with a higher expected value for future demand 
as well. The optimal investment is likely different depending on which path is real-
ized. For this reason, even a recombining demand scenario tree leads to a system 
state tree that is non-recombining (see right-hand side of Fig. 1). The latter tree is 
what we use in our optimization problem.

2.3  Rolling‑horizon structure

The static single-period version of the strategic investment problem is well-studied 
in the existing literature (cf. Sect.   1). Since the technical lifetime of conventional 
generation assets usually lasts several decades over which market conditions may 
change significantly, a dynamic, multi-period version appears worthwhile and has 
been proposed and implemented multiple times [2, 30]. In a stochastic formulation, 
the use of multiple time periods leads to an increase in the number of decision vari-
ables due to larger scenario trees and thus its use can be limited by computational 
complexity [22]. This motivates the use of a rolling-horizon version of the model, as 
it reduces the computational burden by only including a subset of time periods from 
the entire optimization horizon. This structure is presented in what follows.

Figure 2 depicts the basic structure of a rolling-horizon optimization or equilib-
rium problem. Roll 1 (R1) consists of the time periods t1 through t3 . Going forward, 
all decisions for time period t1 are considered final because t1 is not part of any roll 
other than R1. Hence the decisions for t1 cannot be altered in a future roll. This is 
unlike the decisions for t2 and t3 . R2 consists of t2 through t4 and allows changing 

N1

N2

N3

N4

N5

N6

N1

N2

N3

N4

N5

N6

N7

Fig. 1  Three-stage recombining demand tree (left) and non-recombining system state tree (right)
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the decisions made previously for t2 and t3 . This structure for roll R1 is referred to as 
“here-and-now” decisions for t1 , which are final, and “wait-and-see” decisions for t2 
and t3 , as these can be updated when new information becomes available [3]. Further 
rolls such as R3 may be included as necessary for the time horizon.

The detail and level of information for future time periods is generally better 
the closer said periods are to the present. For our model, we propose the following 
structure: the first two time-periods, each consisting of n years, are considered indi-
vidually. The subsequent m time periods consist of m ∗ n years and are aggregated 
into time period t3,agg , depicting the part of the expected lifetime of the investment 
for which there is limited information available. Figure 3 shows this aggregation of 
time periods. This structure also offers significant computational benefit when com-
pared to an optimization of 3-year time periods over the entire plant lifetime. Fig-
ure 4 shows the rolling-horizon structure for the discussed, aggregated time periods.

Fig. 2  Basic rolling-horizon 
structure

t1 t2 t3
R1

t2 t3 t4
R2

t3 t4 t5
R3

0 1 2 3 4 5

Fig. 3  Time period aggregation t1 t2 t3 t4 t5 t6

t1 t2 t3,agg

t1 t2 t3,agg
R1

t2 t3 t4,agg
R2

t3 t4 t5,agg
R3

0 6 12 18 24

Fig. 4  Dynamic-period rolling-horizon structure
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2.4  Multiple investment stages and recourse action

In static models, investments for generation assets are seen as single-stage decisions. If 
an investment decision is deemed optimal, the plant is built and becomes operational 
for the modeled electricity spot market. For dynamic models, this structure may be 
too simple. The construction of a large-scale power plant is a complex process encom-
passing multiple stages that take several years to complete. Beginning with a planning 
stage, there are bureaucratic hurdles to clear before eventually physical construction 
takes place. From an optimization perspective, the fact that these stages vary in capital 
intensity matters to the decision process. The relatively cheap planning stage can be 
used to consider an investment opportunity with limited capital exposure. The deci-
sion of whether to enter the more capital-demanding construction stage can be post-
poned: it is only entered if it is worthwhile under updated market conditions at a later 
date, or can be abandoned if no longer economically feasible. This concept is known as 
recourse action and provides an optionality aspect which is well-suited for the rolling-
horizon model.

Since we propose a dynamic model, we split the investment process into two stages. 
We use a simple split into a planning stage, which requires a small fraction x of total 
capital expenditure, and a subsequent construction stage, which requires the fraction 
1 − x (e.g., x = 20% ). Each stage is assumed to require n years to complete, which 
aligns with the time period aggregation we proposed in the previous subsection. After 
going through these two stages the plant is considered operational. This stage structure 
is outlined in Fig. 5. Since the time periods we consider in our rolling-horizon planning 
are aligned with the stage duration, it is possible for the investor to plan capacity for its 
option value and revise the construction decision at a later time.

Note that when considering a planning horizon which is shorter than the operational 
lifetime of an investment, end-of-horizon effects need to be considered. To capture this, 
both planning and construction costs are reduced according to the length of the plan-
ning horizon relative to the asset lifetime. This implies that the remaining asset value is 
considered, thereby eliminating unintended end-of-horizon effects.

3  Mathematical model

3.1  Nomenclature

The following tables define the nomenclature for the mathematical model for-
mulation. Table  1 contains sets, Tables  2 and 3 decision variables (split into 

P lanning Construction Operation

630 T

Fig. 5  Investment stage progression



796 T. Kallabis et al.

1 3

upper- and lower-level variables to improve readability). Table  4 contains the 
lower-level, dual variables used in the MPEC reformulation. Table 5 contains the 
model parameters. Sets and variables start with a lower-case letter, parameters 
with an upper-case letter. Where possible, we use the nomenclature from [14], as 
our model is an extension of the work presented there.

We consider one strategic investor with a number of investment technology 
options i as well as existing power plants e. In addition, there are rival producers 
who own the existing power plants r. Electricity consumption is represented by a 
number of demands d, that make price-quantity bids into the spot market. These 
vary depending on load blocks o, which can represent peak and off-peak intervals 
or a more detailed representation of the demand duration curve. The investment 

Table 1  Indices

t Index for time periods
o Index for load blocks
d Index for demands
n/m Indices for nodes
i Index for new investment technology options
e Index for existing power plants of the strategic producer
r Index for existing power plants of the rival producers
i∕e∕r∕d ∈ Ψn Indices for power plants i/e/r or demand d at bus n
m ∈ Ωn Index for buses m connected to bus n
w/v Indices for scenarios for demand

Table 2  Upper-level decision variables

x
PL,new

t,i,w,n
[MW] New investment in option i in planning stage

x
CO,new

t,i,w,n
[MW] New investment in option i in construction stage

x
OP,new

t,i,w,n
[MW] New investment in option i which is operational

x
OP,total

t,i,w,n
[MW] Total operational capacity of option i

aI
t,o,w,i

[$∕MWh] Price offer by investment option i of the strategic producer
aE
t,o,w,e

[$∕MWh] Price offer by existing plant e of the strategic producer

Table 3  Lower-level primal 
decision variables pI

t,o,w,i,n
[MW] Power produced by strategic investment option i

pE
t,o,w,e,n

[MW] Power produced by existing strategic plant e
pR
t,o,w,r,n

[MW] Power produced by existing rival plant r
pD
t,o,w,d,n

[MW] Power consumed by demand d
�t,o,w,n [rad] Voltage angle of node n
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Table 4  Lower-level dual decision variables

�
price

t,o,w,n
[$∕MWh] Lagrange multiplier for the market-clearing condition

�
I,min

t,o,w,i,n
[$∕MW] Lagrange multiplier for production of new investment i

�
I,max

t,o,w,i,n
[$∕MW] Lagrange multiplier for production of new investment i

�
E,min
t,o,w,e,n

[$∕MW] Lagrange multiplier for production of existing strategic plants e

�
E,max
t,o,w,e,n

[$∕MW] Lagrange multiplier for production of existing strategic plants e

�
R,min
t,o,w,r,n

[$∕MW] Lagrange multiplier for production of existing rival plants r

�
R,max
t,o,w,r,n

[$∕MW] Lagrange multiplier for production of existing rival plants r

�
D,min

t,o,w,d,n
[$∕MW] Lagrange multiplier for consumption of demand d

�
D,max

t,o,w,d,n
[$∕MW] Lagrange multiplier for consumption of demand d

�
F,min
t,o,w,n,m

[$∕MW] Lagrange multiplier for electricity transmission on line n − m

�
F,max
t,o,w,n,m

[$∕MW] Lagrange multiplier for electricity transmission on line n − m

�
�,min
t,o,w,n

[$∕MW] Lagrange multiplier for voltage angle limits �

�
�,max
t,o,w,n

[$∕MW] Lagrange multiplier for voltage angle limits �

�
�,fix

t,o,w,n
[$∕MW] Lagrange multiplier for voltage angle limits �

Table 5  Parameters

KPL
i

[$∕MW] Planning cost of investment option i

KCO
i

[$∕MW] Construction cost of investment option i
Xmax
i

[MW] Maximum installation capacity of investment option i

P
E,max
t,e,n

[MW] Capacity of existing plant e of the strategic producer

P
R,max
t,r,w,n

[MW] Capacity of existing plant r of a rival producer

P
D,max

t,d,o,w,n
[MW] Maximum electricity consumption of demand d

CI
i

[$∕MWh] Marginal production cost of investment option i
CE
e

[$∕MWh] Marginal production cost of existing power plant e
CR
r,w

[$∕MWh] Bid for rival plant r under scenario w
CD
d,o

[$∕MWh] Price offer of demand d
Bn,m [S] Susceptance of line n − m

Fmax
n,m

[MW] Transmission capacity of line n − m

�o Weight factor of load block o, i.e., hours per year
�w Probability of demand scenario w
�t Discount factor of time period t
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process is split into the planning (PL), construction (CO), and operation (OP) 
stages, as described in Sect. 2.

3.2  Bilevel model

The strategic generation investment optimization is formulated as a bilevel model. 
The upper level represents the investment optimization problem of the individual 
investor, while the lower level represents the spot market operated by a welfare-
maximizing operator. This formulation is based on [14] and goes beyond that by 
including a rolling horizon and recourse action (see Sect.  2). The optimization 
problem is dynamic and encompasses multiple time periods. This market operation 
is conducted for different load blocks, i.e., peak and off-peak, in each time period 
considered.

3.2.1  Upper‑level problem

Equation  1 represents the objective function of the strategic investor. Since it is 
defined as a minimization problem, the objective is the negative of the expected 
profit. This negative expected profit is made up of three terms: investment costs (line 
1) minus spot market profits from new (line 2) and existing (line 3) power plants 
(consisting of revenues minus production costs).

As just outlined in the previous section, our model reflect projects in different stages 
of completion. We therefore split the investment process into a planning stage (PL) 
and a construction stage (CO). Once finished, plants are considered operational 
(OP). Projects that were finished at time t are considered as new, while the total 
operational capacity consists of all projects finished by this time period. Equations 2 
through 5 represent this structure in the model by ensuring that any additional capac-
ity passes through all stages. Note that the ≥ symbol in Eqs. 3 and 4 allow the model 
to abandon projects by realizing less new capacity than previously planned or con-
structed (i.e., recourse action). In model configurations that do not allow recourse 
decisions, these constraints would be equalities.

(1)

Minimize

⎛⎜⎜⎜⎜⎜⎝

∑
t,i,w,n �t�w

�
x
PL,new

t,i,w,n
KPL
i

+ x
CO,new

t,i,w,n
KCO
i

�

−
∑

t,o,w,n �t�o�w

�∑
i∈Ψn

�
(�

price

t,o,w,n − CI
i
)pI

t,o,w,i,n

�

+
∑

e∈Ψn
((�

price

t,o,w,n − CE
e
)pE

t,o,w,e,n
)

�

⎞⎟⎟⎟⎟⎟⎠

(2)x
PL,new

t,i,w,n
≥0, ∀t,∀i,∀w,∀n

(3)x
PL,new

t−1,i,w,n
≥x

CO,new

t,i,w,n
, ∀t,∀i,∀w,∀n
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As described in Sect. 2.3, the optimization represents the point in time immediately 
before time period t. Hence, there are scenarios for all time periods in the optimiza-
tion, but decisions for the first time period need to be finalized at this time and thus 
are required to be consistent across scenarios, which is stated in Eqs. 6 through 8. 
These are the non-anticipativity constraints, which can also be considered the “here-
and-now decisions”. All variables for time periods t2 and later are considered “wait-
and-see decisions” and thus can be modified depending on future developments. 
Thus they do not need to be consistent across scenarios.

Equation 9 puts an upper limit on the possible investment capacity per technology i. 
This constraint is included to be able to enforce investments in multiple technologies 
and not just one potentially dominating one.

3.2.2  Lower‑level problem

The lower-level problem represents the spot market for electricity. The problem 
is solved independently for each scenario w and load block o (e.g., peak and off-
peak). Throughout the constraints given in Eqs. 11 through 18, the dual variables 
� are stated since they are required for the MPEC reformulation given in Sect. 3.3.

Equation 10 represents the objective function of the lower-level optimization 
problem. Since we assume a welfare-maximizing market operator, the objective is 
to maximize the exchange of electricity between producers and consumers given 
price-quantity bids on both sides of the market. Note that this representation of 
electricity consumption is different from a minimization of production costs given 
fixed consumption levels, which is a common feature in central planning models. 
Since our model allows strategic bidding by a small number of producers, a limit 
on consumers’ willingness-to-pay is necessary to prevent unlimited profits.

(4)x
CO,new

t−1,i,w,n
≥x

OP,new

t,i,w,n
, ∀t,∀i,∀w,∀n

(5)x
OP,total

t,i,w,n
=x

OP,total

t−1,i,w,n
+ x

OP,new

t,i,w,n
, ∀t,∀i,∀w,∀n

(6)x
PL,new

t,i,v,n
= x

PL,new

t,i,w,n
, t = 1,∀i,∀w,∀v,∀n

(7)x
CO,new

t,i,v,n
= x

CO,new

t,i,w,n
, t = 1,∀i,∀w,∀v,∀n

(8)x
OP,new

t,i,v,n
= x

OP,new

t,i,w,n
, t = 1,∀i,∀w,∀v,∀n

(9)
∑
n

x
OP,total

t,i,w,n
≤ Xmax

i
, ∀t,∀i,∀w
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Equation 11 represents the electricity balance at each node in the system. The sum 
of all production and supply needs to equal imports and exports into the modeled 
grid for each node. Since we model the electricity grid using a DC load flow approx-
imation, the flow on a line between nodes n and m is given by multiplying the differ-
ence in voltage angles �t,o,w,n − �t,o,w,m by the susceptance matrix B.

Equations 12 through 15 put limits on production and consumption. The lower level 
is zero for these variables. The flow on a given line is required to be within the 
respective transmission capacity limit, as stated in Eq. 16.

Finally, the DC load flow approximation requires stating the logic of voltage angles 
� in the system. For all nodes n ≠ 1 , � is restricted to be between positive and nega-
tive � . For an arbitrarily chosen node n = 1 , it is fixed to zero. These constraints are 
given in Eqs. 17 and 18.

(10)

min
∑
n

(∑
i

aI
t,o,w,i

pI
t,o,w,i,n

+
∑
e

aE
t,o,w,e

pE
t,o,w,e,n

+
∑
r

CR
r,w
pR
t,o,w,r,n

−
∑
d

CD
d,o
pD
t,o,w,d,n

)
, ∀t,∀o,∀w

(11)
0 =

∑
d∈Ψn

pD
t,o,w,d,n

+
∑

m∈Ωn
Bn,m(�t,o,w,n − �t,o,w,m)

−
∑

i∈Ψn
pI
t,o,w,i,n

−
∑

e∈Ψn
pE
t,o,w,e,n

−
∑

r∈Ψn
pR
t,o,w,r,n

∶ �
price

t,o,w,n,

∀t,∀o,∀w,∀n

(12)0 ≤ pI
t,o,w,i,n

≤x
OP,total

t,i,w,n
∶ �

I,min

t,o,w,i,n
, �

I,max

t,o,w,i,n
, ∀t,∀o,∀w,∀i,∀n

(13)0 ≤ pE
t,o,w,e,n

≤PE,max
t,e,n

∶ �E,min
t,o,w,e,n

, �E,max
t,o,w,e,n

, ∀t,∀o,∀w,∀e,∀n

(14)0 ≤ pR
t,o,w,r,n

≤PR,max
t,r,w,n

∶ �R,min
t,o,w,r,n

, �R,max
t,o,w,r,n

, ∀t,∀o,∀w,∀r,∀n

(15)0 ≤ pD
t,o,w,d,n

≤P
D,max

t,d,o,w,n
∶ �

D,min

t,o,w,d,n
, �

D,max

t,o,w,d,n
, ∀t,∀o,∀w,∀d,∀n

(16)
−Fmax

n,m
≤Bn,m(�t,o,w,n − �t,o,w,m) ≤ Fmax

n,m
∶ �F,min

t,o,w,n,m
, �F,max

t,o,w,n,m
,

∀t,∀o,∀w,∀n,∀m ∈ Ωn

(17)− � ≤ �t,o,w,n ≤ � ∶ ��,min
t,o,w,n

, ��,max
t,o,w,n

, ∀t,∀o,∀w,∀n

(18)�t,o,w,n = 0, �
�,fix

t,o,w,n, n = 1,∀t,∀o,∀w
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3.3  MPEC

In order to solve the bilevel problem given in Sect. 3.2, we reformulate it into an 
MPEC. This occurs by replacing the lower-level problem by its necessary and suf-
ficient optimality conditions, which are known as Karush- Kuhn-Tucker (KKT) 
conditions [9]. This reformulation is valid because the lower-level problem is linear 
and thus the KKT conditions are sufficient as well as necessary. All constraints of 
the upper level problem (as defined in Eq.  2 through 9), the lower-level problem 
(Eqs. 11 through 18), as well as the upper-level objective function (Eq. 1) are part 
of the MPEC. The latter is linearized to the form given in Eq. 19.2 Finally, the KKT 
conditions given in Eqs. 20 through 36 are also part of the MPEC.

Equations 20 through 24 are the derivatives of the Lagrangian function to the lower-
level decision variables (the derivatives to pI , pE , pR , pD , and � , respectively). These 
are also known as stationarity conditions and are equal to zero for all equilibrium 
solutions to the lower-level problem.

(19)

min
∑
t,i,n

�t�w

(
xPL
t,i,w,n

KPL
i

+ x
CO,total

t,i,w,n
KCO
i

)

−
∑
t,o,w,n

�t�o�w

( ∑
i∈Ψn

CI
i
pI
t,o,w,i,n

+
∑
e∈Ψn

CE
e
pE
t,o,w,e,n

−
∑
r∈Ψn

(
CR
r,w
pR
t,o,w,r,n

+ �R,max
t,o,w,r,n

PR,max
t,r,w,n

)

+
∑
d∈Ψn

(
CD
d,o
pD
t,o,w,d,n

− �
D,max

t,o,w,d,n
P
D,max

t,d,o,w,n

)

−
∑
m∈Ωn

(
�F,max
t,o,w,n,m

Fmax
n,m

+ �F,min
t,o,w,n,m

Fmax
n,m

)

− ��,max
t,o,w,n

� − ��,min
t,o,w,n

�

)

(20)aI
t,o,w,i

− �
price

t,o,w,n + �
I,max

t,o,w,i,n
− �

I,min

t,o,w,i,n
= 0, ∀t,∀o,∀w,∀i ∈ Ψn,∀n

(21)aE
t,o,w,e

− �
price

t,o,w,n + �E,max
t,o,w,e,n

− �E,min
t,o,w,e,n

= 0, ∀t,∀o,∀w,∀e ∈ Ψn,∀n

(22)CR
r,w

− �
price

t,o,w,n + �R,max
t,o,w,r,n

− �R,min
t,o,w,r,n

= 0, ∀t,∀o,∀w,∀r ∈ Ψn,∀n

(23)− CD
d,o

+ �
price

t,o,w,n + �
D,max

t,o,w,d,n
− �

D,min

t,o,w,d,n
= 0, ∀t,∀o,∀w,∀d ∈ Ψn,∀n

2 See Appendix: Linearization for the linearization of the terms using the strong duality theorem from 
linear programming.
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Equations 25 through 36 are complementarity constraints. They correspond to the 
values of the dual variables of the lower-level constraints, hence each of them cor-
responds to a constraint of the lower-level problem. In our model implementation, 
we use the special ordered sets of type 1 (SOS1) formulation described in [23] to 
linearize the complementarity constraints. This is an alternative to the “Big M” 
approach used by [13] and others. Both approaches use similar formulations for 
the complementarity constraints involving primal and dual variables (cf. Eqs.  25 
through 36). Yet they differ in the way of linearizing these non-linear inequalities. 
The ”big M” method introduces binary variables and a somewhat arbitrarily selected 
scalar parameter, namely the big M. This arbitrary scalar is avoided by the SOS1-
method developed in [23], as discussed in detail in the Appendix: Linearization.

Equations  25 through  32 correspond to the capacity constraints given in 
Eqs. 12 through 15.

Equations 33 through 34 correspond to the transmission constraints given in Eq. 16.

(24)

∑
m∈Ωn

Bn,m

(
�
price

t,o,w,n − �
price

t,o,w,m

)
+

∑
m∈Ωn

Bn,m

(
�F,max
t,o,w,n,m

− �F,max
t,o,w,m,n

)

+
∑
m∈Ωn

(
�F,min
t,o,w,n,m

− �F,min
t,o,w,m,n

)
+ ��,max

t,o,w,n
− ��,min

t,o,w,n
+

(
�
�,fix

t,o,w,n

)
n=1

= 0,

∀t,∀o,∀w,∀n

(25)0 ≤ pI
t,o,w,i,n

⟂ �
I,min

t,o,w,i,n
≥ 0, ∀t,∀o,∀w,∀i,∀n

(26)0 ≤ pE
t,o,w,e,n
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x
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Finally, Eqs.  35 through  36 correspond to the voltage angle constraints given in 
Eqs. 17 through 18.

4  Application

4.1  Data

In this section, we describe the data we use for a numerical application of the pro-
posed model. Like the model, we base our case study on [14], whose authors use a 
six-node system for their illustrative example. Since we propose a dynamic formula-
tion of their static model, we modify the data accordingly to create a multi-period 
setting. Since the dynamic formulation is significantly more challenging computa-
tionally than the original static model, we make a number of simplifications.

Our case study is based on a six-node grid (see Fig. 6). The assumed transmis-
sion capacities split the grid in a north and a south zone, each of which contain 
three nodes and no internal bottlenecks. A transmission capacity of 5000 MW on all 
internal lines satisfies this assumption. The transmission capacity on line B2–B4 and 
line B3–B6 is limited to 100 MW. As demand is largely concentrated in the southern 
zone, while existing generation capacity is mostly located in the northern zone, this 
limited transmission capacity can create a bottleneck for certain load blocks. This 
bottleneck may lead to diverging prices, and thus attractive investment opportunities 
for the strategic investor. Since some of our model configurations are computation-
ally challenging, we also define nodes B3 and B6 as a subsystem for use in a limited 
number of model runs. This subsystem is outlined by the shaded area.

We model load blocks o1 through o4, which represent aggregations of the load 
duration curve into manageable chunks for our model. The maximum consumption 
per demand and load block as well as the willingness-to-pay (WTP) for the same 
demand-load block combinations is given in Tables 6 and 7 . Load block o1 rep-
resents a high consumption, high-WTP situation commonly associated with peak 
load, while load block o4 corresponds to off-peak situations. Blocks o2 and o3 rep-
resent hours with intermediate consumption and WTP. The scenario tree described 
in Sect. 2 is created by increasing or decreasing the given base consumption figures 
by 5% to create an up and a down scenario for the following time period.

(33)0 ≤

(
Fmax
n,m

− Bn,m(�t,o,w,n − �t,o,w,m)
)
⟂ �F,max

t,o,w,n,m
≥ 0, ∀t,∀o,∀w,∀n,∀m

(34)0 ≤

(
Fmax
n,m

+ Bn,m(�t,o,w,n − �t,o,w,m)
)
⟂ �F,min

t,o,w,n,m
≥ 0, ∀t,∀o,∀w,∀n,∀m

(35)0 ≤
(
� − �t,o,w,n

)
⟂ ��,max

t,o,w,n
≥ 0, ∀t,∀o,∀w,∀n

(36)0 ≤
(
� + �t,o,w,n

)
⟂ ��,min

t,o,w,n
≥ 0, ∀t,∀o,∀w,∀n
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R3R1E1

B3

D1R2

B2

R4 E2

B6

D4E3 E4

B4

D2

B5

R5 D3

Fig. 6  Six-node and two-node (shaded) case study test systems

Table 6  Maximum consumption 
[MW] per demand and load 
block

d n o1 o2 o3 o4

D1 B3 750.0 487.5 300.0 225.0
D2 B4 675.0 450.0 262.5 187.5
D3 B5 637.5 412.5 225.0 168.7
D4 B6 600.0 375.0 206.3 150.0

Table 7  Willingness-to-pay 
(WTP) [$/MWh] per demand 
and load block

d n o1 o2 o3 o4

D1 B3 100.00 79.10 66.30 58.70
D2 B4 94.10 73.00 62.80 55.10
D3 B5 92.30 70.60 60.80 53.40
D4 B6 85.40 67.60 58.60 51.10
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We describe the data for the existing power plants in Table 8. Both the strategic 
investor and rival producers own existing plants, none of which are decommissioned 
during the modeled time horizon (i.e., we model a static preexisting power plant 
fleet). However, the amount of installed capacity in the system at t1 is chosen so that 
a positive amount of new capacity is optimal for all demand scenarios (i.e., there is 
sufficient demand to incentivize new investment).

We model two investment technologies (see Table 9). The two differ in the invest-
ment and generation cost, with the base option representing a typical base load plant 
(e.g., coal or lignite), while the peak option corresponds more to a peak-load genera-
tor (e.g., gas). The cost structure of the gas option is meant to represent a combined-
cycle gas turbine (CCGT). Since we model the entire lifetime of the plants, note 
that the cost components KPL

i
 and KPL

i
 represent the t tal costs of investment, not 

the annualized costs commonly used in static models. We also limit the amount of 
capacity that can be installed: 500 MW per technology in the two-node example and 
1500 MW per technology in the six-node case study.

Finally, the temporal scope of our case study consists of six time periods t1 
through t6 . The length of time periods t1 to t5 is three years each, while t6 is defined 
as consisting of 24 years, resulting in a total optimization horizon of 39 years (cf. 
Sect. 2.3). We use a yearly discount rate of 5% to determine the discount factors �t . 
The binomial system state tree consists of 63 nodes (cf. Sect. 2.2).

4.2  Test cases

One contribution of our work is to evaluate the usefulness of a rolling-horizon 
optimization (see Sect. 2) and the benefit of allowing recourse action within the 
rolling-horizon paradigm. This requires the definition of several distinct model 

Table 8  Power plants in 
application

Name Owner Node Fuel Capacity [MW] Cost [$∕MWh]

E1 Strategic B1 Coal 80 23.00
E2 Strategic B2 Coal 350 26.30
E3 Strategic B6 Oil 100 85.60
E4 Strategic B6 Oil 20 97.90
R1 Rival B1 Coal 350 20.90
R2 Rival B3 Coal 150 26.80
R3 Rival B1 Oil 200 86.10
R4 Rival B2 Oil 200 98.40
R5 Rival B5 Oil 100 98.40

Table 9  Power plants 
investment options

Type C
I

i
[$∕MWh] K

PL

i
[$∕MW] K

CO

i
[$∕MW]

Base 25.00 15, 000 60, 000
Peak 50.00 5, 000 20, 000
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configurations which can be tested against all possible paths through the sce-
nario tree. The configurations we propose vary in the number of model features 
included (see Table 10).

We briefly describe the three model features in what follows. Perfect foresight is 
a deterministic optimization configuration in which the ultimate path through the 
scenario tree is known beforehand. This is implemented by replacing the scenario 
probabilities �w with the actual realization paths. As such, the feature can be used 
as an optimal (although generally unreachable) benchmark for all other configura-
tions. Rolling-horizon planning differs from fixed-horizon planning in the scope 
of time periods that are considered in a given optimization run. We define a fixed-
horizon stochastic optimization as our baseline configuration. In this configuration, 
the model is initially solved over all scenarios and all time periods T until the final 
planning horizon at t6 . The results are fixed for t1 , and the model is rerun for the 
remaining five time periods starting at t2 over the stochastic sub-tree that is reach-
able from the current node. This structure is outlined on the left-hand side of Fig. 7. 
For rolling-horizon planning, only a subset TRH ⊂ T  of time-periods is considered in 
each optimization. This structure is shown on the right-hand side of Fig. 7.

Table 10  Definition of model 
configurations

Configuration Perfect 
foresight

Rolling 
horizon

Recourse 
action

Perfect foresight (PF) ✓ X ✓

Stochastic recourse action (RA) X X ✓

Stochastic optimization (ST) X X X

Rolling horizon (RH) X ✓ ✓

Limited planning (LP) X ✓ X

N1

N2

N3

N4

N5

N6

N7

R1

R2

N1

N2

N3

N4

N5

N6

N7

R1

R2

Fig. 7  Tree and sub-tree optimization horizons for fixed horizon (left) and rolling horizon (right) model 
configurations
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Aside from the perfect foresight benchmark, we consider the following four addi-
tional model configurations. Configuration RH is the standard rolling-horizon for-
mulation with multiple investment stages, i.e., including the opportunity for recourse 
action. Configuration LP (limited planning) is identical, except for the fact that no 
recourse action is allowed: all decisions are final and there is limited planning due to 
the rolling horizon. This lack of recourse action is implemented by replacing Eqs. 3 
and 4 with strict equalities. Configuration ST is based on a stochastic optimization 
over the entire scenario tree, but no recourse action is allowed. Configuration RA 
is complementary in the sense that recourse action is allowed through investment 
stages, but there is no rolling-horizon structure. The characteristics of the different 
configurations are also given in Table 10.

4.3  Results

We display the results of our two-node example and our six-node case study sys-
tems in what follows. The results we show are based on optimization runs over all 
possible realization paths. In total, there are 25 = 32 paths resulting from six time 
periods and the binomial uncertainty tree we use. Table 11 shows the results for the 
two-node example. All variable values stated are averages over all realization paths. 
The sole exception is computation time, which is the sum of all optimization times.

Overall, the results show that there is limited impact of model configuration on 
realized profits for the examples considered. While perfect foresight optimization 
yields just under 3.6 billion EUR, the stochastic optimization configurations are 
between just under 4 and 7 million EUR behind, which corresponds to a relative 
gap of 0.10% and 0.21% . Clearly, the loss in objective function value from deviating 
from the perfect foresight solution is quite limited, suggesting that the likelihood of 
making unprofitable investment decisions is low. On the other hand, it is also note-
worthy that the rolling-horizon (RH) configuration at - 6.8 million EUR performs 
similarly to the fully stochastic recourse action configuration (RA) at - 3.2 million 
EUR. Considering purely the objective function value, this implies that the (much 
faster) heuristic can be used as a proxy with only a limited reduction in solution 
quality (at least for the considered problems).

However, the objective function value is only one (albeit an important) metric for 
solution quality. To take a more holistic view, the average installed capacity per tech-
nology can also be considered: here, the two configurations perform almost identi-
cal, by varying only in 1 MW of peak capacity on average. The average electricity 
price (not shown in the table) is also identical in RH and RA. Similarly, the two 
configurations LP and ST (both removing recourse action, but only LP featuring the 
rolling-planning horizon) show a similar picture: the rolling-planning horizon leads 
to marginally lower revenues, but the average installed capacity is identical. A more 
detailed review of the results revealed that the difference in newly installed genera-
tion capacities (per time period, scenario and bus) differs by at most 2 MW between 
the configurations, i.e. the rolling-horizon heuristic results in almost no solution dif-
ference. This implies that for the reduced 2-node case study, over-investment or over-
optimization does not play a detrimental role on the full-horizon configurations. To 
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us the (almost) identical results suggest that in this problem instance, the tradeoff 
between problem size and solution quality favors the rolling-horizon heuristic.

The benefit of recourse action over fixed decisions can be evaluated as well. 
When comparing the configurations that allow recourse action (RH and RA) with 
those that do not (LP and ST), the value of being able to abandon a project becomes 
evident. In all cases, recourse action improves the objective function. This improve-
ment is between 1.7 million EUR / 0.05% (two-node RA vs ST) and 6.2 million 
EUR / 0.1% (six-node RH vs LP). Considering the amount of installed capacity, it 
is noticeable that the LP and ST configurations find higher amounts of new capacity 
optimal than the RH and RA configurations. In combination with the lower expected 
profits, this finding suggests that some of the realized projects would have been 
abandoned if recourse action were allowed.

The five model configurations result in significantly different computation times. 
The PF configuration solves very quickly, as one would expect from a deterministic 
optimization problem. When comparing the rolling-horizon configurations RH and 
LP to the fixed-horizon configurations RA and ST, it is apparent that the initial plan-
ning horizon of six time periods comes at significant computational cost. In fact, the 
two-node example was chosen to showcase this difference while still being able to 
provide solutions for the fixed-horizon configurations with small, mixed-integer pro-
gramming (MIP) gaps. We also give statistics about the problem size under the dif-
ferent configurations. It is apparent that computation time correlates with problem 
size, and particularly the number of SOS type 1 variables which we use to linearize 
the complementarity constraints. Since these variables are what make the problem 
mixed-integer, this is unsurprising. However, it is also noteworthy that the smaller 
scenario tree which is used in model configurations with rolling-horizon optimiza-
tion reduces the problem size significantly.

The results of the two-node example point to a limited tradeoff between solution 
quality and computation time when using a rolling-planning horizon.3 While this 
can be a matter of preference in small example settings, in larger problems it can 
mean the difference between finding a feasible solution and the MIP algorithm not 
terminating at all. This is the case in our six-node case study system, the results of 
which are presented in Table 12. As in the two-node case, the absolute and relative 
differences between the different configurations are small. Most of the perfect fore-
sight revenue of just under 5.3 billion EUR is achievable with the different stochas-
tic optimization configurations.

The RA configuration does not terminate at the target MIP gap values in adequate 
time. We therefore run the model at higher target MIP gaps to attempt to show the 
impact on results. Apparently, even a gap of 10% yields results that are within half a 
percent of the perfect foresight value. A 7.5% gap does not yield any additional ben-
efits. The 5% gap (and any levels below that) do not terminate in six hours. Indeed, 
the solver progress slows down to a point where improvements to the solution appear 
to vanish. In this context, being able to solve the model through the approximation 

3 All model runs were conducted using GAMS/CPLEX installed on a Windows 10 PC, the processor 
being an Intel i9 9900 k clocked at 4.7 GHz paired with 32 GB of RAM.
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of a rolling-planning horizon offers significant benefit. While the solution quality of 
the RA configuration given a 10% MIP gap is slightly better than that of the RH for-
mulation at 10−6 , this property is specific to the given problem instance and does not 
generalize. A small MIP gap is preferable to ensure the given solution does corre-
spond to the global optimum of the MIP problem. The differences in newly installed 
generation capacities (per time period, scenario and bus) between the configurations 
appear unreliable due to the large MIP gap in the RA runs, i.e. there is no guarantee 
that these variable values are in fact optimal. Again, it is apparent that computation 
time is correlated to problem size, particularly the number of SOS type 1 variables.

5  Summary and conclusion

In the paper, we have introduced a dynamic investment MPEC that can be solved 
using a rolling-horizon optimization or as a fixed-horizon stochastic optimization. 
The extension of a static investment model to multiple time periods is shown to 
allow consideration of discrete stages in power plant investment, a representation 
closer to reality than an unalterable, one-off decision.

MPECs are particularly difficult to solve in dynamic multi-period settings. Using 
a simplified six-node system, the computational effort of strategic investment plan-
ning for assets with multi-decade lifetimes is apparent. While much smaller than 
real-world applications, even this problem size is shown to lead to unacceptable 
solution times, requiring trade-offs regarding guaranteed integer optimality and 
larger MIP gaps.

To provide an alternative to arbitrarily choosing a larger MIP gap, we have intro-
duced a rolling-planning horizon motivated first by its realism advantage in rep-
resenting real-world decision making. Its impact on solution time shows a clear 
improvement compared to integrated fixed-horizon approaches. The negative impact 
on solution quality, considering both objective function value and the (average) 
realization of decision variables, appears limited. However, this finding is clearly 
dependent on the problem instance considered and may not generalize. Our assess-
ment of a smaller problem of the same type allowed to estimate the impact for larger 
instances, an approach which can be useful for providing first estimates regarding 
the tradeoff.

An additional model instance of a 118-node case study (IEEE test system) did not 
terminate in adequate time even for the rolling-horizon configuration. This provides 
evidence of the high mathematical complexity of dynamic multi-stage investment 
models in real-world systems, but it also indicates the rolling-horizon approach is 
unable to overcome all such computational limitations. We therefore recommend 
further investigations on larger case studies, including also comparisons with other 
speed-up procedures such as Benders decomposition, ADMM approaches or linear 
decision rules.

As an additional outcome, the usefulness of recourse action is shown for the problem 
at hand. Given stochastic scenarios, there are times when starting a multi-period invest-
ment project simply for the option value is economically sensible. Since modeling this 
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behavior is not possible within a one-off optimization problem, its consideration may 
facilitate the use of dynamic rolling-horizon structures in the future.
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Appendix: Linearization

The following linearization of the MPEC objective function is, like the model 
itself, based on [14]. The upper-level objective function (see Eq.  1) contains the 
term 
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t,o,w,np
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∑
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 and 
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 are primal variables, while the market price �pricet,o,w,n is a dual variable of the 
lower-level problem, making this a bilinear term. Using the strong duality theorem, 
which states that for convex problems primal and dual objective function values are 
identical for optimal solutions, these terms can be linearized. Applying the strong 
duality theorem to the lower-level problem, the following equality holds ( ∀t,∀o,∀w
):

where

From the complementarity constraints (29) and (30):
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Substituting (39) and (40) into (37) yields:

From the Lagrangian derivatives (20) and (21):

Expanding these equations by pI
t,o,w,i,n

 and pE
t,o,w,e,n

 respectively and summing over n 
and i, e respectively yields:

Additionally, from the complementarity constraints (25) and (26):

Using (46) and (47) to simplify (44) and (45) respectively, we find:

Finally, considering (41) and (48):

This is then inserted in Eq. 1 so that the objective function gets linear (cf. Eq. 19).
For linearizing the complementarity constraints we the use a method based on 

SOS1 as proposed in [23]. Equation  50 represents a generic complementarity con-
straint with function g(x) and dual variable �.
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�− and �+ are special ordered sets of type 1 (SOS1) variables, which means that only 
one of them can be different from zero. k is a positive variable. With these defini-
tions, the non-linear Eq. 50 can be replaced by Eqs. 51 through 53, all of which are 
linear. For the complete proof, please refer to [23].

One advantage of this reformulation compared to the common Big-M method is that 
there is no need to tune parameters to a given problem. GAMS can solve problems 
that include SOS1 variables with CPLEX and other MIP solvers.
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