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Abstract
Hardware viewed in current energy models, but no appropriate attention is given to
the network environment and parameters. Components of the traditional design of the
network are often viewed individually and separately in terms of power consump-
tion. In this paper we, look at all possible sensor operations and generate a model for
energy management in its integrated network. The work proposed divides these tasks
into five energy consuming parts. The sensor’s energy consumption is then modeled
on its energy-consuming parts, parameters, and input operations. Thus, the energy
consumption of the sensor can be decreased by effectively balancing and performing
the chores of its constituents. The suggested strategy improves energy efficiency and
can also be used as guide in setting wireless sensor networks (WSNs) parameters.
Further more, It can help in designing an energy efficient WSNs. The serious energy
limitations, however, pose special challenges for WSNs applications to establish and
project scheduling which is usually has a strong influence on achieving energy effi-
ciency and usage. This paper provides a framework for preparing the tasks, in which
each node decides to do next according to the observed portion of the request. Within
this Framework, we can exchange the application efficiency and the energy consump-
tion provided by a weighted reward function and thus obtain better results in terms
of energy/ performance. We can further improve this energy/performance trade off
by exchanging data between neighboring nodes. The suggested approach analyzed
in a target monitoring program. The simulation experiments show that cooperative
approaches for this type of application are superior to non-cooperative approaches.
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1 Introduction

Applications like goal tracking, area control, or smart environments have been devel-
oped as an Attractive Platform for WSNs. Battery operated sensor nodes pose strong
energy limitations where each sensor node has limited power supply, computation
capacity and communication capability [1,2].

There are different activities to schedule on each sensor node in the standard WSN
program. Nevertheless, the preparation of the different tasks usually has a significant
impact on achievable energy consumption and efficiency. Under highly dynamic set-
tings, the energized sensor nodes run. Therefore, there is a well-recognized need for
adaptive and autonomous task planning in WSNs Because tasks can not be scheduled
a priori, it is important to schedule tasks both online and energy-aware [3,4].

The scheduler must take into consideration both the resource supply of the node
and the energy demands and the impact of each available task on the performance of
the request in order to determine its next task. The ultimate objective is to achieve a
high quality in operation while maintaining low energy consumption.

The proposed strategy can be regarded as a sensor-centered strategy that takes into
consideration the constituents of a sensor and the energy consumption tasks (duties) to
perform its job in theWSNsand related application.The architecture therefore includes
a modular framework but cross-cutting ideas. For the sensor resource, proposed model
energy consumption is used to minimize overall energy use and to manage power.
This paper demonstrates how a sensor controls the power consumption and extends
the lifetime of the network [1]. We consider five components that utilize energy:
individual, local, worldwide, environment, and sink. The individual sensor reflects
all the sensor operations, which the sensor needs to survive and execute its sensing
function, beginning with an individual sensor. The local component reflects all the
sensor operations to create a connection with its neighbor [3].

All the sensor-operations required to develop feasible transport routes and to trans-
mit information to the location (sink) are represented by the worldwide component.
The sink component reflects all the sensor operations that the sink must execute.
The final component, the environment, reflects the sensor’s operations for the col-
lection of environmental-friendly energy. Minimization of energy consumed by the
elements includes identification, by selection of the element and by balancing the load
and reduced energy utilization, of the workload of the sensors assigned to each ele-
ment. The component power can generally be evaluated by monitoring each hardware
resource for a component assignment and converting the resource utilization into power
consumption using the resource energy model. No additional load or operating system
inside the parts is required for this approach [3]. The component-based technique can
of course be adapted to applications and even to configurations in hardware. Although
past studies have suggested processes for developing network protocols or network
layers for power efficiency, in the implementation, the total power consumption of a
device is not optimized.
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Asensor generallymustmanage and accomplish assigned duties while having suffi-
cient energy. This is the foundation of our model, which includes all possible elements
that consume energy. The battery’s life depends on the way in which it distributes and
exercises its functional tasks across its individual components, local, globally. To per-
form a task, a number of packets need to be swapped by the sensor. A packet flow
(PF) is a data and control packet sequence for the completion of a task. Sensors
can handle their authority by assisting in setting task priorities with the assistance of
internal energy consumption model. In addition, the designer can minimize energy
consumption by assumption of optimum values to efficient parameters of network
using an internal energy consumption model. In this paper, we focus on the internal
energy consumption framework by shaping incoming activities so that a sensor can
give priority to them, thus minimizing power consumption [5].

The main objective and scope of the paper as follows:

• Determine the impact of energy consumption components and their prevailing
parameters on total energy consumption in WSNs.

• To obtain quantitative measurements and modeling on the basis of predominant
criteria of total energy consumption.

• Propose a model applicable to all sensor applications in the network.
• Optimize total energy consumption through model optimization.
• The overall model will provide the best approach for reducing energy consumption
through the incorporation of prevailing parameters

The rest of this paper is organized as follows. Section 2 discusses related work,
and Sect. 3 describes proposed energy harvesting based on task and also explains our
system generation model. In Sect. 4 presents criteria for the model and it explains the
enhancement model. Section 5 discusses simulation setup and experimental results of
enhancement model. Finally, the conclusion and future work are presented in Sects. 6
and 7 respectively.

2 Related work

2.1 Energy consumption

Network architectures are essentially functional models organized as layers where
one layer offers services to the layer above. A network often evaluates the quality
of its service parameters like time, power, accessibility, efficiency, and even safety.
With respect to power consumption, however, the grid as a global model that takes
energy consumption scarcely into account is often hard to evaluate and optimize. In
general, the researchers concentrate on the traditional networking architecture and try
to minimize a single-layer component in the hope that, regardless of other components
or levels, the overall network EC will be reduced. It’s not an ideal situation where
the whole energy picture of a wireless sensor network cannot be seen as having one
element.Most current models of energyminimization focus on the sending and receipt
of the data [6,7]. The power usage model focused on the sending-receiving cost and
reduced the maximum limit of the single-hop energy effectiveness [8,9]. This strategy

123



674 A. Alrabea et al.

takes into account the node between source and destination to save energy. Other
methods are evaluated using the power consumptionmodel inwireless sensor networks
[10].

The concept of a cross-cutting network for wireless networks was developed. The
main concept in cross-layer design is to make the protocol stack’s distinct layers of
data shared more dependent [11,12]. It is asserted that by doing this, better results
in wireless networking can be achieved, and the resulting protocols more suited than
those in a purely layered approach to the use of wireless networks. Large cross-
laying design examples include, for example, designing two or more layers together
or passing parameters between layers over time. However, there are no criteria for the
combination of which layers to reach the greatest overall EC result [13].

2.2 Energy harvesting

There are various technologies for energy extraction from the atmosphere like solar,
thermal, cinematic and vibration energy, and power collection techniques can boost
network life. The benefit of power collection schemes as the capacity to charge after
depletion and track power usage, whichmay be needed tomanage network algorithms,
were described by Weddell et al. [14–16]. In applications which are anticipated to run
for a long period of time, energy harvesting techniques play a significant role. Man-
agement of power harvests presents multiple difficulties. Kansal et al. [17] categorized
power supplies into four categories of sources and their respective difficulties: uncon-
trolled/predictable, uncontrollable/unpredictable. They stressed that, because of the
unpredictable power available in energy collection systems, energy management dif-
fers fundamentally from battery operated systems. It has been shown that the available
energy differs in time and for various network nodes. This presents some node diffi-
culty in taking decisions based on understanding of the network’s residual energy. In
addition, various nodes may have distinct harvesting possibilities. They suggested an
analyticalmodel for energy collection and efficiency to resolve these issues. In addition
to this, Ref. [18] proposed that the energy and load of the node should be balanced.
They explained the need for cooperation between power management applications
where the source of harvest cannot maintain a load rate for nodes. Energy recovery
for various wireless sensor applications is of important concern in order to enhance
their sustainable lives, but a balanced need to ensure their efficiency and effectively
use the available energy is required. The vast majority of wireless sensor research
are based on the condition of the remaining battery, while estimating the available
environmental energy at nodes remains an issue in harvesting schemes. Erickson et al.
[19] suggested a method for energy management for environmental availability, but
their method is based on a pre-visible resource of energy and cannot be used with an
unforeseen resource.

Adu-Manu et al. [20] presented a full review of energy-harvestingWSNs for differ-
ent environmental monitoring applications such as Air andWater Quality Monitoring.
Most importantly, they addressed the challenges that must be considered to advance
energy-harvesting-based WSNs.
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Giannecchini et al. [21] proposed to assign dynamically the network resources
between tasks of periodicWSN applications. The proposed approach called theOnline
Task Schematic Allocation (CoRAl). However, CoRAl doesn’t mention energy con-
sumption, or answer task mapping to sensor nodes.

Shah and Kumar [22] implemented a WSN task management program based on
distributed independent reinforcement learning (DIRL). Despite of their claim about
the efficiency of their approach, we think it has a complex structure compared to
our simple and efficient approach. Furthermore, they did not take into account the
neighborly cooperation or energy-performance compromise.

We believe that our approach is much more general and versatile, since we embrace
WSN topologies, a more complex incentives feature to demonstrate the balance
between energy consumption, efficiency, and community co-operation.

3 Proposed energy harvesting based on task

Present energy consumption models are defined for sensor network variables such
as radio, information, and hop, but there are other important variables such as the
number of packets that the node generates, handles, senses and transmits, and so
on to be considered. Furthermore, wireless networks characteristics are somewhat
different from wired device. The features of the wireless channel usually influence
every OSI level. The regional handling of a layer directly affects the energy utilization
of other layers in WSNs. Each level’s individual optimization is designed to resolve
the problem result in insufficient results. It has been asserted that using a traditional
layered method, it is difficult to attain design objectives such as energy effectiveness.

The cross-layer strategy was therefore developed to improve system efficiency
by jointly optimizing various layers of protocols. Changing one subsystem means
modifications in other components as it all interconnects. Cross-layer designs are
inexhaustible less flexible, interoperable and less durable without strong architectural
rules. In addition, systems cannot be certain that it is difficult to predict the effect of
modifications. Figure 1 demonstrates a fresh modular perspective with energy con-
suming companies. It proposes an approach that model the overall consumption of
energy with regard to prevailing parameters and energy consumption. components.
Energy consuming elements are considered based on their duties, as shown in Fig. 2.
The individual element is defined as all vital and fundamental deployments or activ-
ities required for the sensor, i.e. to track situations in the environment, to operate the
OS and to provide safety at operating system level. All communications with the direct
vicinity of the node are established and maintained by the local organization.

Furthermore, the local entity may include monitoring, idle hearing, and collision.
The component of the global project involves management of the entire network,
the selection of an appropriate topology and energy-efficient routing strategy based
on the application. Electricity waste due to congestions and packet errors could be
included. The global topology control, package routing, packet loss and overhead
protocol element are discussed as a function of energy utilization. The part of the
sink involves the roles of WSN manage, control or load. The sink activities include
directing, balancing, and minimizing the entire network’s energy consumption, and
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Fig. 1 Wireless network sensor-centered perspective

collecting produced information through the nodes of the network. Environmental
functions are activities for energy harvesting, the nodes able to extract energy from
the setting. Resources of Sensor, Central Processing Unit, radio, memory, and sensing
units are required to perform these functions. The radius point of the sensor range (r ).
Delay (g), Number of packets (bsense), Stored memory number of pockets (bstore),
Operating System Instruction (bos) and individual level security (bsec) are taken into
the simulation.

A relevant function can direct a sensor to perform tasks based on its residual energy
and task significance. The equilibrium of the energy consumption of the components
can also guide the sensor in its energy use minimization. Therefore, from the sensor
point of perspective, the problem is that its energy consumption is efficiently selected
and performed in significant ways. In addition, transferring tasks from high power
consumption to low power consumption can minimize power use, i.e. data aggrega-
tion, which reduces global responsibilities and reduces individual responsibilities. In
addition, a high energy consumption job can be divided into low-level activities for
low-energy consumption elements. This enables sensors, based on a network energy
consumption model, to intelligently manage job performance efficiently.

Usually, the energy is consumed in the Central Processing Unit (CPU), memory,
radio or sensor units when a sensor performs a typical job:

et = emem + eR + ecpu + esensor (1)
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Fig. 2 System design for the tasks of the components

A sensor performs the fundamental activities for each assignment. We suppose
that a sensor is a server for performing incoming functions. In order to model energy
consumption, from hardware view, we use the suggested strategy:

ecpu = pcpubcpu
emem = pmembmem

eRadio = eT x + eRx
eRx = PRxbRx
eT x = pT xbT x
esens = pensbsens

(2)

where bcpu , bmem , bRx , bT x , bsens are the number of CPU packets that are saved
in the memory, received, broadcast by radio, and sensed. Each function of a sensor
is allocated to a component during its life. An additional power consumption of the
individual, local, international, environmental and sink functions allows the general
energy consumption of the typical device [23–25]:
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Table 1 Parameters in individual

Parameter Description

n Number of neighbors

ei (idle) Idle power consumption

di j Distance to the neighbor

bmon Packet overhead for monitoring:
depends on the application and its
topology

rT x Transmission radius

bsec Local security packet over head:
depends on application

blocal Packet overhead to avoid collision
problem policy

breT x Number of re-transmission packets: depends on proba-
bility of collision and number of neighbors

Eoverall = Eindividual + Elocal + EGlobal + EEnvironment + ESink (3)

Since several of tasks contribute to packet flow for each element, the energy con-
sumption of a sensor is as follows:

Eoverall = α0 + λ1 pcpu + λ2 pmem + λ3 pRx + λ4 pT x + λ5 psens
α1

bIndividual

+ λ6 pcpu + λ7 pmem + λ8 pRx + λ9 pT x + λ10psens
α2

blocal

+ λ11pcpu + λ12pmem + λ13pRx + λ14pT x + λ15psens
α3

bglobal

+ λ16pcpu + λ17pmem + λ18pRx + λ19pT x + λ20psens
α4

benvironment

+ λ21pcpu + λ22pmem + λ23pRx + λ24pT x + λ25psens
α5

bsnk

(4)

or simplified as

Eoverall = α0 + α1bindividual + α2blocal + α3bGlobal + α4bEnvironment + α5bSink
(5)

We will clarify the prevailing parameters of the energy consumption sensor model
of each element in the following segments.

• Individual

bIndividual includes packet flow of the individual functions shown in Table 1, That
is detection, OS execution, and application which installed, as well as individual
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Table 2 Parameters in local

Parameter Description

n Number of neighbors

gT x Transmission interval

netdens Network density

bohear Overhead packets

ai Number of sensors in covered area

di A Distance between sensors and other sensors inside the covered area

btopo Packet overhead for topology

N (t) Number of nodes in time t

diD Distance between source and destination

hiD Number of hops

brout Number of routing packets

bglobal Number of packets to avoid packet loss

di Distance between node i to nearest sink

bpktls Number of packet losses

Snk Number of sinks

bsec Number of hops

Table 3 Parameters of the environment

Parameter Description

Hi Harvested energy (Watt)

bph Overhead produced due to harvesting power

sensor safety. The packet flow in each component is therefore as follows:

bindividual = bens + bos + bsec (6)

The number of detected and produced packets relies on the detector region rsens
and detection delay gsens ,

bsens = P(Sense|rsens, gsens)bindividual (7)

from the above equations

bindividual = bos + bsec
1− P(Sense|rsens, gsens) (8)

• Local

blocal involves neighboring surveillance packet flow for the collection of informa-
tion about accessible resources, for instance, their remaining power, spacememory,
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securitymanagement (to avoidmalicious network connectivity and data tampering
node malicious nodes), idle listening packs and re-transmission packets (Table 2).
The packet flow of the local constituent can therefore be indicated as

blocal = bcoll + bidle + bohear + bsec + bmon + bohead (9)

where

bcoll =p(coll|n, gT x , netdens)blocal
bohear =p(ohear |n, netdens, rT x )blocal
bidle =p(idle|n)blocal

(10)

• Global

The global entity has several functions: routing, topology control, packet loss
retransmission and packet loss prevention tasks.

bglobal = bpktls + bsec + btopo + brout + bohead (11)

The packet loss depends on common network parameters like: node-destination
distance, and netdens , the number of network nodes (see Table 3):

bpktlsl = b(pktls|D, netdens)bglobal (12)

bglobal = bsec + btopo + brout + bohead
1− P(pktls|D, netdens)

(13)

• Environment

When the node is capable of harvesting environmental energy, the environment
includes managing safety and energy recovery (see Table 4).

benvironment = bsec + bph (14)

• Sink

bsink = bsec + bohead (15)

The sink component provides safety for sink communication and provides sink
instructions, if relevant for the application. We have defined up to now the com-
ponent components and their relation to general energy consumption.
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Table 4 Parameters of the sink Parameter Description

bohead Network management policy

bsec PF security in sink level

3.1 Model evaluation

The use of learning methods like linear regression to estimate model parameters
enables for numerous observations of the observable quantities. Because of its closed-
form calculations, we use linear regression to minimize the least square error between
observations and predictions (i.e. L2-norm). The model is created in four steps: pro-
filing, regression of the model, assessment criteria and model refinement. We have
performed various experiments with loading sensors and have calculated energy con-
sumption of the individual components with a packet flow set for their components.
4-10 minutes. Meanwhile, the network was identified as a general energy consump-
tion. The values were collected in the Δt , periods and for several time frames each
experiment was repeated, since the tasks in each component and thus energy con-
sumption change in time. Repeating experiments and establishing a model based on
different situations helps understand the component cost of responsibilities. A sensor
can decide which activities are to be performed to be energy efficient. This model
allows a sensor. Due to the change in the time, the overall energy consumed can be
expected to differ slightly from several experiments, with the same packet flows for
the constituents. The average of several experimental runs was therefore regarded to
be the total energy consumption of the experiment.

3.2 Generation of model

This section describes how to map the connection between the prevailing parameters
and the WSN’s general energy use. The issue of linear regression modeling includes
selecting appropriate modelling coefficients, so that the output of the model is closely
related to the reaction of a true system. Consider the number of M tests for a WSN
implementation with one degree of linear algebraic equations for 5 parameters.

⎡
⎢⎢⎢⎣

E1
E2
...

EM

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

1 b(1)
I nd b(1)

local b
(1)
global b

(1)
snk b(1)

env

1 b(2)
I nd b(2)

local b
(2)
global b

(2)
snk b(2)

env

...
...

...
...

...
...

1 b(M)
I nd b(M)

local b
(M)
global b

(M)
snk b(M)

env

⎤
⎥⎥⎥⎥⎦

The above formulation converts the approximation problem to an assessment of
the parameter values of model to optimize the cost from approximation to true energy
consumption values. The request for a fresh invisible experiment is then anticipated to
have approximate energy consumption (E). The parameters of the model calculated
mathematically by minimizing the lowest square mistake between approximate and
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real value.

A = (BT B)−1BT E (16)

4 The criteria for evaluation

Weassess the precisionof thefittedmodel basedon severalmeasurements, producedby
regression like Root Mean Squared Error, Mean Absolute Percentage Error Prediction
precision as briefed in the following paragraphs.
Mean absolute percentage error

MAPE =
∑M

i=1
|E (i)−Ê (i)|

E (i)

M
(17)

E (i) yields the expected and M is observation number for that prediction in the
dataset, if E (i) is the real general consumption of energy in the network? Then a
reduced value of MAPE means that the forecast model is better adapted.
Root mean squared error

RMSE =
√∑M

i=1(E
(i) − Ê (i))2

M
(18)

A lower RMSE shows that the forecast system is more efficient [26].
Accuracy of prediction

R2 = 1−
∑M

i=1(E
(i) − Ê (i))2

∑M
i=1

ˆ(E (i) − ∑M
i=1

E(r)
M

(19)

This measure is frequently used for linear models of regression. Actually, the
accuracy of the R2 prediction determines how close the model matches the actual
information points. The precision of a R2 prediction of 1.0 shows that the forecast
model fits perfectly.

4.1 Enhancement of themodel

The issue with the model, however, resides not necessarily in the linearity of the
parts because they have no homogeneous packet flows. The packet flux (PF) is a
significant term for network protocol which directly influences the number of packets
needed to perform the job. A sensor determines the PF of each assignment, based on
the average number of packets sent or received during the first task implementation
(both control and information packets). Moreover, each sensor has a distinct model
because of functions of distinct components, such as sensors close sinks having more
worldwide functions than sensors far away from sinks (Table 5).

123



A task-based model for minimizing energy consumption. . . 683

Table 5 Packet flow

Packet flow Constituent

Packets having sensed data Individual

Packet carrying information of current node and its neighbors Local

Scheduling packets to avoid collision Local

Packet carrying topology information Global

Packets carrying routing information Global

Received data packets Global

5 Experiments and results

In this section will explain setup of the network that used to conduct the experi-
ments. Also present values of all simulation parameters, then illustrate and discuss the
obtained experimental results.

5.1 Network setup

We used 100 detectors to produce environmental information at random moments in
a 500 × 500-pixel zone in our simulation. We have considered the sort of sensing
application as the main concept not the sensory type, but the link between functions
conducted by sensors and sensor networks and complete energy consumption. The
sensors are generic information gathered through the setting. Sensing applications
may also include temperature, contamination or other environmental factors. We con-
sidered the preceding power usage process, memory and radio unit parameters as
continuous in the individual components of all sensors. The experiment length was
also presumed to be 60 seconds continuous. Since the model is task oriented, 60 sec.
of simulation time is sufficient to take into account every task performed by a sen-
sor. The findings of our task-based model will not change longer simulation times.
A sensor produces environment information. We take sensing costs as a constant and
clearly boost and reduce complete energy consumptions in the sensing method due to
the frequency of sensing, information quantity or sensing radius produced. The num-
ber of neighbors was changed in our application based on the variation in the rate of
transmission. Depending on transmission radius and network density, the number of
neighbors is different. Clearly, the largest average number of neighbors in the network
is the maximum nodes are 200 and the maximum radius of transmission is 150 m.
Table 6 summarizes all aforementioned simulation parameters assumptions.

Also in our experiments, the following general assumptions are used:

• Network environment with specified sensor number.
• The network setting was square.
• Sensors are distributed uniformly equally.
• Sensors are static.
• Sensors are aware of their locations.
• Initial sensor energy is defined.
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Table 6 Summary of simulation
parameters assumptions Number of nodes 100–200

Network size 500 × 500

Energy model MicaZ

Battery model Linear

Initial energy 1.2 J

Maximum transmission range 200 nodes

Transmission power 0 dbm

Routing protocol 0 AODV/Bellman

Simulation time 0 60 s

5.2 Experiments

To evaluate the energy consumption of components, we simulated aWSN request. The
request gathers data on occurring occurrences. In its covered zone, sensors will detect
an incident, generate a packet and send it to the closest sink. Sinks in a particular place
are situated as a group. In general, in our WSN application simulator, we suppose
three stages. During the initialization stage, sensors run their own software, connect
them to neighboring nodes and collect data on the assets of the neighbor. The sensor
then utilizes the information relay data of the neighbor during the collecting stage.
It collects information, produces and sends data from the configuration, as well as
processing and relaying incoming packets. They perform these tasks if they have
sufficient power, or if they don’t. During the maintenance stage, the sensor controls its
vicinity to update their condition and performs additional worldwide duties, such as
topology organization and routing tables, when needed. These stages can be repeated
several times in the network life by a sensor. The results in Fig. 3 demonstrate how
packet flow are allocated to the simulator components. Sensors are connected to all
instant nodes in our implementation and these sensors select neighbors on the basis
of its remaining energy. The sink has no application roles and sensors don’t collect
energy, so sink and environmental components in our modeling are ignored.

5.3 Results

Theproposedmodel examined through simulation experiments,where different packet
flow and energy consumption of each component at all stages inspected. The first
stage comprises three times before a sensor begins to detect, monitor and transmit
data packets.

The sensor uses (independently) energy to initiate, regulate and initialize packets
of neighboring (local) connections. It also sends packets to set up global routing
tables. In the second phase, the detector starts to record events and produces and
sends information packets to the sink (individual tasks). Local operations in this phase
involve surveillance of neighborhood resources by sending packets to neighbours.
Furthermore, by inspecting your routing table and selecting the appropriate neighbor
or route, the sensor will transfer income information packets to its place. The third
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Fig. 3 Packet flow in different time interval

Fig. 4 Packet flow in different time interval

phase starts with the retrieval of a linked path. In relation to additional worldwide
network maintenance duties, the sensor conducts functions in this stage during the
second stage. These functions include the collection of path data and the updating of
routing tables.

Figure 4 illustrates the packet flow and energy consumption of each of the typical
sensor components at different stages of simulation experiments (initialization, collec-
tion of data andmaintenance). The packet flowand energy usage (depending on present
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sensor power) of components have been reported in each segment. As per the obtained
results the general network energy consumption has grown dramatically during stage
3 of the worldwide component operations. As stated in stages 1 and 2, however, dif-
ferences of duties in the individual and local components have no important effect on
the general energy consumption level. The proposed research concluded that global
(international) operations are therefore highly cost in terms of sensor lifetime, energy
usage and there is an effect on the complete energy consumption of WSN.

6 Conclusion

We have suggested a generic model that includes multiple energy consumption ele-
ments and sensor elements in a wireless network. Although this model is independent
of the fundamental architecture of the network, its contribution to a sensor’s general
energy consumption and its key components are identified. This capacity, combined
with the interaction between sensors and the network, enables different approaches to
be realized while respecting energy requirements of the individual sensors. The model
can then be used by a sensor to prioritize the electrical component’s duties in terms
of energy and significance by employing a linear regression in model interactions
between its detectors and the network total energy. The sensor can thus efficiently
utilize energy and stay longer alive. The conclusion of this paper is that the global
component has the largest effect on a WSN’s general energy consumption.

Our findings of the precision problem in the extraction of common parameters call
for further task in order to detect the non-linear correlation between parameters and the
consumption of energy in worldwide components within WSNs using sophisticated
statistical and machine training methods. Because of the large number of parameters,
it is not a preferable choice for a parameter to plot the relation between energy con-
sumption and then select an appropriate kernel to explain the relation. In addition to
p-value, additional sophisticated assessment is needed to rank the parameters based
on their statistical significance. It should be used to identify their common parameters
by the same analytical instruments with other constituents. This provides a map of
helpful parameters that affect the energy consumption throughout the WSNs scheme.

7 Future work

In future works will consider a real world motion model for the targets, also will
implement data association as a task. Further more, will conduct a study to compare
the proposed approach with other variants of reinforcement learning methods.
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