
Vol.:(0123456789)

Energy Systems (2021) 12:431–458
https://doi.org/10.1007/s12667-019-00374-8

1 3

ORIGINAL PAPER

A framework for preemptive multi‑skilled project 
scheduling problem with time‑of‑use energy tariffs

Hamidreza Maghsoudlou1 · Behrouz Afshar‑Nadjafi1   · 
Seyed Taghi Akhavan Niaki2

Received: 11 March 2019 / Accepted: 21 December 2019 / Published online: 20 January 2020 
© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract
The growing importance of energy consumption has become an integral part of 
many decision-making processes in various organizations. In this paper, a frame-
work is proposed for an organization where the undertaken project is implemented 
by multi-skilled workforce and energy tariffs depending on the time-of-use. This is a 
real-life situation where energy tariffs are significantly high during the peak demand 
compared to the one in off peak demand in order to control overloaded consumption 
of energy. A formulation is developed for the problem to minimize the total cost 
of consuming required energy. The proposed formulation is validated using several 
small-scale instances solved by GAMS software. To tackle large-scale instances, 
two intelligent meta-heuristics called electromagnetic like algorithm (EMA) and 
genetic algorithm (GA) are utilized. Furthermore, a comprehensive analysis is per-
formed based on 50 test instances to evaluate the intelligence and the robustness of 
the employed algorithms. Finally, statistical tests are used to compare the perfor-
mances of the utilized EMA and GA.
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1  Introduction

While industrial companies consume about one-third of energy around the world, 
today’s high-tech processors are one of the main culprit to energy consumption 
[25]. Wisely use of energy has been proven as a chief solution to deal with scar-
city of energy for sustainable development in future [10, 28]. Cost-saving modes 
and environment related attitudes have been the main motivation of industries to 
reduce their energy consumption [1]. Furthermore, increases in energy tariffs in 
recent years have given rise to environmentally conscious policies [35]. It is esti-
mated that numerous modern technologies will be emerged in the future to solve 
energy-saving problems [12, 32]. Bhowmik et al. [3] studied a green energy plan-
ning problem for sustainable development considering various decision-making 
strategies, integrated approaches and combined methods. Mohammadi et al. [29] 
provided an all-encompassing survey on the different applications of energy hubs 
in various energy consumption sectors.

In order to manage energy consumption, a broad range of solutions can be 
found in the literature. Lu et  al. [26] introduced a mixed-integer nonlinear pro-
gramming under dynamic electricity pricing for optimizing the operation sched-
ule of building with energy generation and energy storage. Khoshnevisan et  al. 
[20] proposed an evolutionary algorithm for optimal consumption of energy in an 
agriculture system. de Queiroz [8] formulated and solved the hydro-thermal elec-
trical power system scheduling optimization problem, in which power generators 
were arranged over a finite time horizon to supply system demand. Motalleb et al. 
[31] proposed an algorithm to optimize demand response schedule for using dis-
tributed energy storage systems as a source of ancillary services. Recently, Barak 
et  al. [2] used a multi-objective particle swarm optimization algorithm to man-
age energy and greenhouse gas emissions in an agricultural production system. 
Khushairi et al. [21] studied the installation problem of a thermal energy storage 
system in buildings to transfer energy demands from peak hours to off-peak times 
in order to reduce peak energy load.

In general, there are several works in the literature addressing energy oriented 
scheduling problems in different applications. Fang et al. [11] introduced a novel 
scheduling approach to decrease both peak power load and carbon footprints 
where tasks could be processed at different speeds with various energy consump-
tions. Jin et al. [18] proposed an exact day-ahead scheduling approach to integrate 
an urban energy system. Le and Wright [24] addressed scheduling of workloads 
in a network of datacenters to decrease energy cost and carbon footprint. Rad-
hakrishnan et  al. [34] investigated a token based scheduling approach as a new 
energy efficient policy for commercial buildings’ HVAC systems. Zhang et  al. 
[44] presented a new bi-objective genetic algorithm for workflow scheduling to 
reduce energy consumption and to heighten system reliability. Tang et  al. [40] 
proposed a dynamic model for a flexible flow shop scheduling problem to reduce 
both energy consumption and makespan. They developed an improved version of 
the particle swarm optimization algorithm to solve their problem. Golari et  al. 
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[13] studied a multi‐period, production‐inventory planning model in a multi‐plant 
manufacturing system powered with onsite and grid renewable energy.

High fluctuations in energy demand have been a crucial problem for energy sup-
ply systems to effectively fulfillment of the demand. To cope with this issue, energy 
supply systems try to manage the demand by contriving time-of-use energy tariffs 
under which the energy price varies from hour to hour depending on the demand. 
This strategy changes the demand behavior so as to decrease the peak-hours load. 
Although a study by Jacopo [17] reveals that the average energy consumption may 
occasionally increase under time-of-use energy tariffs, this approach has been 
among the most common strategies to reshape the demand rate. A limited number 
of research works can be found regarding the time-of-use energy tariffs. Shrouf et al. 
[37] studied the production scheduling problem in order to minimize the total energy 
consumption cost. Zhang et al. [44] proposed an integer programming formulation 
for scheduled manufacturing to minimize both electricity cost and carbon footprint 
under time-dependent tariffs. Gong et al. [14] formulated the single machine sched-
uling problem with power-down mechanism under time-of-use tariffs and utilized 
a genetic algorithm to solve their problem. Sharma et al. [36] proposed a schedul-
ing model which combines the economic and ecological features of a multi-machine 
setup operating with a time-of-use tariff. They estimated the peak load and energy 
consumption by applying discrete event simulation. Che et al. [7] developed a con-
tinuous-time mixed-integer programming formulation for the energy-conscious sin-
gle machine scheduling problem with time-dependent electricity tariffs. Dhakouani 
et al. [9] studied approaches for better integration of renewable energies. For a recent 
survey on challenges for the integration of renewables we refer to Sinsel et al. [38].

Although the above mentioned works have investigated problems addressing 
energy-conscious issues in machine scheduling context, the literature is scarce in 
works within project scheduling field. In the sole found work, Okubo et  al. [33] 
presented an integer programming model and a constraint programming model for 
resource constrained project scheduling problem (RCPSP) with realistic energy con-
straints. They used a heuristic-mode restriction approach called mask calculation to 
solve the problem. In addition, only renewable resources are taken into account in 
typical RCPSPs to provide the base schedule, while nonrenewable resources such as 
electricity are considered unlimitedly available without any contribution in schedul-
ing process. Furthermore, multi-skilled project scheduling problem (MSPSP) is a 
version of RCPSP in which renewable workforce have several skills. This gives flex-
ibility to project managers to schedule project activities.

The MSPSP is vastly studied in the literature over the past years [15, 19, 27, [42]. 
The main motivation of this paper is to extend MSPSP considering allowance for 
preempting activities and time-of-use tariffs for energy consumption. Indeed, the 
flexible structure of multi-skilled workforce under a time-of-use tariff for energy 
price would be beneficial in deriving an energy-efficient solution. Based on the best 
of the authors’ knowledge, this paper is the first work in the field of project sched-
uling which involves time-of-use tariffs for energy price to schedule preemptable 
activities within a multi-skilled environment. In this regard, an integer programming 
formulation is proposed for a preemptive multi-skilled project scheduling problem 
under time-of-use tariffs for energy prices. By analyzing the solution space of the 
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proposed model, two intelligent meta-heuristic algorithms based on electromagnetic 
like algorithm (EMA) and genetic algorithm (GA) are utilized to solve the sophisti-
cated problem at hand. The performances of the algorithms are compared with each 
other based on a set of problem instances.

The remainder on this paper is structured in the following sections. The problem 
description and the mathematical presentation of the preemptive multi-skilled pro-
ject scheduling problem under time-of-use tariff, called PMSPSP-TOU thereafter, 
are given in the next section. Section 3 focuses on two utilized solution algorithms to 
tackle large instances of PMSPSP-TOU. Sections 4 provides computational results, 
while Sect. 5 describes the managerial insights regarding energy efficiency obtained 
by the proposed formulation. Finally, Sect. 6 concludes the paper with several sug-
gestions for future research.

2 � Problem description

PMSPSP-TOU can be represented as an activity-on-node ( AON ) graph,G = (N,A) , 
where N denotes the set of the project’s activities and A denotes the set of finish-to-
start precedence relations between the activities with zero time-lags. The activities 
are numbered from a dummy start activity 0 to a dummy end activity n + 1 . Pro-
cessing of the activities can be preempted at discrete time instants and restarted at 
a later time with a time-dependent restarting cost of energy. The objective is to find 
the optimal assignment of the staff members to the required skills and the optimal 
schedule of activities such that the total energy cost is minimized.

The assumptions involved to formulate PMSPSP-TOU are as follows:

•	 Renewable resources are multi-skilled workforce.
•	 Non-renewable resource is electrical energy under time-of-use tariff.
•	 Non-renewable resource is electrical energy which is considered continuously 

available.
•	 All parameters are known with certainty.
•	 Setup times of all activities are considered in their processing times.
•	 Resuming the preempted activities requires no additional setup times.
•	 Processing times of all activities are positive integers.
•	 Each staff member can be devoted to at most one skill of one activity at an hour.
•	 All the assigned staff members are available at the start of an activity.
•	 All the assigned staff members to an activity have to start their work concur-

rently.
•	 Each activity may need one or more skill(s) to be performed.

As a pure mathematical integer programming formulation is intended to be devel-
oped for the PMSPSP-TOU, the following notation is used:

Set of staff members R = {1,… ,M}

Set of skills V = {1,… , S}
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Set of working days W = {1,… ,D}

Set of time instants F = {0, 1,… ,T}

Set of parts of activity i Ki =
{
0, 1,… ,Pi

}

Pi Processing time of activity i
pcit Cost of energy consumption for activity i  at time instant t
�it Cost of restarting activity i  at time instant t
bis Required number of staff members to perform skill s of activity i
M A positive big number
rms 1 If staff member m has skill s;

0 otherwise
Ziktd (decision variable) 1 If part k of activity i  is done at time instant t  of day d;

0 otherwise
Ximktd (decision variable) 1 If part k of activity i  is done by staff m at time instant t  of day d;

0 otherwise
Yimks (decision variable) 1 if skill s of part k of activity i  is done by staff m;

0 otherwise
�iktd (decision variable) 1 if part k of activity i  is restarted at time instant t  of day d;

0 otherwise
Wik (decision variable) 1 if part k of activity i  is preempted;

0 otherwise

Inspired by the formulation developed by Montaya et al. [30], PMSPSP-TOU can 
be formulated as follows:

The objective function in Eq.  (1) minimizes the total cost of energy consumed 
to process project activities and the restarted preempted activities. In minimizing 
Eq. (1), the following constraints have to be considered. Violation from these con-
straints will culminate in solutions which cannot be implemented in practice.

Constraint set (2) guarantees that each part of any activity should be performed 
only once during the project horizon.

Constraint set (3) preserves precedence relations between successive parts of 
each activity.

(1)Minf =

n∑

i=1

D∑

d=1

T∑

t=0

Pi∑

k=1

(
pcit × Ziktd + �it × �iktd

)

(2)
D∑

d=1

T∑

t=0

Ziktd = 1 ∀i ∈ N, k ∈ Ki

(3)

[
D∑

d=1

T−1∑

t=0

(((d − 1) × T) + t) × Z
iktd

]

+ 1 ≤

[
D∑

d=1

T∑

t=0

(((d − 1) × T) + t) × Z
i(k+1)td

]
∀i ∈ N, k ∈ K

i
|P
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Constraint set (4) maintains finish-to-start precedence relations between the 
activities with zero time-lags.

Constraint set (5) describes that each staff member should be devoted to at most 
one part of one activity at any time instant.

Constraint set (6) declares that the assigned staff members to an activity should 
have the required skills to process the activity.

Constraint sets (7) and (8) enforce all the assigned staff members to start their 
work on the related part of the activity, concurrently.

Constraint set (9) assures that the total number of assigned staff members to a 
part of an activity should not violate the given required number of staffs to perform 
that activity.

Constraint set (10) guarantees that the total assigned staff members to perform a 
skill for a part of an activity should be equal to the required number of staff mem-
bers for performing that skill.

(4)

[
D∑

d=1

T−1∑

t=0

(((d − 1) × T) + t) × Ziktd

]

+ 1 ≤

[
D∑

d=1

T∑

t=0

(((d − 1) × T) + t) × Zj1td

]
∀(i, j)�A, k ∈ Ki

(5)
n∑

i=1

Pi∑

k=1

Ximktd ≤ vmd ∀m ∈ R, t ∈ F, d ∈ W

(6)Yimsk ≤ rms ∀i ∈ N,m ∈ R, s ∈ V , k ∈ Ki

(7)Ximktd ≤ Ziktd ∀i ∈ N,m ∈ R, t ∈ F, d ∈ W, k ∈ Ki

(8)Ximktd + 1 ≤ Ziktd +

S∑

s=1

Yimsk ∀i ∈ N,m ∈ R, t ∈ F, d ∈ W, k ∈ Ki

(9)
D∑

d=1

M∑

m=1

T∑

t=0

Ximktd ≤

S∑

s=1

bis ∀i ∈ N, k ∈ Ki

(10)
M∑

m=1

Yimks = bis ∀i ∈ N, s ∈ V , k ∈ Ki

(11)
D∑

d=1

T∑

t=0

Ximktd =

S∑

s=1

Yimks i ∈ N,m ∈ R, k ∈ Ki
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Constraint set (11) declares that each part of any activity is implemented by the 
assigned staff members to it.

Constraint set (12) preserves the logical relations between Ziktd and Wik in differ-
ent days.

Constraint set (13) preserves these relations within any single day. More specifi-
cally, constraint sets (12) and (13) impel Wik to be 1, when k th and ( k + 1)th part of 
activity i are done at nonconsecutive time frames (hours).

Constraint set (14) maintains the logical relation between Ziktd , Wik and �iktd by 
impelling �iktd to be 1, when k th part of activity i is preempted to be performed later 
at time instant t of day d.

Finally, constraint set (15) describes that all decision variables are binary.

3 � The algorithms

Although the developed formulation in Sect. 2 can be applied to solve small-scale 
instances of PMSPSP-TOU on commercial solvers, achieving the optimal solution 
of large-scale instances within a reasonable time is impossible due to computational 
complexity of the problem. In this section, an intelligent meta-heuristic based on 
electromagnetic-like algorithm (EMA) is proposed to solve PMSPSP-TOU. Further-
more, a genetic algorithm (GA) is developed as a competitive approach to evaluate 
performance of the proposed EMA.

3.1 � Ciphering and deciphering schemes

A ciphering scheme based on random-key is applied in the proposed meta-heuris-
tics. In random-key scheme which guarantees satisfaction of all the constraints, each 
solution is represented as a vector that assigns a real number between 0 and 1 to each 
activity in the project [22]. In this structure, a specific solution is represented by 

(12)

[
T∑

t�=0

d
� × Z

i(k+1)t�d�

]
−

[
T∑

t=0

d × Z
iktd

]
−
(
Z
i(k+1)1(d+1) + Z

ikTd
− 1

)

≤ M ×

(
1 −

T∑

t=0

Z
iktd

+W
i(k+1)

)
∀i ∈ N, d ∈ W, d� ≥ d, k ∈ K

i
|P

i

(13)
t
� × Z

i(k+1)t�d − t
� × Z

iktd
≤ 1 +

(
M ×

(
1 − Z

iktd

)
+W

i(k+1)

)

∀i ∈ N, d ∈ W, t ∈ F||1, t� ≥ t, k ∈ K
i
||P

(14)Wik + Ziktd ≤ 1 + �iktd ∀i ∈ N, t ∈ F, d ∈ W, k ∈ K

(15)
Ziktd,Ximktd, Yimks, �iktd,Wik ∈ {0, 1} ∀i ∈ N,∀m ∈ R, s ∈ V , t ∈ F, d ∈ W, k ∈ Ki
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numbers between 0 and 1 in B + 1 rows where B is the maximum number of work-
force required to perform the activities. This number plays the role of the priority of 
that activity. Moreover, the number of elements in these rows is equal to the sum of 
the processing times of the corresponding activities. Since all the numbers used in 
generating a solution structure are meaningless, a deciphering mechanism is needed 
to give special meaning to these numbers. Based on the assumptions of the proposed 
model, the following restrictions have been considered in ciphering process:

–	 Precedence relation between the activities are satisfied.
–	 All the required skills are assigned to each activity.
–	 The assigned workforce has the ability to executing the required skill.

With illustrative propose, let consider a small example with 4 workforce, 3 skills, 
3 activities and detailed information shown in Tables 1 and 2.

A solution representation in five rows (Activity 3 has the maximum required 
number of workforce of 4, i.e., B = 4) and 7 columns (sum of the processing times of 
the activities is 7) is depicted in Fig. 1 for this illustrative example.

Table 1   Precedence relations 
and skill requirements in the 
illustrative example

Duration Predecessors Activity Skill requirements

Activity 1 – 2 Skill 1 Skill 2 Skill 3
b = 1 b = 1 b = 1

Activity 2 Activity 1 2 Skill 1 Skill 2 Skill 3
b = 1 – b = 1

Activity 3 Activity 1 3 Skill 1 Skill 2 Skill 3
b = 1 b = 1 b = 1

Table 2   The skills of the staff in 
the illustrative example

Staff Skills

Skill 1 Skill 2 Skill 3

Staff 1 * * *
Staff 2 * * *
Staff 3 * *
Staff 4 * * *

Fig. 1   Schematic representation of a solution structure (ciphering scheme)
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The first phase in the deciphering mechanism is related to identifying feasible 
sequence of performing the activities. The input of this phase are the project net-
work and solution structure as depicted in Fig. 1. To this end, each activity j with 
processing time of dj is replaced by dj parts and each assignment of the part is con-
sidered as a distinctive stage. At the beginning of each stage, a part counter for each 
activity and an activity set is defined. Part counter is an index which denotes each 
part of the current activity j with initial value of dj . In each iteration, the parts of 
non-dummy activities for which their predecessors are finished are placed in the 
activity set. Then, the following procedure is applied to assign the parts of the activ-
ities to the sequence. At each stage i , a ceil integer number obtained by multiplying 
the number of members in the activity set ( ni ) by the i th number in the first row in 
Fig. 1 is called mi . Then, mth

i
 member of the activity set is assigned to stage i . Con-

sequently, one unit is subtracted from the assigned activity part counter value. After 
each assignment, activities which their part counter value reaches to zero means that 
they are completed, so these are discarded and the activity set will be updated. In 
addition, the completed activities will be removed from predecessors of the remain-
ing activities. This process continues until the part counter of all the activities 
becomes zero. The procedure of assigning activities to the sequence is schematically 
presented in Fig. 2. Moreover, Table 3 describes details of the assignment process.

The second phase of deciphering mechanism relates to the assignment of the 
workforce to the activities according to Fig. 2. In this phase, the (i + 1)th row of 
the solution structure for the ith workforce, i.e., the second row for the first 
workforce, the third row for the second workforce and so on, will be considered. 
To do this, a skill set containing workforce which can perform the current skill 
is defined and an ascending order is used to allocate workforce to different skills 
of each activity. At the beginning of each step, a set S including workforce which 
has the required skill is organized according to Table 2. After that, the following 
procedure is used to assign workforce to different skills of each activity. At the 
jth step of the ith stage, a ceil integer number resulted by multiplying the num-
ber of members ( nij ) in the skill set S by the ith element of (j + 1)th row is com-
puted and called mij . Then, mth

ij
 member of the skill set S is allocated to the kth 

skill. Then, the assigned workforce is discarded from all the skill sets S. Itera-
tively, another workforce is assigned to the kth skill if needed.

This procedure is repeated until the assigning process of all needed workforce 
to different skills of each activity ends. The mechanism involved in the second 
phase of the proposed deciphering process is depicted in Fig.  3 with detailed 
computations in Table 4 for the illustrative example at hand.

Fig. 2   Schematic representation of sequencing the activities (deciphering scheme for the first row)
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3.2 � Priority based schedule generation scheme

Because of the special structure of PMSPSP-TOU, a compatible scheme is devel-
oped in this section to generate a schedule for a given sequence of activities and 
workforce assignment. In the proposed scheme, the time frames (hours) within 
a day are sorted in an ascending order according to their energy consumption 
cost. Then, the following procedure is performed to identify the position of the 
ith section of activity j . Firstly, the first ranked time frame, Sij, which is eligible 
based on precedence relations, is identified. Then, for a given project deadline 
an upper bound for starting the ith section of activity j , LSij , is calculated,. Next, 
the first time frame after, min

(
Sij, LSij

)
, in which all the required resources are 

available is selected as the start time of the ith section of activity j . This proce-
dure continues until the start times of all activities are assigned.

To demonstrate the above generation scheme, consider the cost of energy 
consumption for a 24  h period of the illustrative example at hand reported in 
Table  5. Moreover, it is assumed that all the three activities have to be com-
pleted in two working days. We further assume that all workforces are available 
except Staff 4 that is in vacation in the first day.

For the sequence of activities in Fig.  2 and the workforce assignment in 
Fig. 3, the resulting schedule is presented in Fig. 4. As it can be observed, all the 
activities are arranged within time frames 3–8 (hours) during 2 days which have 
the minimal cost of energy consumption. Note that while the cost of energy to 
execute all activities is 80, considering the cost of restarting preempted activi-
ties (25 for all activities), the total cost of energy will be 155.

Table 3   Detailed calculation of assigning parts of the activities to the sequence

Stage 
i

Precedence relation Activity 
set

mi Activity  
assignment

Part counter

1 Pre1 = �, Pre2 = [1],

Pre3 = [1]

[1] m = ⌈0.696 × 1⌉
= 1

Activity(1) = 1 PC1 = 1, PC2 = 2,

PC3 = 3

2 Pre1 = �, Pre2 = [1],

Pre3 = [1]

[1] m = ⌈0.079 × 1⌉
= 1

Activity(1) = 1 PC1 = 0, PC2 = 2,

PC3 = 3

3 Pre1 = �, Pre2 = �,

Pre3 = �

[2,3] m = ⌈0.408 × 2⌉
= 1

Activity(1) = 2 PC1 = 0, PC2 = 1,

PC3 = 3

4 Pre1 = �, Pre2 = �,

Pre3 = �

[2,3] m = ⌈0.531 × 2⌉
= 2

Activity(2) = 3 PC1 = 0, PC2 = 1,

PC3 = 2

5 Pre1 = �, Pre2 = �,

Pre3 = �

[2,3] m = ⌈0.779 × 2⌉
= 2

Activity(2) = 3 PC1 = 0, PC2 = 1,

PC3 = 1

6 Pre1 = �, Pre2 = �,

Pre3 = �

[2,3] m = ⌈0.154 × 2⌉
= 1

Activity(1) = 2 PC1 = 0, PC2 = 0,

PC3 = 1

7 Pre1 = �, Pre2 = �,

Pre3 = �

[3] m = ⌈0.458 × 2⌉
= 1

Activity(1) = 3 PC1 = 0, PC2 = 0,

PC3 = 0
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3.3 � Preemption elimination local search

Upon the generation of a schedule, a novel local search algorithm is implemented 
in this section to eliminate non-beneficial preemptions. This would be a tradeoff 
between performing the activities at high rate energy periods and the restarting cost 
of preempted activities. As mentioned before, each activity j with processing time 
of dj is replaced by dj parts and each part is scheduled as a distinctive sub-activity 
which may give rise to preemptions. In the proposed compatible schedule generation 
scheme, a main iterative loop is considered to find appropriate balanced schedules. 
To do this, the algorithm iteratively scans time frames t in order to find the ith sec-
tion of the activity j which is preempted at t while i is not the last section of the 
activity j . In case where there is such a preemption, the local search seeks the time 
frames after t to find the first two successive time frames called 

′

t and 
�

t+1 , where the 
ith and (i + 1)th sections of activity j can be scheduled without preemption. Then, 
the priority based schedule generation scheme is employed to schedule the remain-
ing sections of the activities after time frame 

�

t+1 . The resulted schedule is replaced 
by the current schedule if its total cost becomes lower than the current cost of the 
schedule. Otherwise, the current schedule is held. This procedure continues until no 
improvement is observed.

The application of the preemption elimination local search on the schedule 
reported in Fig.  4 is shown in Fig.  5. It is clear that all the activities are sched-
uled within a day without any preemption. Note that using this procedure the cost 
of energy to execute all the activities is 80, while there is no extra cost to restart 
preempted activities. The steps involved in the preemption elimination local search 
applied on the illustrative example are reported in Table 6.

3.4 � The utilized EMA

In this section, the population-based electromagnetic like algorithm (EMA) is 
used to find a satisfying solution for PMSPSP-TOU. EMA was firstly introduced 
by [Birbil & Fang [4]], where its several successful applications can be found 
in the literature [6, 23, 41, 43]. In this algorithm, a solution is considered as a 
charged particle, based on which an evaluation function is used to identify its 
fitness. EMA exploits the fact that charged particles in a population put force on 

Fig. 3   Schematic representation of workforce assignment (second phase of deciphering scheme)
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Table 4   Detailed calculation of workforce assignment to the required skills of activities
Activity Step Stage Skill Skill set mij Staff assignment

1 1 1 1 Skill1 = [1, 2, 3, 4], Skill2 = [1, 2, 4],
Skill3 = [1, 2, 3, 4]

⌈0.700 × 4⌉ = 3 Skill1(3) = 3

2 2 Skill1 = [1, 2, 4], Skill2 = [1, 2, 4],
Skill3 = [1, 2, 4]

⌈0.639 × 3⌉ = 2 Skill2(2) = 2

3 3 Skill1 = [1, 4], Skill2 = [1, 4]
,Skill3 = [1, 4]

⌈0.034 × 2⌉ = 1 Skill3(1) = 1

1 2 1 1 Skill1 = [1, 2, 3, 4], Skill2 = [1, 2, 4],
Skill3 = [1, 2, 3, 4]

⌈0.329 × 4⌉ = 2 Skill1(2) = 2

2 2 Skill1 = [1, 3, 4], Skill2 = [1, 4],
Skill3 = [1, 3, 4]

⌈0.531 × 2⌉ = 2 Skill2(2) = 4

3 3 Skill1 = [1, 3], Skill2 = [1]
,Skill3 = [1, 3]

⌈0.654 × 2⌉ = 2 Skill3(2) = 3

2 3 1 1 Skill1 = [1, 2, 3, 4], Skill2 = [1, 2, 4],
Skill3 = [1, 2, 3, 4]

⌈0.820 × 4⌉ = 4 Skill1(4) = 4

3 3 Skill1 = [1, 2, 3], Skill2 = [1, 2],
Skill3 = [1, 2, 3]

⌈0.719 × 3⌉ = 3 Skill3(3) = 3

4 3 Skill1 = [1, 2], Skill2 = [1, 2],
Skill3 = [1, 2]

⌈0.969 × 2⌉ = 2 Skill3(2) = 2

3 4 1 1 Skill1 = [1, 2, 3, 4], Skill2 = [1, 2, 4],
Skill3 = [1, 2, 3, 4]

⌈0.325 × 4⌉ = 2 Skill1(2) = 2

2 2 Skill1 = [1, 3, 4], Skill2 = [1, 4],
Skill3 = [1, 3, 4]

⌈0.106 × 2⌉ = 1 Skill2(2) = 1

3 3 Skill1 = [3, 4], Skill2 = [4]
,Skill3 = [3, 4]

⌈0.611 × 2⌉ = 2 Skill3(2) = 4

4 3 Skill1 = [3], Skill2 = [4],Skill3 = [3] ⌈0.676 × 1⌉ = 1 Skill3(1) = 3

3 5 1 1 Skill1 = [1, 2, 3, 4], Skill2 = [1, 2, 4],
Skill3 = [1, 2, 3, 4]

⌈0.423 × 4⌉ = 2 Skill1(2) = 2

2 2 Skill1 = [1, 3, 4], Skill2 = [1, 4],
Skill3 = [1, 3, 4]

⌈0.091 × 2⌉ = 1 Skill2(2) = 1

3 3 Skill1 = [3, 4], Skill2 = [4],
Skill3 = [3, 4]

⌈0.266 × 2⌉ = 1 Skill3(1) = 3

4 3 Skill1 = [4], Skill2 = [4],Skill3 = [4] ⌈0.289 × 1⌉ = 1 Skill3(1) = 4

2 6 1 1 Skill1 = [1, 2, 3, 4], Skill2 = [1, 2, 4],
Skill3 = [1, 2, 3, 4]

⌈0.281 × 4⌉ = 2 Skill1(2) = 2

2 3 Skill1 = [1, 3, 4], Skill2 = [1, 4],
Skill3 = [1, 3, 4]

⌈0.440 × 3⌉ = 1 Skill3(2) = 3

3 3 Skill1 = [1, 4], Skill2 = [1, 4]
,Skill3 = [1, 4]

⌈0.527 × 2⌉ = 2 c Skill3(2) = 4

3 7 1 1 Skill1 = [1, 2, 3, 4], Skill2 = [1, 2, 4],
Skill3 = [1, 2, 3, 4]

⌈0.875 × 4⌉ = 4 Skill1(4) = 4

2 2 Skill1 = [1, 2, 3], Skill2 = [1, 2],
Skill3 = [1, 2, 3]

⌈0.518 × 2⌉ = 2 Skill2(2) = 2

3 3 Skill1 = [1, 3], Skill2 = [1]
,Skill3 = [1, 3]

⌈0.947 × 2⌉ = 2 Skill3(2) = 3

4 3 Skill1 = [1], Skill2 = [1],Skill3 = [1] ⌈0.695 × 1⌉ = 1 Skill3(1) = 1
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each other and calculates the resultant forces inserted to each particle using the 
vector sum method. The main mechanism in this algorithm begins with generat-
ing initial feasible solutions containing particles with charges. Then, the force 
inserted to each particle is calculated based on the charges. After that, the fitness 
of the particles is obtained using the evaluation function in order to assess the 
performance of the new particles created in their new positions. These particles 
will be replaced with previously generated particles if the fitness value becomes 
remarkably better than the fitness value of the particles generated in previous 
generations. This process is pursued until the best possible solution is obtained.

The main procedure of EMA involves four different phases including gen-
erating initial solutions, local search, calculating resultant vector of the forces 
inserted to each particle and particles’ movement in direction of their resultant 
vector. These phases are discussed in details in the next sub-sections.

Table 5   Price of energy consumed by each activity during different hours of a day

Hour 1 2 3 4 5 6 7 8 9 10 11 12

Activity 1 20 20 10 10 10 10 10 10 10 10 15 15
Activity 2 30 30 15 15 15 15 15 15 15 15 20 20
Activity 3 25 25 10 10 10 10 10 10 10 10 15 15

Hour 13 14 15 16 17 18 19 20 21 22 23 24

Activity 1 15 15 15 15 15 15 20 20 20 20 20 20
Activity 2 20 20 20 20 20 20 30 30 30 30 30 30
Activity 3 15 15 15 15 15 15 25 25 25 25 25 25

Fig. 4   The schedule for the illustrative example using the priority based schedule generation scheme

Fig. 5   Schedule for the illustrative example after applying the preemption elimination local search
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3.4.1 � Initial solutions

Initial solutions of EMA are first generated based on the ciphering and deciphering 
schemes presented in Sect. 3.1. Then, a priority-based schedule generation scheme is 
used to specify the start times of all activities. At the end of this phase the novel heuris-
tic preemption elimination local search algorithm discussed in Sect. 3.3 is employed to 
improve the quality of the schedules.

3.4.2 � Resultant forces inserted to each particle

As mentioned before, all the particles in the current population insert force to each 
other and that the particle with the highest value of fitness function is selected as a 
near-optimum solution. This solution attracts other solutions while the worst solution 
repels the other solutions. The force that two solutions insert to each other has a reverse 
relation with their squared distance. In addition, this force has a direct relation with the 
charge of both particles. In other words, the following equation is used to compute the 
force that two particles insert to each other.

In Eq. (16), n denotes dimension of the problem,qi denotes the charge of the ith par-
ticle, fi and fbest denote the fitness value of the ith charged particle and the fitness value 
of the best particle, respectively. In addition, while all the initial generated particles are 
neutral, for each pair of particles, the particle with the higher fitness value has an attrac-
tive role and the other particle has a repelling role. The particle with the highest fitness 
value attracts all other particles. Equation (17) is used to calculate the force that the ith 
particle inserts to jth particle.

(16)qi = e

�
−n(fi−fbest)∑m
k=1 (fk−fbest)

�

; i = 1, 2,… ,m

(17)Fij =

⎧
⎪
⎨
⎪⎩

�
xi − xj

� qi.qj

xi−x
2
j

, if fj < fi; i = 1,… ,m
�
xj − xi

� qi.qj

xi−x
2
j

, if fj > fi; j = 1,… ,m

Table 6   Steps of the activity preemption elimination algorithm

Iter. t Activity Part Preemptive ′

t
�

t+1
Cost beneficial?

1 Time 2 in day 1 1 1 Yes Time 2 in day 2 Time 3 in day 2 Yes
2 Time 3 in day 2 1 2 No – – –
3 Time 4 in day 2 2 1 Yes Time 4 in day 2 Time 5 in day 2 Yes
4 Time 5 in day 2 2 2 No – – –
5 Time 6 in day 2 3 1 No – – –
6 Time 7 in day 2 3 2 No – – –
7 Time 8 in day 2 3 3 No – – –
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In Eq. (17), Fij is the force that the ith particle inserts to the jth particle and the 
positions of both the ith and the jth particles are respectively denoted by xi and xj . 
Moreover, the resultant force inserted to each particle can be computed as follows:

To avoid trapping into local optima, the algorithm proposed by Birbil et al. [5] 
is used in which the particle with the highest distance from the best solution has 
the most possibility of being attracted by other particles. This particle can be found 
using:

where, xp and xbest denote the position of the furthest and the best particles, respec-
tively. In addition, the force that the furthest particle inserts to other particles is cal-
culated by

where, � is a random number generated between 0 and 1 and Fpj denotes the force 
that the furthest particle inserts to the other particles.

3.4.3 � Particle’s movement

As each particle moves in the solution space based on its force, the quantity of the 
particles’ movements is obtained using

where, the upper and the lower bounds of the kth dimension and particles’ move-
ment radius are respectively shown by Uk , lk and � , respectively. This movement will 
lead all the particles towards the best solution.

3.4.4 � Local search

A simple local search mechanism presented by Birbil and Fang [4] is used in this 
paper to explore space around each particle. This method uses the lower and the 
upper bounds of the dimension to search space around each solution to find better 
solutions. The new solutions discovered by this mechanism are replaced with the 

(18)Fi =

m∑

j=1

Fij; i = 1, 2,… ,m.

(19)xp = argmax
{
xbest − xi, i = 1, 2,… ,m

}

(20)Fpj =

⎧
⎪
⎨
⎪⎩

�
xj − xp

�
𝜆×qi×qj

xp−x
2
j

, if fj < fp
�
xp − xi

�
𝜆×qi×qj

xp−x
2
j

, if fj > fp
; j = 1, 2,… ,m

(21)xi = xi + � × (RNG) ×
Fi

Fi

; i = 1, 2,… ,m

(22)RNGk =

{
Uk − xik, x < 0

−
(
xik − lk

)
, x ≥ 0

; k = 1,… , n,
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current ones if their fitness value becomes better than the fitness value of the exist-
ing solutions. Otherwise, the existing solution is conveyed to the next iteration.

3.4.5 � Stopping conditions

Several criteria such as a limited CPU time, a pre-specified number of iterations and 
so on can be considered as a stopping condition. In this paper, the utilized EMA 
stops when the best value of the fitness function in a predefined number of iterations 
is not changed significantly.

3.5 � The proposed GA

A genetic algorithm (GA) is developed in this section as a competitive algorithm to 
validate the results obtained and to evaluate the performance of the utilized EMA in 
solving large-scale instances of the PMSPSP-TOU. GA which was firstly introduced 
by Holland [16], has been used successfully in many project scheduling problems 
[14, 44]. The most significant advantage of this algorithm is its multidirectional 
capability on seeking solution space to keep best solutions obtained in previous 
iterations and to convey them to the next generations. In this algorithm, the cipher-
ing and deciphering schemes presented in Sect. 3.1 is first used here to generate an 
initial population. Then, the fitness of the solutions in the initial population is evalu-
ated, based on which a roulette wheel mechanism is employed to identify parent 
solutions to be used in a uniform crossover operator to generate offspring solutions. 
Moreover, three different mutation operators, i.e., swap, insertion and reversion, are 
used randomly to avoid premature convergence and trapping into local optima. The 
current solutions and the offspring solutions are next combined together. After that, 
all the solutions are evaluated to transfer a predefined percent of the solutions with 
higher quality to the next generations. This process continues until the specified 
stopping condition is met.

3.6 � Parameter tuning

All the parameters used in the utilized EMA and GA should be set precisely to 
enhance the performance of the algorithms. This calibration process is performed 
using some test problems generated as follows.

•	 The processing time of an activity,Pi , follows a uniform distribution in the inter-
val [2,4], i.e., Pi ∼ uniform[2, 4].

•	 An element of the capability matrix of performing skills by workforces,rms, is 
either zero or one, i.e., rms ∼ integer{0, 1}.

•	 The consumption price of energy 
(
pcit

)
 is considered different within time inter-

vals 3–10, 11–18 and 2–19 with random values following a uniform distribution 
in [1000,15,000], [2000,3000], [1500,2000], respectively.
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•	 The cost of restarting preempted activities 
(
ait
)
 within time intervals 3–10, 

11–18, and 2–19 is considered a uniform random value in [3000,4000], 
[2000,2500], [4000,5000], respectively.

•	 The workforce availability follows vmd ∼ integer{0, 1}.
•	 The number of required workforces to perform different activities follows 

bis ∼ integer{1, 3}.

As there is no benchmark available in the literature regarding the PMSPSP-TOU, 
50 different test problems are generated in this paper to evaluate the performance 
of the utilized algorithms in order to calibrate their parameters. These problems are 
divided into small and large scale problems. In addition, they are classified based 
on the number of activities (N), the number of skills (S), the number of workforces 
(M) and the number of work days (D), as reported in Table 7. The solutions of these 
problems are used to evaluate the performances of the two solution algorithms.

The Taguchi method, as an alternative to full factorial experimental design, is 
applied in this paper to tune the main parameters of the meta-heuristics. Taguchi 
method can remarkably decrease the number of experiments required for identifying 
the optimal levels of the parameters [39]. All the factors used in this method can be 
divided in two main groups including noise and controllable factors. This method 
is mainly designed to identify the optimal level of the parameters so that the effect 
of noise factors is minimized while the effect of the controllable factors is maxi-
mized. Hence, a signal to noise ratio is used in this method to measure the devia-
tions involved in the response variable as follows.

In Eq.  (23), the response variable and the number of orthogonal arrays are 
denoted by Y  and nr , respectively.

All the parameters are assumed to have three levels as low (Level 1), medium 
(Level 2) and high (Level 3) shown in Table  8. Based on these levels and the 
response obtained for a specific problem, the Minitab software that uses the Tagu-
chi L9 design is then used to tune the parameters of EMA and GA. Each design is 
implemented three times on MATLAB software, based on which their mean is pre-
sented in Tables 9 and 10. In addition, the corresponding values of the S∕N ratio for 
each algorithm are shown in Fig. 6 in order to indicate the best levels of the param-
eters shown in the last column of Table 8.

4 � Computational results

In this section, the 50 generated test problems are used to evaluate the performance 
of the utilized solution algorithms. Problems 1–10 which can be solved optimally 
using the GAMS software in a reasonable computational time are considered as 
small scale problems while the other problems are classified as large scale problems.

(23)(S∕N) = −10 log

�∑nr

i=1

�
Y2
i

�

nr

�
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Both the algorithms are coded in MATLAB software and all the problems are 
solved on a PC with Core I 5 CPU and 4  GB RAM. The result of solving small 
size problems by the meta-heuristics is compared to the global optimal solutions of 

Table 7   The general data of the 
test problems

Instance no. N S M D Instance no. N S M D

1 10 3 3 4 26 30 5 6 15
2 10 3 4 4 27 30 5 7 15
3 10 3 5 4 28 30 5 8 15
4 10 4 4 4 29 30 5 9 15
5 10 4 5 4 30 30 5 10 15
6 10 4 6 4 31 40 6 8 18
7 10 5 5 5 32 40 6 9 18
8 10 5 6 5 33 40 6 10 18
9 10 5 7 5 34 40 6 11 18
10 10 5 8 5 35 40 6 12 18
11 20 4 5 8 36 40 7 9 22
12 20 4 6 8 37 40 7 10 22
13 20 4 7 8 38 40 7 11 22
14 20 4 8 8 39 40 7 12 22
15 20 4 9 8 40 40 7 13 22
16 20 5 6 10 41 50 6 8 25
17 20 5 7 10 42 50 6 9 25
18 20 5 8 10 43 50 6 10 25
19 20 5 9 10 44 50 6 11 25
20 20 5 9 10 45 50 6 12 25
21 30 4 5 12 46 50 7 9 30
22 30 4 6 12 47 50 7 10 30
23 30 4 7 12 48 50 7 11 30
24 30 4 8 12 49 50 7 12 30
25 30 4 9 12 50 50 7 13 30

Table 8   Algorithm parameter ranges along with their levels

Algorithm Parameter Notation Parameter level Optimal value

Level 1 Level 2 Level 3

EMA Stall iteration Stall It 5*n 10*n 15*n 15*n
Number of population N Pop 100 150 200 200
Radius of movement beta 1 1.5 2 1

GA Stall iteration Stall It 5*n 10*n 15*n 15*n
Number of population N Pop 100 150 200 200
Percentage of crossover Pc 0.7 0.8 0.9 0.8
Percentage of mutation Pm 0.1 0.15 0.20 0.1
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GAMS. In additions, the result of solving large scale problems is compared to the 
upper bound solutions obtained by the GAMS software within 1 h computational 
time. These results are shown in Table  11. In addition, the convergence trend of 
the best solution and the mean of the solutions obtained by GA and EMA for Prob-
lem 27 (as a representative for all test problems) are presented in Fig. 7.

A measure called relative percentage deviation (RPD) is used to eliminate the 
effect of the size of the problem on the quality of the solution obtained using the 
solution algorithms. This measure is defined as:

where the best solution reported for jth test problem, the best solution of the jth test 
problem reported by ith algorithm and the distance of the solution obtained by the 
ith algorithm from the best solution of the jth test problem are respectively denoted 
by BestSolj , Solij and RPDij.

A simple investigation of the results presented in Table  11 reveals that the 
deviance between solutions of ten small size problems obtained by the devel-
oped meta-heuristics and the corresponding optimal results of the GAMS 

(24)RPDij =

(
Solij − BestSolj

)

BestSolj
× 100; ∀j = 1,… , 50, i = EMA,GA

Table 9   Computational results 
to tune parameters of EMA

Run order Stall it N pop Alpha Cost

1 1 1 1 93,351
2 1 2 2 92,513
3 1 3 3 91,756
4 2 1 2 92,729
5 2 2 3 90,296
6 2 3 1 88,852
7 3 1 3 92,372
8 3 2 1 87,924
9 3 3 2 88,929

Table 10   Computational results 
to tune parameters of GA

Run Order Stall It N pop Pc Pm Cost

1 1 1 1 1 97,318
2 1 2 2 2 95,700
3 1 3 3 3 94,851
4 2 1 2 3 95,508
5 2 2 3 1 95,902
6 2 3 1 2 97,001
7 3 1 3 2 97,314
8 3 2 1 3 95,295
9 3 3 2 1 94,883
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Fig. 6   S/N ratio plots of the proposed EMA and GA
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Table 11   The result of solving all the test problems

Prob. 
no.

EMA 
Best sol.

EMA 
RPD 
Best 
sol.

GA
Best sol.

GA RPD 
Best sol.

GAMS 
Best sol.

GAMS 
RPD 
Best 
sol.

Dev%
EMA vs 
GAMS (%)

Dev%
GA vs 
GAMS (%)

1 32,842 0.00 32,842 0.00 32,842 0.00 0.00 0.00
2 36,965 0.62 37,448 1.94 36,737 0.00 0.62 1.94
3 34,511 0.00 34,511 0.00 34,511 0.00 0.00 0.00
4 35,352 0.00 36,980 4.61 35,352 0.00 0.00 4.61
5 22,798 0.85 22,606 0.00 22,606 0.00 0.85 0.00
6 36,950 0.00 37,163 0.58 36,950 0.00 0.00 0.58
7 38,905 0.00 38,905 0.00 38,950 0.12 − 0.12 − 0.12
8 40,836 0.47 42,497 4.56 40,643 0.00 0.47 4.56
9 29,905 0.00 30,681 2.59 29,905 0.00 0.00 2.59
10 42,674 1.15 43,267 2.56 42,187 0.00 1.15 2.56
11 65,761 0.00 67,086 2.01 72,030 9.53 − 8.70 − 6.86
12 69,595 0.00 79,713 14.54 79,221 13.83 − 12.15 0.62
13 67,213 0.00 68,950 2.58 72,702 8.17 − 7.55 − 5.16
14 67,317 0.00 70,983 5.45 70,455 4.66 − 4.45 0.75
15 60,516 0.00 67,076 10.84 69,650 15.09 − 13.11 − 3.70
16 72,420 0.43 72,109 0.00 80,873 12.15 − 10.45 − 10.84
17 68,749 0.00 73,958 7.58 74,058 7.72 − 7.17 − 0.14
18 64,086 0.00 66,996 4.54 77,963 21.65 − 17.80 − 14.07
19 65,664 0.00 67,090 2.17 66,882 1.85 − 1.82 0.31
20 63,522 4.21 60,954 0.00 78,566 28.89 − 19.15 − 22.42
21 1,27,703 0.27 1,27,359 0.00 1,59,432 25.18 − 19.90 − 20.12
22 1,49,734 0.00 1,51,288 1.04 1,80,072 20.26 − 16.85 − 15.98
23 1,41,052 0.00 1,51,379 7.32 1,65,878 17.60 − 14.97 − 8.74
24 1,21,608 0.00 1,29,031 6.10 1,34,300 10.44 − 9.45 − 3.92
25 1,34,807 0.36 1,34,319 0.00 1,49,724 11.47 − 9.96 − 10.29
26 1,40,238 2.52 1,36,785 0.00 1,50,226 9.83 − 6.65 − 8.95
27 1,48,182 0.00 1,51,156 2.01 1,64,269 10.86 − 9.79 − 7.98
28 1,25,755 3.24 1,21,810 0.00 1,41,983 16.56 − 11.43 − 14.21
29 1,47,000 19.04 1,51,891 23.00 1,23,487 0.00 19.04 23.00
30 1,37,592 1.72 1,35,272 0.00 1,41,484 4.59 − 2.75 − 4.39
31 1,84,261 0.00 1,85,911 0.90 2,07,930 12.85 − 11.38 − 10.59
32 1,72,664 0.19 1,72,336 0.00 2,29,081 32.93 − 24.63 − 24.77
33 1,91,129 0.00 1,97,402 3.28 2,10,756 10.27 − 9.31 − 6.34
34 1,88,841 0.00 1,91,927 1.63 2,14,003 13.32 − 11.76 − 10.32
35 1,62,623 0.00 1,69,860 4.45 1,85,580 14.12 − 12.37 − 8.47
36 1,93,588 1.06 1,91,557 0.00 2,25,644 17.79 − 14.21 − 15.11
37 1,76,106 0.00 1,79,732 2.06 2,08,588 18.44 − 15.57 − 13.83
38 1,85,062 0.00 1,88,407 1.81 2,14,083 15.68 − 13.56 − 11.9
39 1,58,102 0.00 1,7,609 6.01 1,83,118 15.82 − 13.66 − 8.47
40 1,63,938 0.00 1,70,309 3.89 1,87,171 14.17 − 12.41 − 9.01
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Table 11   (continued)

Prob. 
no.

EMA 
Best sol.

EMA 
RPD 
Best 
sol.

GA
Best sol.

GA RPD 
Best sol.

GAMS 
Best sol.

GAMS 
RPD 
Best 
sol.

Dev%
EMA vs 
GAMS (%)

Dev%
GA vs 
GAMS (%)

41 2,29,817 0.00 2,33,808 1.74 2,60,471 13.34 − 11.77 − 10.24
42 2,25,860 0.00 2,31,254 2.39 2,50,083 10.72 − 9.69 − 7.53
43 2,36,722 0.00 2,51,330 6.17 2,78,293 17.56 − 14.94 − 9.69
44 2,18,229 0.00 2,34,715 7.55 265,783 21.79 − 17.89 − 11.69
45 2,12,346 0.00 2,27,745 7.25 2,45,102 15.43 − 13.36 − 7.08
46 2,80,054 1.29 2,76,477 0.00 2,89,878 4.85 − 3.39 − 4.62
47 2,50,040 0.00 2,57,409 2.95 2,80,029 11.99 − 10.71 − 8.08
48 2,55,208 0.00 2,61,335 2.40 2,82,145 10.56 − 9.55 − 7.38
49 2,29,362 0.00 2,31,003 0.72 2,43,150 6.01 − 5.67 − 5.00
50 2,28,017 0.00 2,34,108 2.67 2,50833 10.01 − 9.10 − 6.67

software is negligible measured by relative deviance percentage of Dev %GA vs 
GAMS and Dev %EMA vs GAMS. More specifically, EMA gained optimal solu-
tions for 6 out of 10 small scale problems while GA solved 4 out of 10 problems 
to optimality. Also, EMA and GA have resulted on average 8.54% and 6.26% 
better solutions than GAMS solver. In addition, the result of solving large scale 
problems by the means of the algorithms is approximately better than the local 
solutions resulted by implementation of the GAMS software in 1 h CPU-time. 
Moreover, the average RPD of 0.75 and 3.28 for EMA and GA, respectively, 
confirms satisfying performance of the utilized algorithms to tackle PMSPSP-
TOU. Finally, a paired t test is implemented on the Minitab software to compare 
the performance of the solution algorithms in solving all 50 test problems. The 
statistical results reported in Table 12 show that the solutions obtained by EMA 
are remarkably better than the ones obtained by GA at a significance level of 
0.05.

5 � Managerial insights

This section is devoted to highlight the energy efficiency aspects of the developed 
project scheduling model. To this end, a case project with ten activities, three skills 
and four workforces is considered to illustrate the way the schedule resulted from 
the proposed model saves energy costs. In this example, it is assumed that all the 
workforces are available and the project should be performed in 2 days. Besides, we 
assume that all the workforces are able to perform all the skills. The energy price 
and the cost of starting preempted activities are assumed the same for all the activi-
ties. Other required information related the example is given in Table 13.
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In order to have a meaningful interpretation, two scenarios are considered regard-
ing energy consumption tariff. In the first scenario, a time-dependent scheme is 
assumed for energy consumption tariff, while the second scenario has a fixed energy 
consumption cost throughout the project’s horizon. The required data regarding the 
energy consumption tariffs for both scenarios are given in Table 14.

This problem instance is solved using the developed EMA of this paper. The 
resulting Gant chart for the first and the second scenarios are shown in Figs. 8 and 
9, respectively. As it can be observed from Fig. 8, all the activities are scheduled 

Fig. 7   Problem 27’s convergence trend of the best and the mean solutions in different iterations
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to be implemented within the low cost hours, i.e., 2:00–10:00 a.m. during 2 days. 
This schedule will cost 20,500 for energy consumption. On the other hand, in the 
schedule obtained for the second scenario represented in Fig.  9, all the activities 
are arranged consecutively in the first day within 00:00–17:00 p.m. The total cost 
of energy consumption for the schedule obtained in the second scenario equals to 
30,000 which is 46.3% more than the one in the first scenario. By comparison of the 
above two scenarios, it can be concluded that the first scenario which involves time-
of-use energy tariff, respects to social responsibility along with minimizing cost 
of energy which is requisite of sustainable development. This mastery of the first 
scenario would be expected because of the compatible schedule generation scheme 
described in Sect. 3.2 followed by a preemption eliminative local search described 
in Sect. 3.3.

6 � Conclusion

Although energy efficient decisions have been a struggle by organizations to cut 
down their energy related costs, nowadays it is identified as a core function of 
sustainable management to be ready to endure in competitive global market. This 
paper focused on a sustainable framework to derive an energy efficient schedule for 
a preemptive multi-skilled resource constrained project under a time-of-use pol-
icy for energy tariff. The problem was formulated as a pure integer programming 
model named PMSPSP-TOU. Then, two meta-heuristic algorithms based on genetic 
and electromagnetic was developed to overcome computational complexity of the 
PMSPSP-TOU. Special ciphering scheme and deciphering mechanism, intelligent 
local search heuristics and calibrated parameters were the noticeable features of 
the proposed EMA and GA. In addition, a compatible schedule generation scheme 
was developed to respect the time-of-use characteristics of the problem. The perfor-
mance of the solution algorithms were evaluated based on 50 random test instances 
with up to 30 activities. The results showed that both the algorithms give solutions 
with far ignorable deviance from the optimum solution resulted by GAMS. Moreo-
ver, for the instances with more than ten activities for which the optimum solution 
cannot be achieved, the proposed EMA and GA obtained far better solutions than 
the upper bounds provided by GAMS. While the proposed EMA gives more robust 
solutions than GA measured by the average relative percentage deviation (RPD), a 
statistical test showed that the quality of the solutions obtained by EMA is better 

Table 12   The results of 
paired t-test for comparing 
performance of the algorithms

95% CI for mean difference: (− 4617, − 1947)
T Test of mean difference = 0 (vs not = 0): T value = − 4.94 p 
value = 0.000

Algorithm N Mean St Dev. SE mean

EMA Solution 50 130644 74698 10564
GA Solution 50 133927 76558 10827
Difference 50 − 3282 4698 664
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than the one using GA. Finally, the proposed model was implemented to solve an 
example with 10 activities under two scenarios for energy tariff; with time-of-use 
and fixed tariff. The solutions obtained for both scenarios showed that the scenario 
under time-of-use energy tariff gives a base schedule which takes into account social 
responsibility while the scenario under fixed energy tariff only tries to optimize pro-
ject’s makespan with high cost of energy consumption.

Table 13   Predecessor relations, execution time, required skills and workforces of the problem

Activities Predecessors Processing 
time (hours)

Skill Requirements

Task 1 – 1 Skill 1 Skill 2 Skill 3
b = 1 b = 1 b = 1

Task 2 Task 1 3 Skill 1 Skill 2 Skill 3
b = 1 b = 1 b = 1

Task 3 Task 1 and Task 2 3 Skill 3
b = 1

Task 4 Task 1 and Task 2 3 Skill 2
b = 1

Task 5 Task 1and Task 4 3 Skill 1 Skill 2 Skill 3
b = 1 b = 1 b = 1

Task 6 Task 3 and Task 4 1 Skill 2
b = 1

Task 7 Task 4 and Task 5 3 Skill 1 Skill 2 Skill 3
b = 1 b = 1 b = 1

Task 8 Task 2 1 Skill 1 Skill 2
b = 1 b = 1

Task 9 Task 6, Task 7 and Task 8 1 Skill 1
b = 1

Task 10 Task 9 1 Skill 1 Skill 3
b = 1 b = 1

Table 14   Energy consumption costs and preempted activities’ restarting costs

First scenario Time frame (hour) 2:00–10:00 a.m. 10:00–18:00 p.m. 18:00 
p.m.–
2:00 
a.m.

Energy cost for all the activities 1000 1500 2000
Restart cost for all the activities 2000 3000 4000

Second scenario Time 00:00–24:00
Energy cost for all the activities 1500
Restart cost for all the activities 3000
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Findings of this paper can help decision makers in project-oriented organizations 
that have concerns about scheduling their projects under time-of-use energy tariffs. 
Several extensions are possible for interested reader. One can extend the current 
work when there is a dynamic policy for time-of-use energy tariffs. Another exten-
sion can be considering multiple modes for activities with different levels of energy 
requirements.
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