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Abstract As a critical component for evaluation of output power variability at wind
farms, short duration power ramp distributions are typically evaluated as ensemble
estimates across elaborate time-aggregated compilation of on-site fieldmeasurements.
This paper proposes an algorithmic alternative to the above, by introducing statistical
estimates both for probability density function (pdf) and cumulative distribution func-
tion (cdf) of power ramps. The estimates are pessimistic as possible real time filtering,
attributable to turbine inertia and time-constants, is assumed to be negligible. The pro-
posed algorithm is conveniently implemented on popular spreadsheet software, has
limited dependence on source wind statistics, and easily accommodates turbulence
conditions given by the IEC 61400-1 standards. Its application is illustrated for the
popular Vestas V-90 3MW turbine, assumed to operate at a site with source wind
accordingly specified.

Keywords Wind energy · Wind power generation · Power ramp distributions ·
Statistical estimates

For formulations that involve time-varying short duration variability within a long time horizon, “N” is
assumed to represent the total possible number of distinct variability conditions that may occur. For
summation or aggregation purposes, these are indexed as i = 1, 2, . . . , N . It may be noted that at any time,
the source wind may face only one of the N variability conditions. Whenever variables and parameters
(listed below) refer to the i-th variability conditions, they are provided appropriate subscripts in the text.
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Nomenclature

Short duration variables, statistical functions, and associated parameters:

C : Scale parameter for Weibull distribution of wind speed.
f : Long duration temporal fraction of occurrence for a specific short duration

source wind condition; that is, the fraction of a long time horizon (say, days
or months) across which a particular variability condition may occur.

P (.) : Output power of wind turbine (as a function of source wind speed).
u : Source wind speed.
ū : Short duration mean value of source wind speed (constant for a short time

horizon, but may vary over longer duration).
û : Short duration maximum likelihood value of source wind speed (“most

probable” or modal value; constant for a short time horizon, but may vary
over longer duration).

�u : Random change in the source wind speed from its maximum likelihood
value in short duration (that is, in short duration, �u = u − û).

� (.) : The complete gamma function.
κ : Shape parameter for Weibull distribution of wind speed.
�μ : Output power ramp (that is, change in P (.)), normalised by Prat.
ρ : Rayleigh distribution modal parameter for long duration wind speed.
σ : Short duration standard deviation of source wind speed (constant for a

short time horizon).
τ15 : Turbulence intensity at 15m sensor height as defined by IEC 61400-1 stan-

dards.
φ (.) : Probability density function for normalised power ramps, given short dura-

tion source wind conditions.
〈φ (.)〉 : Probability density function (pdf) for normalised power ramp, aggregated

over a range of short duration source wind conditions.
ϕ (.) : Long duration probability density function for source wind speed.

(.) : Cumulative distribution function (cdf) for speed or power ramps, for given

short duration source wind conditions.

PAC turbine specifications obtained, or derived from manufacturer’s
data-sheets:

a, b,m : Parameters to fit the Weibull sigmoid function to a specific μ (.) function.
Prat : Rated value of power output by the turbine unit.
uin : Cut-in value of source wind speed.
urat : Rated value of source wind speed.
uout : Cut-out value of source wind speed.
μ (.) : Output power normalised by Prat of the turbine unit under steady, stream-

lined source wind.

123



Worst-case temporal aggregate power... 1097

1 Introduction

With growth of wind based power generation, short duration power variations at
the output of active pitch angle controlled (PAC) turbines has been recognised as
inevitable fallout of turbulence and gusts in the source wind [1,5]. Following from the
common inference that wind variations within time horizon of minutes or less are best
represented as stochastic changes rather than deterministic ones [6], short duration
power variations have been analysed using probability density functions (pdf’s) and
cumulative distribution functions (cdf’s) of generated power; both functions being
fundamental to analysis of randomnumbers and signals (for example, [7]). By contrast,
medium and long duration variations that stretch from several minutes to hours [2,3]
may be appropriately represented as deterministic changes. A comprehensive briefing
on source wind variations, inclusive of categorisation by duration, is provided in [6].

While speed or power ramps within source wind are of importance to the turbine in
several engineering contexts (structural loading and stress [8], and real time control [9]
being selected examples); short duration power variations at the output of aPAC turbine
(or a turbine cluster) are critical to integrated network performance and management
[3–5,9,10]. Alternatively referred to as “power ramp distributions”, pdf’s and cdf’s of
the power variations are useful in at least four ways:

i. Evaluation of dispatchability [11], which covers the following expectations:
• Availability of wind based generation precisely on-demand,
• Supply availability independent of proximity between load centres and wind
turbines,

• Preferred temporal coherence between wind based generation and load varia-
tions, and

• Possible performance parity between wind based and conventional generators
in real time.

ii. Spatial aggregation to smoothen power variations in time [12,13]: a common
approach in cases where wind based generators are spread across significant area.

iii. Decisions regarding storage requirement [9,14,15], which are always important
with reference to storage technology and associated capital overheads.

iv. Reserve regulation and planning, which involves conventional sources within the
system to which wind turbines are integrated [16–18].

Despite their usefulness, pdf’s and cdf’s of short duration output power ramps have
themselves not been very easy to compile; precise field measurements (empirical
approach), or elaborate aerodynamic simulations or mesoscale models (simulation
approach) being the two popularmethods. By either approach, the analyst is facedwith
substantial volume of sampled data, which is to be subsequently sorted according to
frequency of occurrence. The resulting compilations, which are rather computationally
intensive aswell as susceptible tomeasurement and data logging errors,will be referred
to as “ensemble estimates” in the discussions to follow.

A largely algorithmic and easily programmable alternative to the ensemble estimate
is introduced in this paper. Since the approach depends on prior knowledge of short
duration mean wind speed and the associated standard deviation, the nomenclature
“statistical estimate” seems appropriate for the resulting distributions. Other than the
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obviously modest computational requirement, certain objective advantages associated
with statistical estimates add to their usefulness:

a. By suitable spreadsheet software, statistical estimates can be computed at planning
stage for any proposed wind turbine installation site [6,15].

b. It follows from “a” that dependent decisions on
• choice of commercially available turbine makes,
• spatial distribution of turbines,
• storage support, and
• reserve regulation,

all of which may influence capital investment as well as network performance, can
be convenient and quick [9–18].

c. Applicability of statistical estimates to typical PAC characteristics is easy.
Specification of such characteristics can assume the minimal numeric form of
wind-speed/output-power pairs (or alternative graphical forms) that is commonly
available from turbine manufacturers [19,20].

d. For a turbine cluster spread across awind farm, “c” can be extended to an aggregate
output power curve [21,22].

e. Statistics of sourcewind in theminimal numeric formofmean-wind-speed/standard-
deviation pairs [6] are the only prerequisites for statistical estimates.

f. As proposed, statistical estimates can conveniently use short duration wind speed
and standard deviation data provided in IEC 61400-1 standards, or comparable
alternatives [23,24].

The computation algorithm is based on certain core assumptions, some of which
make statistical estimates pessimistic, or “worst-case” estimates. The assumptions are
summarised below, and subsequently revisited as and where relevant:

A1. Within horizons of short duration (minutes or less), the source wind speed is
random, and follows the well established two-parameter Weibull distribution [6,
7].

A2. Corresponding to any short duration mean wind speed, the maximum likelihood
wind speed is the most commonly occurrent in time, as directly implied by its
definition.

A3. While operating at a particular mean wind speed, short duration changes occur
predominantly from the corresponding maximum likelihood value to higher or
lower speeds. This assumption essentially follows from A2. It should be noted
however that relatively infrequent “direct changes” from speeds greater than the
maximum likelihood to those less than the same (or vice versa) are not ignored.
Rather, such variations are taken into consideration as two successive changes
(from a higher speed to the maximum likelihood, followed by a second change
from the maximum likelihood to a lower speed, or vice versa).

A4. Filtering action of PAC dynamics on short duration wind variations is negligi-
ble. This essentially implies very fast responsive turbine and controller, so that
short duration wind variations are “converted” to power changes according to the
turbine power curve (as in advantage “c”) or the aggregate turbine-cluster power
curve (as in advantage “d” above).
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A4 is perhaps the strongest of the four assumptions, because turbine inertia and PAC
time constants always filter the dynamics of any practical configuration. Precise con-
clusions are difficult to draw because of the variety of PAC turbine configurations that
are commercially available. However the statement of A4 is easy to appreciate as one
of pessimistic, worst-case dynamics.

Analytical concepts on short duration power ramp distributions are formulated in
Sect. 2; and culminate in a set of algorithmic steps for computation of statistical esti-
mates. Section 3 describes background to an example case, for which detailed power
ramp distributions and their temporal aggregates are presented in Sect. 4. Evolving
the example further, Sect. 5 presents sensitivity of temporal aggregate power ramp
distributions to the most probable value of short duration mean wind speed.

2 Conceptual formulations for statistical estimates

2.1 Probability distribution for short duration speed ramps

If wind speed u at a specific turbine hub-height is assumed to follow a two-parameter
Weibull pdf (as A1 above) given by

p (u) = κ

C

( u

C

)κ−1
.exp

[
−

( u

C

)κ]
(1)

with C and κ as short duration scale andshape factors respectively [7], then the short
duration mean wind speed ū follows as

ū = C.� (1 + 1/κ) (2)

As noted in point “e” of Sect. 1, the formulations to follow require the short duration
mean wind speed ū and standard deviation σ . Ratio of the two is defined as the
turbulence intensity “τ” (τ � σ/ū), and is a useful parametric measure of short
duration wind variations [6]. For example, within the loose range of 1 � k � 10, the
shape parameter is given by [25]

κ ≈ (σ/ū)−1.086 (3)

For a known value of τ therefore, (3) provides a convenient way to calculate κ; fol-
lowing which C can be obtained by (2).

Equating the derivative of (1) to zero, followed by some simplification, leads to the
most probable wind speed for the given values of (ū, σ ) (hence C and κ). This value
can be termed as the maximum likelihood wind speed (refer assumption A3, Sect. 1),
and is obtained as [7]:

û = C. (1 − 1/κ)1/κ (4)

By assumption A3, majority of speed ramps are expected to occur as changes around
û; with the latter as the most common value in time. For all short duration speed
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changes from û to values “within” some û + �u (�u may be of either sign), the cdf
is obtained as



(
û → u|u ∈ [

û, û + �u
]
,C, κ

)

=
û+�u∫

û

p (u) .du = exp

[
−

(
û

C

)κ]
− exp

[
−

(
û + �u

C

)κ]

= exp

[
1 − κ

κ

]
− exp

[
−

(
û + �u

C

)κ]
(5)

while the pdf is a derivative of (5) with respect to �u

∂

∂�u



(
û → u|u ∈ [

û, û + �u
]
,C, κ

) κ

C

(
û + �u

C

)κ−1

.exp

[
−

(
û + �u

C

)κ]

(6)

2.2 Generic function for PAC output power curve

The advantage listed as “c” in Sect. 1, states a minimal specification of the PAC
characteristic in terms of output-power for different admissible values of wind-speed
[19,20]. PAC output power curves can be thus described as

P (u) = μ (u) .Prat (7)

where Prat is the rated power of the specific turbine, and μ (u) is the ideal zero-
turbulence output coefficient—the fraction of rated power that the turbine outputs
with steady streamlined wind speed u. For most PAC turbines, μ (u) has a generic
form

μ(u) =

⎧
⎪⎪⎨
⎪⎪⎩

0; i f u ≤ uin
an increasing fraction 0 −→ 1; i f uin ≤ u ≤ urat
1; i f urat ≤ u ≤ uout
0; i f u > uout

(8)

with uin, urat, and uout as cut-in, rated, and cut-out wind speeds at the hub, respectively
[6].

On most well supported spreadsheet platforms, some effort is required to pro-
gramme (8) in terms of piecewise linear functions using wind-speed/output-power
specifications as mentioned above. However, μ (u) is considerably more convenient
toworkwith if represented by a continuous differentiable function over the entire range
of speed up to cut-out. Since the first three segments of (8) describe an “asymmetric
sigmoid” [26], replacement by aWeibull sigmoid [27] is a good option:

μ(u) =
{
1 − exp[−(a.u − b)m]; i f 0 < u ≤ uout
0; i f u > uout

}
(9)
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Shape of the Weibull sigmoid in (9) is decided by parameters a, b, and m; all of
which are to be determined from the wind-speed/output-power data-pairs specified
by the turbine manufacturer. This can be easily done by converting the sigmoid to its
equivalent logarithmic form:

ln [a] + ln [u − b/a] = (1/m) . ln [− ln [1 − μ (u)]] (10)

The steps to determine a, b, and m, follow from (10):

• from the output power curve specification of the turbine, power data P (u) are
normalised by rated power Prat, converting them to ideal zero-turbulence output
coefficients μ (u) in per-unit.

• similarly, the speed data u are normalised by urat for conversion to per unit.
• A linear curve fit function (available as part of most spreadsheet or graphing soft-
ware) may be used to obtain an approximate linear function between ln [u − b/a]
and ln [− ln [1 − μ (u)]]. This exercisemay commencewith b/a set to zero, which
can be progressively modified to obtain a good linear fit of desired accuracy [28].

• once an acceptable linear approximation is obtained, b/a is known from the set
value, while a and m can be calculated from the slope and intercept of (10). This
would complete estimation of (9) from the ideal zero-turbulence output power
curve as specified numerically or graphically by the manufacturer.

2.3 Statistical estimate of power ramp pdf’s and cdf’s at different average
source wind speed

In Sect. 2.1 (for given values of ū, σ , and hence û, by (3), (2), and (4)), short duration
speed ramps were assumed from û to u within the closed range u ∈ [

û, û + �u
]
. With

all parameters of (9) known, the possible limit of wind speed change �u corresponds
to a per-unit short duration power ramp limit �μ such that

�μ = exp
[− (

a.û − b
)m] − exp

[− (
a.

{
û + �u

} − b
)m]

�⇒ û + �u =
m
√

− ln
[
exp

[− (
a.û − b

)m] − �μ
] + b

a
(11)

For a specific value of ū, the pdf for signed short duration power ramps is easily
obtained in two stages. First, estimates of û+�u may be obtained for different values
of�μ by (11), which are power ramps as signed fractions of Prat. Next, the cumulative
probability for all ramps not greater than �μ can be obtained by (5) corresponding to
û + �u.

Though convenient, it should be appreciated that a pdf computed as above is of
limiteduse, since the short durationmeanwind speed at any turbine installation is rarely
constant across significant lengths of time. Amore meaningful temporal aggregate pdf
requires two additional steps:

1. The short duration power ramp pdf φi (�μ|ūi ) may be obtained corresponding to
each (say, i-th) value of short duration mean wind speed.
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2. The pdf’s thus obtained are to be aggregated over long duration, by weighting
them by the relative frequency of occurrence for each ūi considered for step “1”
above.

In order to organise an algorithm to realise the above, pdf’s of short duration power
ramps are required at the outset.

From the first expression in (11), a differential coefficient of the normalised power
ramp with respect to the normalised wind speed ramp is easily obtained as

∂�μ

∂�u
= ma.

(
a.

{
û + �u

} − b
)m−1

.exp
[− (

a.
{
û + �u

} − b
)m]

(12)

Dividing (6) by (12), the statistical estimate of pdf for normalised short duration
power ramps is found to be

φi (�μ|ūi )
�= ∂

∂�μ



(
ûi → u|u ∈ [

ûi , ûi + �u
]
,Ci , κi

)

=
[

∂

∂�u



(
ûi → u|u ∈ [

ûi , ûi + �u
]
,Ci , κi

)]
.

[
∂�μ

∂�u

]−1

= κi

ma.Ci

(
ûi + �u

Ci

)κi−1

.
(
a.

{
ûi + �u

} − b
)1−m

× exp

[
− (

a.
{
ûi + �u

} − b
)m −

(
ûi + �u

Ci

)κi
]

(13)

In (13), κi , Ci , and ûi , are obtained from the i-th short duration mean wind speed
ūi and standard deviation σi by (3), (2) and (4). The limiting short duration ramped
speed ûi + �u corresponds to each value of per-unit short duration power ramp limit
�μ, and can be obtained by (11).

2.4 Weights for short duration mean wind speed: the complete algorithm

Prior to consolidation of steps for statistical estimate of a pdf for short duration power
ramps, a procedure for aggregation (refer Sect. 2.3, step “2”) across all possible (ūi , σi )
needs to be defined.

If across a complete long duration horizon (for example, weeks, months, or season),
N+1 different values of short duration mean speed and standard deviation occur as
(ūi , σi ) pairs for i = 0, 1, 2, . . . , N ; then the i-th such wind condition must span
across a fraction fi of the total time horizon, such that

N∑
i=0

fi = 1 (14)

It must be emphasised that only one out of the N + 1 short duration variability
conditions may occur at a particular point of time. Further, occurrence of i-th short
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duration pair (ūi , σi ) may prevail across a length of time within the chosen long
duration horizon, may change deterministically (precisely known time variation), or
may be random. The fraction fi is therefore not a conventional probability value, and
is more appropriately referred to as the i-th temporal fraction of occurrence.

With knowledge of the temporal fractions, it is a simple calculation to the temporal
aggregate short duration pdf of power ramps:

〈φ (�μ)〉 �=
N∑
i=0

fi .φi (�μ|ūi ) (15)

An algorithm for statistical estimate of the temporal aggregate short duration power
ramp pdf 〈φ (�μ)〉 may now be drawn up as follows:

#1 Across the entire longdurationhorizonof interestwith N+1different short duration
wind conditions (i = 0, 1, 2, . . . , N ), the different temporal fractions fi , and
paired values(ūi , σi ) of short duration mean wind speed and standard deviation
may be noted.

#2 The short duration Weibull parameters κiand Ci may be obtained using (3) and
(2) for each i .

#3 The short duration maximum likelihood wind speeds may be computed by (4) for
each i .

#4 For the i-th wind condition, with a, b, m, and uout known for the given wind
turbine, (11) can be used to compute limiting short duration ramped speeds ûi+�u
corresponding to different limits of signed short duration power ramps�μ.

#5 Hence corresponding to each (i-th) wind condition, the pdf φi (�μ|ūi ) for short
duration power ramps�μ can be obtained by (13).

#6 #4-5 may be repeated for each short duration wind condition: i = 0, 1, 2, . . . , N .
This would result in N+1 pdf’sφi (�μ|ūi ) for short duration power ramps.

#7 The temporal aggregate short duration power ramp pdf langleφ (�μ)〉 may be
computed by (15), as a sum of pdf’s φi (�μ|ūi ) weighted by temporal fractions
of occurrence fi .

Steps #8–9 to follow, essentially extend the algorithm #1-7 further so as to com-
pute statistical estimate of the cumulative distribution function for unsigned short
duration power ramps. As may be expected, this should involve integration of
[〈φ (�μ) + φ (−�μ)〉] with respect to differential of the ramp magnitude (pdf’s for
both positive and negative ramps are summed so as to obtain the pdf for unsigned
ramps).

The numerical integration is challenged by the fact that there is no way to presume
the aggregate short duration cumulative probability corresponding to zero-magnitude
power ramps (〈φ (|�μ| = 0)〉, that is, the “no-power-ramp” condition). The problem
is circumvented by noting that 〈φ (|�μ| ≤ 0)〉 = 1 is always true, since the per-unit
magnitude of any power ramp can never exceed the turbine capacity. Thus rather than
“integrating up” from 〈φ (|�μ| = 0)〉, the temporal aggregate cdf is best obtained by
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“downward integration” as

〈φ (|�μ|)〉 = 1 −
1∫

�μ

[〈φ (�μ) + φ (−�μ)〉].d�μ (16)

The additional steps leading to the statistical estimate of temporal aggregate short
duration power ramp cdf φ (|�μ|) are therefore as follows:
#8 The temporal aggregate pdf for unsigned short duration power ramps may

be obtained as sum of the two aggregate pdf’s for signed power ramps as
[φ (�μ) + φ (−�μ)].

#9 The temporal aggregate cdf for unsigned short duration power ramps may be
obtained by (16). Alternatively, any suitable numerical integration method may be
employed for the purpose, subject to acceptable accuracy.

3 Application background: a PAC turbine in turbulent source wind

Usefulness of the concepts presented in Sect. 2 have been listed as objective advantages
“a-f” in Sect. 1. Collectively, advantages “a”, “c”, and “e” are indicative of limited
dependence of statistical estimates on empirical data, with considerable involvement
of programmable functions.

More precisely, steps #1–9 of Sect. 2.4 open a simple algorithmic route for
prior evaluation of aggregate short duration power ramp distributions, which may
be conveniently implemented on spreadsheets. With ideal output power curve for a
commercial turbine available from the respective manufacturer, and source wind vari-
ability obtained from meteorological site measurements or estimates, the algorithmic
approach fans out to several associated possibilities.

For example, comparisons can be conveniently made between expected short dura-
tion ramp distributions when different commercial makes of PAC turbine are under
consideration for a specific installation site. Further, with reference to specific makes
of PAC turbines for installation, comparative short duration ramp distribution studies
between different sites are possible. Finally, sensitivity studies may be undertaken to
follow either or both of the above, since progressive installation of PAC turbines leads
to changes in short duration mean as well as standard deviation of the source wind
speed. The algorithm covered by steps #1–9 is therefore robust to uncertainties of
source wind statistics.

As an illustrative application of the algorithm, the widely used Vestas V-90 3MW
PAC turbine is considered for operation in turbulent conditions described by the 2005
edition of IEC 61400-1 standards [24,29]. Accordingly, Sect. 4 discusses ramp distri-
butions for a range of short duration variability conditions. It then proceeds through the
steps #7–9 stated above, evolving the temporal aggregate short duration power ramp
pdf and subsequently the cdf; the temporal fraction of occurrence being determined
by Rayleigh statistics. Section 5 presents a simple study to demonstrate dependence
of short duration ramp distributions on the most probable short duration mean wind
speed.
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Fig. 1 Logarithmic plot (10) of
the ideal zero-turbulence output
coefficient for Vestas V-90
3MW turbine between cut-in
and rated values of source wind
speed. Data for the plot has been
obtained from [31]

Spreadsheets to support application Sects. 4 and 5 are provided as supplementary
electronic material with the paper.

Preliminary calculations for the application are presented in remaining part of the
present section.

3.1 The ideal zero-turbulence turbine characteristic

The Vestas V-90 3MWenjoys considerable popularity among power utilities due to its
established structural strength, robust real time performance, and time tested controls.
The turbine is designed for cut-in, rated, and cut-out steady wind speeds of 3.5, 15, and
25m/s, respectively [30]. For the three-blade nacelle configuration of 90m swept-area
diameter and 65–80m hub-height, precise PAC output curves with streamlined source
wind (at different acoustic decibels and air density) are reported in [31]. The PAC
output curve specified for typical conditions of 109.4dB(A), 1.225kg/m3 air density,
is chosen for the present illustrative application.

Figure 1 shows a plot of ln [− ln [1 − μ (u)]] against ln [u − b/a] between cut-in
and rated values of wind speed u, with b/a in (10) set to −0.305. This value of b/a is
found to bring about acceptable linear-fit between the two sets of data. The parameters
a and m for the Vestas V-90 3MW are accordingly obtained as unity and 6.5274,
respectively; so that b = −0.305. With the numerical values in place, (9) assumes a
form (all quantities in pu),

μ(u) =
{
1 − exp[−(u + 0.305)6.5274]; if 0 < u ≤ 1.667
0; if u > 1.667

}
(17)

Following (17), the differential coefficient (12) of power ramp with respect to wind
speed ramp (both in per-unit) is obtained as

∂�μ

∂�u
= 6.5274 × ({

û + �u
} + 0.305

)5.5274 × exp
[
− ({

û + �u
}+0.305

)6.5274]

(18)
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3.2 Short duration source wind statistics

In practice, the relation between short duration standard deviation σ and short duration
mean wind speed ū is generally site specific. Several geographic, meteorological, and
engineering factors are known to contribute to the interdependence between the two
[8].

For engineering convenience, the International Electrotechnical Commission peri-
odically reports linear interdependence functions between (ū, σ ) as part of the well
known IEC 61400-1 standards, which apply to potential turbine installation sites
[23,24]. The functions are defined on wind speed sampled at time step of 3.0s, so
that short duration variations are almost entirely accommodated.

For the present application, the interdependence function is assumed to follow the
2005 edition of the standards [24], and is given by

σ = τ15. (0.75ū + 5.6) (19)

where the standard deviation is predicted by 90% quantile of wind speed at turbine
hub height for ten-minute averages of mean wind speed. τ15 is the turbulence intensity
(refer to the discussion following (2) [6]) measured at 15m sensor height. Suggested
values are 0.16 for “high turbulence” (category A site conditions), 0.14 for “medium
turbulence” (category B site conditions), and 0.12 for “low turbulence” (category C
site conditions).

3.3 Temporal fractions of occurrence

As discussed with reference to (14–15), short duration mean wind speed at a site may
have a mixed variation across long duration, which may be in parts deterministic or
random. It follows that the number N in (14) and values of temporal fractions fi
(i = 0, 1, . . . , N ) depend on wind variations across overall time horizon of interest.
The source wind variations in turn are decided by geographic, climatic, and ambient
conditions [8].

For the purpose of the current application, it is assumed that when considered over
a long time span, the short duration mean wind speed ū follows a Rayleigh distribution
with probability density given by

ϕ (ū) =
(
ū/ρ2

)
.exp

[
− (ū/ρ)2 /2

]
(20)

Implicit in the Rayleigh distribution (20) is the well known assumption that ū has
two mutually perpendicular (and hence, independent) wind speed components, each
of which is a normally distributed random number of identical standard deviation
[28]. The assumption is generally valid across long time horizons, and on horizontal
terrain without obstacles to air flow. This has led to the acceptance of the Rayleigh
distribution as a performance base for wind turbine manufacturers, who often mention
source long durationwind speedwith correspondingRayleigh frequency of occurrence
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[32]. Expression (20) therefore represents a typical long duration distribution for short
duration mean wind speed.

The parameter ρ in (20) represents the mode (most frequently occurring value of
ū) of the Rayleigh distribution. If choice of turbine for a proposed installation site
ensures that urat is identical to ρ by design, then (20) reduces to

ϕ (ū) = ū.exp
[
−ū2/2

]
(21)

Though it is not mandatory to select turbines strictly according to urat = ρ; (21)
does represent a baseline distribution with reference to such a choice. Therefore while
the next section assumes (21) at an installation site proposed for the Vestas V-90
3MW, sensitivity of short duration power change distributions to the choice of urat is
presented in Sect. 5.

4 Application: power ramp distributions for baseline choice of turbine

For all studies presented in this paper, source wind speed for the Vestas V-90 3MW
is considered across the range 0–3.0pu in steps of 0.1pu (N + 1 = 31 with i =
0, 1, ..., 30). With short duration mean wind speeds assumed to occur according to
Rayleigh frequency of occurrence, the i-th temporal fraction of occurrence is obtained
from (21) as

fi = 0.1 × ūi .exp
[
−ū2i /2

]
(22)

As an implicit feature of the Rayleigh pdf (20), temporal fractions computed by (22)
unconditionally satisfy the critical property (14).

For the turbulence categories specified by the 2005 edition of the IEC 61400-1
standards, (19) is used to compute the short duration standard deviation corresponding
to each of the thirty-one values of ūi . This meets the requirement of (ūi , σi ) pairs as
in step #1 of Sect. 2.4.

It is a simple matter to realise steps #2–6 of the algorithm on any commonplace
spreadsheet software for the three turbulence categories. By programming appropri-
ate functions for each of the N+1 values of ūi , statistical estimate of the pdf’s for
short duration power ramps are obtained “around” the respective mean wind speed.
The supplementary electronic materials accompanying this paper include illustrative
spreadsheets for Sects. 4 and 5

Before proceeding beyond step #6, some insight into the nature of pdf’s φi (�μ|ūi )
is useful. Accordingly, selected pdf’s corresponding to turbulence categories A, B,
and C are presented in Fig. 2. Individual plots in each correspond to different values
of mean wind speed ūi as indicated (only plots at speed intervals of 0.2pu are included
to retain clarity).

While numerical differences are to be expected between pdf plots of the three
turbulence categories (Fig. 2), features common to all may be summarised as follows:

• Negative power ramps dominate in probability at 0.7pumeanwind speed or higher;
while positive power ramps do likewise at 0.6pu ūi or lower. Around the two stated
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Fig. 2 Statistical estimates of selected power ramp pdf’s for the Vestas V-90 3MW, corresponding to
per-unit short duration mean wind speed as indicated. A, B, and C, denote the IEC turbulence category
assumed for source wind in each case

values, pdf’s have significant spread both above and below the zero magnitude
power ramp (that is, steady output power without ramping).

• At short duration mean wind speeds below 0.6pu, probability density is found
to change from about 10−5 to unity over a small range of positive power ramps
(cut-in wind speed for the Vestas V-90 3MW being 0.233pu).

• Atmean wind speeds above 0.7pu, power ramp pdf’s spread across the range from
−1.0pu to zero, but with a steep change close to the latter. For 1.2pu or higher
values of mean wind speed, variations occur largely within the active PAC part of
(8, 9) with virtually no power change.

• Finally, for short duration mean wind speeds at 1.7pu and beyond, rapid operation
of the cut-out mechanism (the cut-out wind speed being 1.67pu) results in domi-
nation of negative power ramps; probability density stretching from unity to 10−2

corresponding to ramps from zero to −1.0pu.

Proceeding with the algorithm step #7, (22) is used to generate the Rayleigh frequency
of occurrence (which for the specific example, serve as the temporal fractions of
occurrence fi ) corresponding to each value of ūi . Figure 3 displays the temporal
aggregate short duration power ramp pdf 〈φ (�μ)〉 (for signed power ramps �μ) as
obtained by (15). For all three turbulence categories, “near unity” aggregate probability
density is noted for zero magnitude ramps. The temporal aggregate pdf drops to 10−3

or less for “rated negative ramps” (� μ λ −1.0pu) as decided by turbulence category;
with similar drop at “half-of-rated positive ramps” (� μ λ +0.5pu). Expectedly for
higher turbulence categories, likelihood of large power ramps becomes significant.

Additionally included in Fig. 3 are plots from ensemble estimate of pdf for the
Vestas V-90 3MW, as reported in [33]. The ensemble estimates from [33] are found
to be comparable to “worst-case” statistical estimates for IEC turbulence category C,
and in fact showmarginally lower probability for comparable power rampmagnitudes.
Possible contributors to the improvement in probability are:
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Fig. 3 Temporal aggregate
power ramp pdf’s obtained by
aggregation of φi (�μ|ūi ) for
the Vestas V-90 3MW; assuming
temporal fractions of occurrence
according to (22). Turbulence
categories are A (blue), B (red),
and C (green) as per IEC
61400-1 standards. The square
symbols indicate ensemble
estimates (based on practical
field data) for the Vestas V-90
3MW, as reported in [33]

Fig. 4 Statistical estimate of
cdf’s corresponding to the
temporal aggregate power ramp
pdf’s shown in Fig. 3 for the
Vestas V-90 3MW. Turbulence
categories are A (blue), B (red),
and C (green) as per IEC
standards. Values obtained by
numerical integration across
practical field recordings (as
reported in [33], and presented
in Fig. 3) are shown by square
symbols

• Relatively infrequent operation of the turbine around cut-out, which is reflected
by symmetry of ensemble estimates about the vertical axis in Fig. 3. Temporal
fractions of occurrence for the practical field data presented in [33] are possibly
different from the Rayleigh frequency (22).

• Practical measurements on the Vestas V-90 3MW include filtering effect of tur-
bine dynamics on short duration power variations, with consequent reduction of
probability at most power ramps.

Implication of the aforementioned spread of pdf’s is better interpreted from the “worst-
case” temporal aggregate short duration power ramp cdf’s, computed according to
algorithm steps #8–9 of Sect. 2.4, and presented for all three IEC turbulence categories
in Fig. 4. Further, data from the pdf reported in [33] is numerically integrated by
trapezoidal method (similar to steps #8–9, Sect. 2.4), and included in the same figure
as an ensemble estimate of cdf.

The “worst-case” nature of statistical estimates (algorithm steps #1–9, Sect. 2.4) is
immediately evident from Fig. 4, as the typical ensemble estimate cdf for the Vestas
V-90 3MW [33] accommodates short duration power ramps up to 0.06pu within 99%
cumulative probability; while statistical estimate for IEC turbulence categoryC would
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Fig. 5 Maximum ramp
magnitudes for the Vestas V-90
3MW operating in source wind
as per IEC 61400-1 standards;
obtained as statistical estimates
corresponding to cumulative
probability of 99% (continuous)
and 98% (broken line).
Turbulence categories are A
(blue), B (red), and C (green)

make one expect ramps up to about 0.12pu. For turbulence of IEC category A, power
ramps covered within 99% probability would be |�μ| ≤ 0.182 pu.

In the next section, the above studies are extended to analyse sensitivity of temporal
aggregate short duration power ramp cdf′s to temporal fractions of occurrence { fi },
again for the Vestas V-90 3MW in turbulent source wind according to the IEC 61400-1
standards.

5 Application: aggregate power ramp distributions for different
temporal fractions of occurrence

In practice short duration power ramp distributions, when aggregated over different
time horizons for a specific make of turbine, may differ according to local source wind
conditions as well as seasonal variations. Within a turbine cluster, proximity effects
between individual units (such as wakes and tower shadows) may introduce further
differences between their power ramp distributions; statistics for the entire footprint
being a spatial aggregation across all units.

The application of Sect. 4 is now extended to show that statistical estimates can
serve as a quick and convenient route to study sensitivity of short duration power ramp
distributions to temporal fractions of occurrence.

In Sect. 4, the Vestas V-90 3MW was considered for a prospective installation site
at which a short durationmean wind speed of 1.0pu (15m/s as specified for the turbine
[31]) was assumed to be the most frequent (ρ = 1.0 in (20) with fi according to (22)).
In the present section, it is assumed that the most probable short duration mean wind
speed at the site may vary between 0.8 and 1.2pu subject to source wind conditions,
seasonal variations, and proximity effects.

“Less than” upper limits that cover power ramps (|�μ|) within high cumulative
probability of 99 and98%are presented inFig. 5 for all three IEC turbulence categories.
The trends observed are decided by mutually conflicting influence of two factors:
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• Progressively high standard deviation with increasing short duration mean wind
speed according to (19), and

• Output fraction μ (ū) by (8, 9) moving deeper into the active PAC range of wind
speed (within which output power is steady withμ (ū) = 1).

For a cumulative probability of 99% of short duration power ramps, the Vestas V90
3MWmay at its worst expect 0.12pu power ramps with source wind of IEC category
C; while corresponding ramp limits for turbulence category A and B are 0.184 and
0.145pu respectively. For either turbulence category, ramping within 99% probability
improves as the turbine moves deeper into PAC operation; the improvement being
particularly significant for category C source wind, with maximum ramp magnitude
dropping to 0.097pu at 1.2pu mean wind speed. Of the two factors mentioned above,
the turbine is strongly influenced by the former when performing in turbulence of
categories A or B; while for IEC category C, the latter factor dominates.

Virtually a reversal between influences of the two factors is observed within the
one percent difference of cumulative probability. Not only do maximum ramp limits
drop by a factor of half or less between cumulative probability of 99 and 98%, but the
trends are found to reverse as well. For performance in turbulent wind of IEC category
A, change of “less than” ramp limit from 0.064pu upward is noted, as mean wind
speed changes from 0.8 to 1.2pu. Corresponding trend for turbulence category B is
0.049pu upward. A minor drop of ramp limit, from 0.047pu to 0.045pu, is observed
in case of turbulence category C.

6 Conclusions

The easy-to-use algorithmic approach introduced in this paper allows statistical esti-
mate of short duration power ramp distributions (both pdf’s and cdf’s) without
elaborate compilation of field data ensembles. The modest data requirements include
basic short duration statistical properties of the source wind. For sites that meet IEC
61400-1 standards, such source wind statistics are well reported; a feature that adds
to usefulness and compatibility of statistical estimates.

Illustrative applications of the proposed algorithmic procedure have been presented
for the Vestas V-90 3MW turbine. The presentation is indicative of possible rapid
evaluation of worst case output power ramp statistics for available makes of turbines.
For any existing or proposed installation site, comparative study between candidate
turbines (including sensitivity analysis) may thus be undertaken without heavy com-
putational burden or elaborate field data requirements.

Further if changes in short duration mean wind speed and standard deviation
with progressive installation of turbines are tracked to acceptable accuracy, then the
algorithm can be extended to turbine clusters. Evolution of such extensions can be
appropriate subject for future research.
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