
Energy Systems (2020) 11:357–375
https://doi.org/10.1007/s12667-019-00324-4

ORIG INAL PAPER

Short-term electric load forecasting in Tunisia using
artificial neural networks

Rim Houimli1 ·Mourad Zmami2,3 ·Ousama Ben-Salha2,4,5

Received: 2 April 2018 / Accepted: 8 January 2019 / Published online: 14 January 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
The accuracy of short-term electricity load forecasting is of great interest since it
allows avoiding unexpected blackouts and lowering operating costs. In this paper, we
aim to implement the artificial neural networks to model and forecast the half-hourly
electric load demand in Tunisia over the period 2000–2008. To improve the quality of
forecasts, the proposed artificial neural network model uses not only past electric load
values as inputs, but also climatic and calendar variables. To determine the optimal
structure of the neural networkmodel, this paper employs the pattern search algorithm.
Moreover, the neural networkmodel is equippedwith the Levenberg–Marquardt learn-
ing algorithm. Our findings confirm the performance of this algorithm to the view of
evaluation indicators since the mean absolute percentage error values range between
1.1 and 3.4%. The analysis also shows the superiority of the Levenberg–Marquardt
algorithm compared to the resilient back propagation algorithm and the conjugate
gradient algorithm. In the light of the current research, we stress the aptness of the
proposed artificial neural network model in forecasting short-term electricity demand.
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1 Introduction

Electricity is a fundamental consumption good for the process of economic develop-
ment and the well-being of nations [1]. It is therefore crucial for a country to guarantee
permanent and continuous access to this good. The prediction of electricity demand
is a major concern of energy producers and plays an important role in the identifi-
cation of optimal operating strategies and the planning of required power systems in
medium and long-terms. The forecast of short-term electricity demand is also of great
interest for electricity suppliers since it helps them to guarantee the supply/demand
equilibrium. In fact, electricity is one of the very few economic goods that could not be
stocked.A suitable forecastmethod is the one that allows lowering costs and improving
the dispatching of electric power production. In addition, understanding the behav-
ior of electricity demand is imperative for electricity producers since it allows them
maintaining continuous, reliable and secure access to electric power. The electricity
demand forecast errors may be responsible for significant operating costs. Regarding
this point, Bunn and Framer [2] conclude that a 1% increase in the forecast error led
to an increase of 10 million pounds in annual operating costs in the United Kingdom
in 1984. The electricity crisis occurred in California in summer 2000 is also a good
example, since it induced a blackout due to the insufficiency of the supply compared
to the demand. The existing literature has proposed several techniques to forecast
electricity demand. Some of them are statistical (such as econometric and time series
models) while others are computational (such as neural networks and fuzzy logic) [3].

This paper contributes to the related literature by implementing the artificial neural
network (ANN) to forecast half-hour-ahead electricity demand in Tunisia. Compared
to prior studies on the subject, this paper has relatively some novelties. First, it is
based on a rich and unique database provided by the Tunisian Company of Electric-
ity and Gas. It considers half-hourly electric load data covering the period ranging
between 2000 and 2008. The choice of Tunisia offers a particularly interesting context
for discussing the issue of modeling and forecasting electricity demand in developing
countries for at least two reasons. On the one hand, electricity demand has been consis-
tently increasing during the last decades in Tunisia. For instance, electricity demand
climbed by 6.8% per year between 2000 and 2010. It represents 85% of the total
installed capacity against 68% in 2000. This sharp rise in electricity demand is a direct
consequence of industrialization and change in household habits, especially the use of
air conditioning. To avoid unexpected blackouts, the Tunisian Company of Electricity
and Gas signed agreements with the Algerian and Moroccan Electricity companies
to acquire electricity to be used during periods of peak electricity demand in summer
2018. On the other hand, there are no prior studies that focused on forecasting electric-
ity demand in Tunisia. Currently, the TunisianCompany of Electricity andGas is based
on a traditional method to forecast electricity demand during the next 24 h, namely
the ‘similar days’ method. This method consists of forecasting the daily demand for
day j based on the demand in day j − 1 between Tuesdays and Fridays and on demand
in day j − 3 for Mondays. The prediction of electricity demand during the weekend
is based on the past weekend’s demand, with slight corrections owing to weather con-
ditions, holidays and exceptional events. Given the limitations of such a method, it is
crucial to propose a more accurate forecasting tool that will help the company pre-
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dicting the optimum production and therefore avoiding cuts during electricity demand
peaks. Second, contrary to statistical methods, which impose restrictive assumptions,
the artificial neural network model proposed in this paper does not impose any con-
dition but uses an intelligent training process. Furthermore, the optimal structure of
the model (the number of hidden layers and the number of neurons in each layer)
is based on the use of a specific algorithm, namely the pattern search optimization
algorithm and not through a trial-and-errors process. Third, to check the robustness of
the obtained forecasts and their accuracy, we compare the performance of three train-
ing algorithms used in the literature, namely the Levenberg–Marquardt algorithm, the
resilient back-propagation algorithm, and the conjugate gradient algorithm.

The remainder of this paper is organized as follows. The second section gives a
brief presentation of ANN and its use in forecasting electricity demand, while Sect. 3
describes the model and data used in the study. Test results and after-the-fact error
analysis are presented in Sect. 4. Finally, Sect. 5 concludes the paper.

2 A brief review of electricity demand forecasting techniques

According to Hong [4], three categories of methods have been developed and used
when modeling and forecasting the demand for energy, namely traditional methods
(autoregressive integrated moving average model, seasonal autoregressive integrated
moving average model, exponential smoothing models, linear regression model, etc.),
artificial intelligence approaches (knowledge-based expert system model, artificial
neural networks model and fuzzy inference system model) and the support vector
machine. Ghalehkhondabi et al. [3] provide an excellent survey of energy demand
forecasting methods employed in research articles published between 2005 and 2015.
The authors conclude that neural networks are the most used methods to forecast
energy demand.

Findings of previous studies on the subject suggest that the demand of electric-
ity depends on many factors such as the population size, the economic structure, the
season, the month, the day, the time of day and the climate change [5–7]. Moreover,
social factors, such as national events and holidays, may explain the demand behav-
ior in some cases. As mentioned above, the empirical literature has provided several
methods formodeling and forecasting the demand for electricity. For instance, Hussain
et al. [8] employ the ARIMA model to forecast the demand of electricity in Pakistan.
Taylor [9] is rather based on the double seasonal Holt-Winters exponential smoothing
method to forecast the electricity demand in England and Wales. Taking the case of
the Nova Scotia Power Corporation, Mbamalu and El-Hawary [10] use the iteratively
reweighted least squares to estimate the parameters of the multiplicative autoregres-
sive model incorporating seasonal factors. Finally, Clements et al. [11] are based on
a multiple equation time series approach estimated using the ordinary least squares
to forecast the day-ahead electricity load in the Queensland region of Australia. The
use of these so-called traditional methods, such as ARIMA and regression models,
for forecasting purposes, is conditioned by the validation of some crucial time series
assumptions, particularly the linear behavior of the data. However, the electric load
time series always unveil several seasonal features, different time frequencies (daily,

123



360 R. Houimli et al.

weekly, monthly or annually), complex schedule effects and nonlinear dependence of
meteorological variables [12]. The relative empirical failure of conventional statisti-
cal methods in forecasting nonlinear time series has led researchers to make use of
artificial intelligence methods, particularly the artificial neural network [13]. Indeed,
such methods are considered as powerful tools for modeling and predicting nonlinear
time series.

A neural network is a system composed of interconnected neurons which are
arranged in layers. Artificial neural networks are input–output models whose design is
schematically inspiredfrom the functioning of biological neurons. Within the frame-
work of these models, the direction of transfer of information in the network is defined
by the nature of the connections that could be direct or recurrent. According to the
path followed by the information in the network, one can classify neural networks
into two main groups. The ‘feed-forward’ networks are those for which information
circulates from inputs to outputs without turning back. On the other hand, the ‘feed-
back’ networks have rather a cyclical topology. When circulating in the direction of
connections along the network, it is possible to find at least one path which returns to
its starting point. In neural networks models, the nature of the relationship between the
dependent and independent variables is not a priori determined. The optimal structure
of the model is the result of a training process. This phenomenon reflects the capacity
of the artificial neural network to learn from its environment in order to improve its
performance. The training procedure is done through an iterative adjustment process
applied to the synaptic weights and thresholds. Following each iteration during the
training, the network becomes more informed about its environment, which improves
the forecasting performance.

The network structure is composed of three layers: an input layer (independent
variables), hidden layers (units or unobservable nodes) and output layers (dependent
variables). The outputs of the network may be linear or nonlinear mathematical func-
tions compared to inputs. The input vector is usually defined according to the degree of
knowledge and experience, through assessment criteria of the technology and the size
of the artificial neural network. The following three elements characterize an artificial
neuron:

– All connections, also known as synapses, allow receiving input signals and trans-
mitting the output signal. Each connection is characterized by a synaptic weight so
that the signal transmitted by a source neuron is multiplied by the weight associated
with the connection before being received by the destination neuron.

– The status of the neuron is based on an adder that performs the sum of weighted
input signals by synaptic weights.

– The activation function: the status of the neuron is calculated from an activation
function that is applied to the weighted sum of synaptic weights. It serves to intro-
duce nonlinearities in the neuron’s operation. The form of this function is however
linked to the nature of the studied problem.

Neural networks have been initially used in many fields such as biology, physics,
industry, etc. Thesemodels have been afterward employed in statistics and particularly
for the prediction of financial and economic variables, such as stock market indices
[14, 15], exchange rates [16, 17], oil price [18] and natural gas demand [19]. Recently,
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several studies have shown the accuracy of ANNs for the prediction of electric power
demand [20–23].Asmentioned byPanapakidis [24], artificial neural networks perform
well in forecasting electric power consumption, especially for datasets characterized
by nonlinear behavior between inputs and outputs. Gonzalez-Romera et al. [25] use
the artificial neural network to forecast monthly electricity consumption in Spain.
Results show that the artificial neural network performs well and is better than the
ARIMA model. Bakirtzis et al. [26] are based on an artificial neural network model
to forecast short-term load demand in Greece. Three types of variables have been
used as inputs, namely previous loads, the season and the temperature. Park et al.
[27] propose a back-propagation neural network with three layers to resolve the daily
forecasting problems. It has been shown that the used model provides more accurate
results than regression models. Darbellay et al. [28] implement an artificial neural
network to predict the electricity demand in the Czech Republic. The forecasting
performance metrics indicate that the proposed model is more efficient compared to
an ARIMA. Khotanzad et al. [29] present an approach based on the use of two types
of neural networks, one for the prediction of the basic load while the second is used
for predicting the variation of the load. The final forecast is a combination of the two
aforementioned forecasts. Recently, Hippert et al. [30] compare the performance of
short-termelectricity demand forecastingmodels by studying the case ofRiode Janeiro
in Brazil. The authors show the superiority of artificial neural networks compared to
traditional forecasting techniques such as the exponential smoothing and regression
models.

3 The data and forecastingmethod

3.1 Data gathering

The output of the ANN is the load forecast for a given half-hour (t) during the day.
Inputs to the ANN may be classified into three categories. First, we consider the 48
previous load demand (t-i, where i� 1, 2,…,48). In line with many previous studies,
such as [5–7], we also gathered data on climatic conditions, namely the minimum
and maximum daily temperatures.1 Finally, we are based on the calendar to obtain
information on the type of day, the type of week, the type month and the type of
year. Data on half-hour electricity demand are provided by the Tunisian Company of
Electricity and Gas. The study covers the period 2000–2008 (9 years). Table 1 presents
definitions and characteristics of the three categories of variables used in the study.

1 While other meteorological and climatic factors, such as snow, fog, humidity, and wind speed, might
affect electricity demand, we do not introduce them as inputs for two reasons. First, data on such climatic
variables do not exist in Tunisia. Second, and most important, several authors, such as [31–33] point out that
temperature is the most important climatic determinant of electricity demand since it has a direct impact
on it.
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Table 1 Data definition and sources

Category Definition Type Nature Source

Electricity demand at
time t

Electricity demand at
time t

Quantitative Output variable Tunisian Company of
Electricity and Gas

Electricity demand at
time t − i (where
i� 1, 2,…, 48)

Electricity demand at
time t − i, where i
� 48 half hours.

Quantitative Input variable Tunisian Company of
Electricity and Gas

Climatic variables The minimum
temperature for day
j

Quantitative Input variable Tunisian Company of
Electricity and Gas

The maximum
temperature for day
j

Quantitative Input variable Tunisian Company of
Electricity and Gas

The minimum
temperature for day
j − 7

Quantitative Input variable Tunisian Company of
Electricity and Gas

The maximum
temperature for day
j − 7

Quantitative Input variable Tunisian Company of
Electricity and Gas

Calendar variables Type of day Qualitative Input variable Calendar

Type of week Qualitative Input variable Calendar

Type of month Qualitative Input variable Calendar

The year Qualitative Input variable Calendar

3.2 Data pre-processing and normalization2

It is well recognized that the performance of any forecasting tool depends on how data
are used. It is, therefore, crucial to perform a pretreatment of data to provide a good
network performance. The use of neural networks requires the normalization of input
vectors and the output vector such that the data are scaled to be in the [0–1] range.
Data normalization aims to avoid high dispersion between errors and weights during
the training process.Matlab presents several types of normalization approaches. In our
case, we use the Mapminmax normalization method. The input and output variables
are scaled as follows:

x̂ � x − xmin

xmax − xmin
,

where x̂ , x , xmin and xmax are the normalized value, the original value, the minimum
and maximum values for a given variable, respectively.

2 To conduct the study, we used the software Matlab R2013b. Particularly, two toolboxes have been used,
namely the pattern search optimization toolbox and the neural network toolbox.
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Fig. 1 The structure of the used multilayer neural network

3.3 The network architecture

The common structure of a neuron network depends on how to select the input data
(in our case, electricity demand in previous periods, meteorological and schedule
variables). The electricity demand forecast is the output variable, where each node
represents the half-hourly demand. As shown in Fig. 1, the network used in the current
study is composed of three layers, namely an input layer, several hidden layers, and
an output layer.

The structure of the forecasting model takes into account the different factors influ-
encing electricity demand, namely the previous loads, the type of day, the type of
week, the type of month, the type of year and the maximum and minimum tempera-
tures.Given these variables, the output layer is represented by 48 vectors (48 half-hours
per day) and the input layer by 58 vectors having the following structure:

– Vector 1 represents the month (1,2,…,12);
– Vector 2 represents the year (1, 2… 8);
– Vector 3 represents the week (1, 2, …, 51);
– Vectors 4 to 6 represent the kind of day;
– Vector 7 represents the minimum temperature for the day j;
– Vector 8 represents the maximum temperature for the day j;
– Vector 9 represents the minimum temperature for the day j − 7;
– Vector 10 represents the maximum temperature for the day j − 7;
– Vectors 11–58 are the previous 48 half-hourly loads.

Figure 2 shows that the daily electricity demand depends upon the day and the time
of the day. For instance, the electricity demand is the lowest between midnight and 6
am and ranges between 1000 and 1400 MW. Moreover, the demand for electricity is
lower during Sunday than for the other days, especially between 8 am and 6 pm (in
Tunisia, Sunday is the day of rest and Monday is the first day of the working week).
Finally, it is worth noting that there is a significant similarity regarding the demand
for electricity during Tuesday, Wednesday, and Thursday. In order to save space and
avoid repetition, we will only refer to Thursday in what follows, instead of the three
aforementioned days.
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Fig. 2 Load curves for a week from 05/01/2008 to 11/01/2008

3.4 The training process

The initial stage consists of dividing the whole dataset into three datasets. The first
dataset, reserved for training, is used for calculating the gradient and adjust the network
weights. The second dataset, the validation dataset, is used to evaluate the ability to
generalize the network. Finally, the third dataset, the test dataset, is reserved to simulate
the output related to another dataset, not used during the training process, and check
the performance of the developed model. It is important to note that there is no rule
for determining these datasets quantitatively. In our case, we used the early stopping
method during the training process. That is, the training process is stopped when the
validation error reaches itsminimum. The study period is divided into two sub-periods:
data from 2000 to 2007 is used for the training and validation, while data from 2008
is used for testing the performance of the network.

The current study uses the Levenberg–Marquardt training algorithm as a bench-
mark algorithm. This algorithm has the advantage that it quickly converges with high
precision.

As stated by Madić and Radovanović [34], the Levenberg–Marquardt algorithm is
faster and finds better optima than other usual algorithms. Furthermore, Beale et al.
[35] point out that this algorithm can converge from ten to one hundred times faster
than the conventional algorithms. The Levenberg–Marquardt has been mainly used
by Amjady and Keynia [36], Tanoto et al. [37] and Rodrigues et al. [38] to learn
the input/output mapping function of the forecast process. To check the robustness
of forecasts, we also used the resilient back-propagation algorithm and the conjugate
gradient algorithm.

Unlike many previous studies, the optimal structure of the model is based on the
pattern search optimization algorithm and not on a trial-and-errors process. The use
of such an algorithm aims to determine the optimal structure of the multilayer neural
network model (the number of hidden layers and the number of neurons in each layer).
In the case of a neural network composed of 58 input neurons and 48 output neurons
(representing the half-hourly loads), the application of the pattern search algorithm
gives an optimal structure composed of three hidden layers having the following
structure: the first layer includes 18 neurons, the second 35 neurons, while the third
12 neurons.
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4 Test results and discussion

4.1 Main results

The accuracy of the developed network in forecasting electricity demand has been
tested during the year 2008. The use of the Levenberg–Marquardt training algorithm
allows obtaining five electric load curves (Thursday, Friday, Sunday, Monday and
Saturday).3 A comparison between actual and forecasted load profiles during the
5 days is presented in Fig. 3.

In order to evaluate the performance of the proposed ANN model, we use several
indicators, namely the mean absolute error (MAE), the mean percentage error (MPE),
the mean squared error (MSE), the mean absolute percentage error (MAPE) and the
root mean square error (RMSE).4 Values of the five indicators calculated for the 5 days
are presented in Table 2.

Values of the performance indicators confirm the ability of the Levenberg–Mar-
quardt algorithm in providing good and suitable forecasts. Among others, the obtained
MAPE values, ranging between 1.125 and 3.410%, indubitably confirm the satisfac-
tory forecasted results.

4.2 Comparison with other training algorithms

In order to check the performance of the Levenberg–Marquardt algorithm, we
reproduce the same task using two additional algorithms, namely the resilient back-
propagation5 and the conjugate gradient.6 To determine the optimal structure of the
multilayer neural network model (the number of hidden layers and the number of
neurons in each layer), we employ the pattern search algorithm that allows generating
results presented in Table 3.

The neural network based on the resilient back-propagation training algorithm is
composed of 58 input neurons, 48 output neurons representing the half-hourly loads
and 3 hidden layers composed of 21, 20 and 20 neurons, respectively. Regarding the
neural network based on the conjugate gradient training algorithm, the table shows
that it is also composed of 58 input neurons and 48 output neurons and three hidden
layers composed of 28, 5 and 18 neurons, respectively.7 Figure 4 plots the evolution
of the actual and forecasted loads using the three mentioned algorithms.

As a preliminary statement, one may note that the Levenberg–Marquardt algorithm
is more accurate than the conjugate gradient algorithm and the resilient back-
propagation algorithm. The forecasting power of the three algorithms is evaluated

3 As mentioned earlier, there is a big similarity regarding the electric load during Tuesday, Wednesday and
Thursday. Consequently, we focus only on Thursday in the rest of the paper.
4 Appendix A presents the formulas of the different measures employed in the analysis.
5 It is the fastest algorithm for the problemofmodel identification and function approximation. Thememory
space required for this algorithm is relatively small compared to other algorithms proposed by Matlab.
6 It is an iterative algorithm in a finite number of iterations. Its advantage in terms of computing time, due
to a clever initialization (preconditioning), allows obtaining in only few steps close estimates. .
7 More details on the structure of the ANN using the pattern search optimization algorithm are displayed
in Appendix B.
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Fig. 3 Actual and forecasted load curves using the Levenberg–Marquardt training algorithm (in MW)
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Table 2 Forecasting performance
results of the
Levenberg–Marquardt learning
algorithm

Forecast performance indicator Value

Monday 2008

Mean absolute error 32.836

Mean percentage error (%) − 1.2995

Mean squared error 2426

Mean absolute percentage error (%) 2.1442

Root mean square error 49.255

Thursday 2008

Mean absolute error 17.027

Mean percentage error (%) − 0.070298

Mean squared error 410.56

Mean absolute percentage error (%) 1.1251

Root mean square error 20.262

Friday 2008

Mean absolute error 24.621

Mean percentage error (%) 1.043

Mean squared error 1211.7

Mean absolute percentage error (%) 1.4983

Root mean square error 34.809

Saturday 2008

Mean absolute error 33.968

Mean percentage error (%) − 0.82576

Mean squared error 1984.2

Mean absolute percentage error (%) 2.3486

Root mean square error 44.544

Sunday 2008

Mean absolute error 45.001

Mean percentage error (%) − 0.45726

Mean squared error 3512.4

Mean absolute percentage error (%) 3.4101

Root mean square error 59.265

Table 3 The pattern search
results

Training algorithm Number of hidden layers

Resilient back-propagation (21- 20 -20)

Conjugate gradient (28- 5 -18)

based on the five performance indicators previously mentioned and the correlation
coefficient.8

8 The correlation coefficient would be equal to one if the predicted values are equal the observed values.
In this case, all the data points would fall on the fitted regression line.
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Fig. 4 Actual and forecasted load curves using the three training algorithms (in MW)
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Table 4 Comparison of the forecasting performance

Forecast performance indicator lm algorithm rp algorithm cgb algorithm

Monday 2008

Mean absolute error 32.836 47.058 33.974

Mean percentage error ( %) − 1.2995 2.4883 − 0.24939

Mean squared error 2426 3349 1893.6

Mean absolute percentage error (%) 2.1442 2.9908 2.2787

Root mean square error 49.255 57.871 57.516

Thursday 2008

Mean absolute error 17.027 37.953 41.94

Mean percentage error (%) − 0.070298 1.8915 2.2687

Mean squared error 410.56 2133.4 2815.4

Mean absolute percentage error (%) 1.1251 2.3962 2.6709

Root mean square error 20.262 46.189 53.061

Friday 2008

Mean absolute error 24.621 59.332 58.881

Mean percentage error (%) 1.043 3.6806 3.6659

Mean squared error 1211.7 4621 4546.6

Mean absolute percentage error (%) 1.4983 3.6854 3.7193

Root mean square error 34.809 67.978 67.429

Saturday 2008

Mean absolute error 33.968 70.661 79.191

Mean percentage error (%) − 0.82576 2.8995 3.0633

Mean squared error 1984.2 5540.4 7642

Mean absolute percentage error (%) 2.3486 5.0246 5.7404

Root mean square error 44.544 74.434 87.418

Sunday 2008

Mean absolute error 45.001 73.543 139.77

Mean percentage error (%) − 0.45726 0.99419 − 0.46229

Mean squared error 3512.4 7152.2 21569

Mean absolute percentage error (%) 3.4101 5.4618 10.661

Root mean square error 59.265 84.571 146.87

Results, given in Table 4, suggest that the electricity demand forecasts based on
the three training algorithms are relatively acceptable. However, findings of Table 4
strongly confirm that the ANN based on the Levenberg–Marquardt algorithm is more
efficient in forecasting the electric load. The reported MAPE values of the Leven-
berg–Marquardt training algorithm is always lower than those of the conjugate gradient
algorithm and the resilient back-propagation algorithm, regardless of the considered
day. Moreover, graphs presented in Appendix C suggest a good agreement between
predicted and observed values for the training, validation, test and overall datasets.
Despite the overall correlation coefficient is always high when using the three training
algorithms, the Levenberg–Marquardt algorithm is found to perform better than the
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other two algorithms since the correlation coefficient is the highest (0.98245 for the
Levenberg–Marquardt algorithm versus 0.98025 for the resilient back-propagation
algorithm and 0.97214 for the conjugate gradient algorithm).

5 Concluding remarks

This paper aims to evaluate the performance of artificial neural networks in forecasting
the electricity demand in Tunisia. The used model is based on a Multilayer Perceptron
artificial neural network to forecast short-term load curve by exploiting the half-hourly
electricity demand data as inputs. Besides,manymeteorological and calendar variables
are included in order to improve the quality of forecasts. Contrary to many earlier
studies on the subject, the choice of the optimal structure of the neural network has
not beenmade arbitrarily. In fact, we applied the pattern search optimization algorithm
that determines the number of hidden layers and the number of neurons in each layer.
The experimental results suggest that the Levenberg–Marquardt training algorithm
performs well in forecasting the half-hourly electricity demand. In order to check the
performance of this algorithm, we employ two additional algorithms frequently used
in the literature, namely the MLP with conjugate gradient and MLP with resilient
back-propagation. Results are compared based on several performance measures. In
all cases, results show that the MLP with the Levenberg–Marquardt algorithm is the
most efficient tool in forecasting the half-hour electricity demand.

Although the used optimization and training algorithms performwell in forecasting
the short-term electricity demand, neural networks still suffer from some insufficien-
cies. Future research focusing on electricity demand forecastingmay implement hybrid
models combining neural networks with econometric models.

Acknowledgments The authors are grateful to the Editor-in-Chief, Professor Q.P. Zheng, and two anony-
mous referees for their constructive comments on earlier versions of themanuscript. They also acknowledge
the Tunisian Company of Electricity and Gas for providing data used in this research.

Appendix A: Forecast performancemeasures

Measure Formula

Mean absolute error (MAE) MAE � 1
n

n∑

t�1

∣
∣yt − ŷt

∣
∣

Mean squared error (MSE) MSE � 1
n

n∑

t�1
(yt − ŷt )2

Root mean squared error (RMSE) RMSE �
√

1
n

n∑

t�1
(yt − ŷt )2

Mean percentage error (MPE) MPE � 1
n

n∑

t�1

yt−ŷt
yt

x100
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Measure Formula

Mean absolute percentage error (MAPE) MAPE � 1
n

n∑

t�1

|yt−ŷt |
yt

x100

Correlation coefficient (R) R �
∑n

t�1(yt−ȳt )(ŷt−ŷ)
√∑n

t�1(yt−ȳt )2×∑n
t�1(ŷt−ŷt )2

Appendix B: The Structure of the ANN using the pattern search
optimization algorithm

B1: The Levenberg–Marquardt algorithm (MLP Lm)

The optimal structure of the neural network is shown in the following Matlab graph:
See Fig. 5.

Fig. 5 The Levenberg–Marquardt algorithm

The network is composed of 58 input neurons and 48 output neurons representing
the half-hour loads and three hidden layers. The first layer comprises 18 neurons;
the second layer comprises 35 neurons while the third layer 12 neurons. Each hidden
layer is providedwith a tangent sigmoid transfer function (tansig) and a linear function
(purlin) for the output layer.

B2: The resilient back-propagation algorithm (MLP rp)

The optimal structure of the neural network is shown in the following Matlab graph:
See Fig. 6.
As for the Levenberg–Marquardt algorithm, the network is composed of 58 input

neurons and 48 output neurons. The first layer comprises 21 neurons; the second layer
comprises 20 neurons while the third layer 20 neurons. Each hidden layer is provided
with a tangent sigmoid transfer function (tansig) and a linear function (purlin) for the
output layer.

Fig. 6 The resilient back-propagation algorithm
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B3: The conjugate gradient algorithm (MLP cgb)

The optimal structure of the neural network is shown in the following Matlab graph:
See Fig. 7.

Fig. 7 The conjugate gradient algorithm

As for the previous algorithms, the network is composed of 58 input neurons and
48 output neurons. The first layer comprises 28 neurons; the second layer comprises 5
neurons while the third layer 18 neurons. Each hidden layer is provided with a tangent
sigmoid transfer function (tansig) and a linear function (purlin) for the output layer.

The different parameters of the three algorithms can be summarized in the following
table:

See Table 5.

Table 5 Parameters of the three neural networks

Levenberg–Marquardt
(MLP lm)

Resilient
back-propagation
(MLP rp)

Conjugate
gradient (MLP
cgb)

Input neurons 58 58 58

Number of hidden layers 3 3 3

Number of neurons in
each layer

(18- 35- 12) (21- 20- 20) (28- 5- 18)

Transfer function in each
hidden layer

Tangent sigmoid
(tansig)

Tangent sigmoid
(tansig)

Tangent sigmoid
(tansig)

Transfer function in the
output layer

Linear (purlin) Linear (purlin) Linear (purlin)

Number of maximum
iterations

35 99 97

Matlab command Trainlm Trainrp traincgb

Appendix C: Plots of observed and predicted values for training,
validation, testing, and overall datasets

See Figs. 8, 9 and 10.

123



Short-term electric load forecasting in Tunisia using… 373

Fig. 8 Results of the Levenberg–Marquardt algorithm

Fig. 9 Results of the resilient back-propagation algorithm
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Fig. 10 Results of the conjugate gradient algorithm
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