
Energy Syst (2019) 10:59–94
https://doi.org/10.1007/s12667-017-0240-1

ORIGINAL PAPER

Improved spectral clustering for multi-objective
controlled islanding of power grid

Mikhail Goubko1 · Vasily Ginz1,2

Received: 27 August 2016 / Accepted: 5 May 2017 / Published online: 29 May 2017
© Springer-Verlag Berlin Heidelberg 2017

Abstract We propose a two-step algorithm for optimal controlled islanding that par-
titions a power grid into islands of limited volume while optimizing several criteria:
maximizing generator coherency inside islands,minimizing power flowdisruption due
to teared lines, and minimizing load shedding. Several spectral clusterings strategies
are used in the first step to lower the problemdimension (taking into account coherency
and disruption only), and CPLEX tools for the mixed-integer quadratic problem are
employed in the second step to choose a balanced partition of the aggregated grid
that minimizes a combination of coherency, disruption and load shedding. A greedy
heuristics efficiently limits search space by generating the starting solution for the
exact algorithm. Dimension of the second-step problem depends only on the desired
number of islands K instead of the dimension of the original grid. The algorithm is
tested on the standard systems with 118, 2383, and 9241 nodes showing high quality
of partitions and competitive computation time.
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1 Introduction

Apower grid is a complex technical system; hence, it is prone to technical disturbances.
Even direct losses from infrastructure damage and blackouts are enormous, so, much
attention is paid to assuring system sustainability under probable external and internal
shocks. Controlled islanding is the process of splitting an interconnected power grid
into smaller electrically independent parts. It is used as a last-resort effort to cope
with many technical disturbances including undamped oscillations, voltage collapse,
cascading trips, etc. [2,41].

The rationale behind the process of controlled islanding is that a smaller grid is
easier to stabilize: islands have not be synchronized, low frequency oscillations are
less likely to occur in a small grid, and so on. Also, the islanding operation can isolate
ill parts of the system from healthy ones, and the blackout will be localized at ill islands
if not avoided.

So, controlled islanding is a last chance to keep the grid alive (at least, partially),
which is a desirable effect. But there are also some side effects.

First of all, controlled islanding requires a series of complex actions performedwith
high accuracy and coordination. Any error can cause a cascading trip of generators or
transmission lines.

Secondly, some power transmission lines are switched off during the islanding
operation, which makes a great shock to the grid even when islanding is accurately
planned and perfectly implemented. Such disruption leaves a partitioned grid in a
highly unstable state, making it questionable to stabilize the state of some islands.
The simplest metrics of the power flow disruption is the total volume of power flows
broken during an islanding operation.

Thirdly, a well-designed interconnected grid has more opportunities to serve the
current demand than any partitioned grid due to limited power transmission and ramp
rate opportunities of the latter. Therefore, some load shedding is an essential part of
the controlled islanding process [29].

After all, restoring the grid after the controlled islanding is also a time-consuming
and complex operation.

Bearing in mind high risks of controlled islanding, it is important to plan properly
the islanding operation and to suggest a realistic and safe grid partitioning scheme that
will stabilize the grid and minimize side effects.

Optimal islanding of a real-world power system is a high-dimensional optimization
problem. The islanding decision is made under the extremal time pressure; a system
operator has just several seconds to develop and implement an islanding scheme.
Therefore, finding an optimal grid partition becomes a non-trivial task.

Metrics of system stability considered by power system security studies are compu-
tationally expensive. Shocks incurred by the islanding operation must be classified as
large-scale, and non-linear effects cannot be neglected. Hence, to make reliable pre-
dictions of the after-islanding system dynamics extensive time-domain simulations
are performed under the paradigm of the transient stability analysis [30].

That is why most formal models of optimal controlled islanding (OCI) do not
consider directly restoring system stability as an optimization criterion. Workarounds
include incorporating external constraints (e.g., limited island volume) or constructing

123



Improved spectral clustering for multi-objective controlled. . . 61

some simpler criteria, e.g., degree of generators’ coherency (or dynamic coupling) in
the pre-islanding system state. Many articles leave stability constraints behind the
scene (e.g., [16,38,39,43] and many others) concentrating on minimization of side
effects of the islanding process, and most of them take into account only a single
aspect (load shedding in [20,35]) or a couple of aspects (e.g., generator coherency and
flow disruption in [16]).

The mathematical model of OCI introduced in the present article takes into account
multiple aspects of the islanding process and their corresponding performance metrics
(generator coherency [8], flow disruption [32], load shedding, and, optionally, line
susceptance). A fast and efficient two-step algorithm is proposed to calculate a rational
scheme of partitioning a grid into the desired number of islands K with the limited
maximum island volume.

In the first step hierarchical spectral clustering algorithms from [37,39] are used to
break the grid into n′ > K islands tominimize the weighted combination of coherency
and flow disruption metrics.

In the second step each of detailed grid partitions obtained in the first step is trans-
formed into the aggregated gridwith n′ vertices. The aggregated grid is then partitioned
into K connected islands with the limited maximum island volume by an exact algo-
rithm implemented in CPLEX 12. A greedy heuristics provides an efficient starting
solution,which sufficiently fosters calculations. In addition to generator coherence and
flow disruption the optimization criterion in the second step also takes into account
the power imbalance inside islands.

The idea is to combine high speed (as the problem dimension is efficiently reduced
in the first step) and high flexibility (complex optimization criteria and constraints are
allowed in the second step). Computational experiments on the models of standard
power systems with 118, 2383, and 9241 nodes show that the proposed algorithm is
fast enough and outperforms alternative approaches both in bulk and in the value of
every single performance metric.

The rest of the article has the following structure. In Sect. 2 recent approaches to
OCI are surveyed. Then in Sect. 3 we introduce the notation and basic mathematical
concepts used to define controlled islanding performance metrics. In Sect. 4 essential
information is provided about spectral clustering, which is the main tool for fast and
efficient islanding. The two-step algorithm for multi-objective grid partitioning is
introduced in Sect. 5, while computational experiments on three power systems are
presented in Sect. 6. Section 7 concludes with some open issues and perspectives.

2 Literature review

After a critical breakdown (e.g., a shortage, a circuit trip, or a generator failure) a
power grid may become instable. Different groups of generator go out of sync, and
the main goal of the automated grid control is to return the system into the stable
state with minimum load shedding. In [2,44] it is shown that controlled islanding
(accompanied with appropriate load shedding) can be a promising strategy to pre-
vent cascading blackouts in power systems. A sort of modal analysis (analysis of
normal forms) was employed in [44] to perform generators’ grouping while in [2]
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predefined islands were considered. At the same time, the choice of a rational grid
partitioning strategy was a challenging discrete optimization problem. System stabil-
ity and the amount of load shedding were considered as the main criteria of partition
quality.

Load shed is the amount of load that cannot be served safely given the topology
of islands in the grid according to voltage and safety constraints and, thus, should be
disconnected during the islanding operation. Load shedding can be obtained by solving
the optimal load shedding (OLS) problem under the alternating current (AC) model.
AC–OLS reduces to a non-linear optimization problem [35], which takes sufficient
time to solve. A simpler version of OLS problem often used in contingency analysis
is the direct current (DC) approximation, which reduces to the linear program with
(real) power flow balance, phase angle and maximum real flow constraints [35].

Even in a small power grid the number of alternative islanding schemes is enormous.
An operator has just few seconds to choose and implement a grid islanding scheme
(e.g., some generators go out of step within 5 sec after the contingency in the scenario
modeled in [48]).Adetailed time-domain simulation cannot be run for every alternative
partition to verify its stability, and indirect stability indicators are typically used at the
partition selection stage (a notable exception is the use of PSSENG time-domain
simulation in the genetic algorithm [19] to evaluate island stability of IEEE 118-bus
scheme).

A popular stability indicator of an electrical power system is coherency of its gen-
erators [50] (their aspiration to swing together). Generator grouping methods based
on slow coherency detection were primarily developed for system model reduction
[8,10,11]. Several approaches were proposed (see [9,51]) to construct complete grid
partitions by assigning loads to generator groups, but they ignored load shedding
and the other metrics relevant to controlled islanding (e.g., transmission line security
constraints).

In [41,52] controlled islanding is considered as a satisfiability problem (the prob-
lem of finding a grid partition that fulfills a set of constraints). Ordered binary decision
diagrams (OBDD) were used for limited enumeration of islanding schemes that sat-
isfy generator coherency and load/generation balance constraints, while DC–OLS is
run for each candidate solution until stability constraints are verified. OBDD-based
enumeration is time-demanding, so large real-world networks have to be aggregated
before applying the algorithm.

Load shedding is minimized in [35] by solving a series of DC–OLS problems inside
a greedy algorithm. Stochastic programming is used in [24,25] to find an islanding
scheme, which minimizes the average load shedding against a series of pre-defined
contingencies. In [18,20,42,43] the grid partitioning problem is reduced to the mixed-
integer linear program (MILP) with additional generator coherency constraints in
[18,42,43] and connectivity constraints in [18]. MILP is solved with exact algorithms
implemented in CPLEX numeric optimization package. Nevertheless, computational
experiments on grids with ≤300 nodes show that these algorithms are time expensive
and, hence, hardly applicable to online islanding problems.

To improve time efficiency of algorithms the amount of load shedding is often
approximated by the load/generation imbalance. In particular, a heuristic algorithm
is proposed in [46] to minimize total load/generation imbalance under generator
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coherency constraints, but its time and cost efficiency was not compared to alternative
approaches.

In addition to generator coherency, the power flow disruption is another popular
indicator of the island (in)stability [32,36]. When a transmission line is tripped during
an islanding operation, the power flow through this line immediately drops to zero.
The greater is the disruption (total power flow through the lines being teared), the
greater is the excessive shock to the islanded power system (in addition to the initial
disturbance) and the less possible is its stabilization.

Algorithmsof controlled islandingbasedon spectral clustering techniques are inten-
sively studied in recent years. The idea of using spectral clustering techniques for fast
partitioning of electrical networks can be traced back to [32,49]. A Spectral Clustering
Controlled Islanding (SCCI) scheme is proposed in [16]. It accounts both for generator
coherency and power flow disruption. In the first step the normalized spectral bisection
is used to divide the generators in two coherent groups. In the second step loads are
assigned to generator groups using the unnormalized constrained spectral bisection
to minimize the flow disruption. Recursive bisection is applied to obtain the desired
number of islands. SCCI algorithm is shown to be much faster than OBDD-based
enumeration techniques [41,52] with the minor loss in solution quality.

Later this methodology was extended in different aspects. In particular, k-medoids
algorithm is used to cluster eigenvector points [17] instead of k-means suggested in
[32]. The problem of outliers when performing eigenvector analysis is addressed in
[17]. Recursive bisection was replaced by the direct k-way partitioning in [17,39],
which decreased computation cost and increased partition quality.

In [39] it is proposed to incorporate hierarchical clustering algorithm (first intro-
duced in [47]) into the spectral clustering scheme to stimulate generation of connected
islands. In [37] this approach is extended to account for generator coherency. Prede-
fined generator groups are considered and loads are assigned to the nearest neighboring
generator in the same spectral graph embedding. Finally, in [38] the spectral clustering
approach is applied to the problem of parallel system restoration, which differs from
controlled islanding in several important aspects.

An essential limitation of OCI algorithms based on spectral clustering is their dis-
regard of load shedding. A yet another serious gap is that spectral methods sometimes
result in extremely imbalanced partitions (those consisting of a huge mainland and
several tiny islets), which is not practical in many ways.

The present article is devoted to further development of the spectral approach to
OCI. We overcome existing shortcomings by using the hierarchical spectral clustering
algorithms from [37,39] as pre-processing routines to decrease the problem dimen-
sionality to the desired degree caring only for generator coherency and flow disruption.
Island volumes and load shedding are accounted for in the second step of the proposed
algorithm, where mixed-integer quadratic problem (MIQP) is solved.

3 Basic notation

Every islanding decision is unique, since it is made under unique (and often unex-
pected) conditions. The state of the power system at the moment before the islanding
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Table 1 Nomenclature

Notation Description

N = {1, . . . , n} Set of buses in the grid

Ng = {1, . . . , ng} Set of buses with generators installed

Vi Voltage amplitude at bus i ∈ N

θi Phase angle at bus i ∈ N

Gi Maximum real power output of generator at bus i ∈ Ng

gi Current real power output of generator at bus i ∈ Ng

Di Real power demand at bus i ∈ N

di Current real load at bus i ∈ N

pi = di − gi Current real power injection at bus i ∈ N

p(s) = ∑
i∈s pi Load/generation imbalance in island s ⊆ N

pi j Current real power flow from bus i ∈ N to bus j ∈ N , i > j ,

(pi j < 0 if the flow is directed from j to i)

P = (pi j )
n
i, j=1 Real power flow matrix (lower-triangular)

p̄i j Real power flow limit for the line between buses i, j ∈ N

Hi Inertia constant of machine at bus i ∈ Ng

Y = (yi j )
n
i, j=1 Nodal complex admittance matrix

B = (bi j )
n
i, j=1 Nodal susceptance matrix, B = �(Y ) =

(
B11 B12
B21 B22

)

,

where B11 is ng × ng sub-matrix limited to generator buses only

� = (�i j )
n
i, j=1 Electrical distance matrix defined in [13] on the basis of B matrix

B̃ = (b̃i j )
ng
i, j=1 Reduced susceptance matrix [7]: B̃ = B11 − B12B−1

22 B21

�̃ = (φi j )
ng
i, j=1 Dynamic coupling matrix of generators [16],

where φi j =
(

1
Hi

+ 1
H j

)
|Vi ||Vj |b̃i j cos(θi − θ j )

� =
(

�̃ 0
0 0

)

Dynamic coupling matrix (n × n) of generator buses

w = (wi )
n
i=1 The vector of bus volumes, where w = |P| · 1n (alternatively, wi = Gi + Di ;

another volume metric is also possible)

w(s) = ∑
i∈s wi Volume of island s ⊆ N

decision is described by several groups of variables. Table 1 summarizes the notation
used to define the context of an islanding process and its performance metrics.

Let us consider a power grid consisting of n nodes (so called, buses) indexed from
1 to n, and m transmission lines. Without loss of generality assume that at most one
generator or a load is assigned to each bus and all generators are located at the first
ng ≤ n buses. Bold is used for vectors.

Let 1n be the n-dimensional all-ones vector, 0n be the n-dimensional all-zeros
vector, and let In×n = diag(1n) be the n × n identity matrix. For real symmetric n × n
matrix A = (ai j )

n
i, j=1 its Laplace matrix is defined as
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L(A) := diag(A · 1n) − A.

If n-dimensional positive vector of volumes w is also given (see Table 1 for possible
definitions ofw), the symmetric normalized Laplace matrix ofmatrix A under volumes
w is defined as

Lsym(A|w) := diag(w)−
1
2 · L(A) · diag(w)−

1
2 .

Power flows in a power grid are naturally modeled by a directed graph with weights
assigned to its vertices (representing injections in buses) and to arcs (representing real
power flows through transmission lines). Let us introduce the notion of the graph cut,
which plays the central role throughout the article. Consider a simple directed graph
with vertex set N and arc weights ai j , i, j ∈ N . For vertex set s ⊆ N the cutset is the
minimum set of arcs needed to be removed to isolate s from the rest of the graph. The
total weight of the cutset is called the cut, which is calculated as

CutA(s) :=
∑

i∈s, j∈N\s

ai j = xT L(A)x,

where A := (ai j )
n
i, j=1 is the matrix of arc weights, and x is an indicatory vector of

vertex set s (i.e., xi = 1 if vertex i ∈ s, and xi = 0 otherwise).
An islanding scheme with K islands is represented by partition π = (s1, . . . , sK )

of vertex set N into K disjoint parts. For partition π = (s1, . . . , sK ) the cut is defined
as

CutA(π) :=
K∑

k=1

CutA(sk) = tr X T L(A)X,

where X is n × K indicatory matrix of partition π (i.e., xik is equal to unity when
i ∈ sk and is zero otherwise).

For positive vector w = (wi )
n
i=1 of vertex volumes the normalized cut is defined

as

NCutA(π |w) :=
K∑

k=1

CutA(sk)

w(sk)
= tr Z T Lsym(A|w)Z , (1)

where w(s) := ∑
i∈s wi is the volume of island s ⊆ N , Z =

diag(w)
1
2 X diag(X Tw)− 1

2 (in the other words, zik =
√

wi
w(sk )

if i ∈ sk and is zero

otherwise.) Matrix Z is orthogonal, i.e., Z T Z = I .
Many popular performance metrics of controlled islanding can be written in terms

of a graph cut with appropriately weighted graph arcs. For any K -partition π =
(s1, . . . , sK ) generators’ dynamic coupling is defined in [16] as

C(π) = Cut�(π), (2)
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and power flow disruption is defined as

D(π) = Cut|P|(π). (3)

Here the absolute power flow matrix (nonnegative and symmetric) is defined as |P| :=
( 12 |pi j | + 1

2 |p ji |)n
i, j=1, where pi j is the real power flow along arc i j .

In the present article we follow [16] and use dynamic coupling matrix� (defined in
Table 1) to build metric (2) of generator coherence. Alternatively, more sophisticated
approaches (e.g., independent component analysis [4] or hierarchical trajectory cluster
analysis [28]) can be employed to build anothermatrix of generators’ coherence,which
can be used in C(π).

The electrical cohesiveness index (ECI), defined as

EC I (π) := Cut�(π),

was used in [13] to split the grid on the basis of electrical distance matrix �.
The load shed is the amount of load that cannot be served safely given the topology

of islands in the grid according to voltage and safety constraints. For partition π =
(s1, . . . , sK ) the load shed is denoted as

S(π) :=
K∑

k=1

S(sk),

where S(sk) is the load shed in island sk . Several approaches with different accuracy
and computational complexity are used to evaluate S(sk). Let SAC (sk) be the amount
of load shedding in island sk in the solution of AC–OLS. Since AC–OLS is computa-
tionally expensive, below we calculate it only for final partitions to verify the quality
of the solution.

DC–OLS is a simpler version of OLS problem limited to real flows with fixed
bus voltages, zero line losses, and low phase angle differences. DC–OLS reduces
to the linear program with real power flow balance, phase angle and maximum real
flow constraints [35]. The load shed in island sk calculated from OLS–DC solution is
denoted by SDC (sk).

The estimate of load shedding amount calculated as a solution of the maximum
flow problem for island sk obtained by relaxing phase angle constraints in DC–OLS,
is denoted as SM F (sk) (see more details in Sect. 5.4 below). Finally, when maximum
real flow constraints are relaxed, the minimum amount of load shedding is estimated
by excess load:

SE L(sk) := max [p(sk); 0] , (4)

where p(s) := ∑
i∈s(di − gi ) is total imbalance between load di and generation gi in

nodes i ∈ s of island s ⊆ N . If losses in lines are neglected, then p(sk) = CutP (sk),
where P = (pi j )

n
i, j=1 is amatrix of real power flows, and excess load is also expressed

using the (directed) graph cut.
Finally, we note that SE L(s) ≤ SM F (s) ≤ SDC (s) ≤ SAC (s) for any island s ⊆ N ,

so AC–OLS gives the most conservative estimate of the load shed.
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4 Spectral clustering basics

Spectral clustering is an approach to finding approximate solutions of minimum cut
problems forweighted undirected graphs. Consider an undirected simple graph 〈N , E〉
with vertex set N = {1, . . . , n}, edge set E ⊆ N × N , and non-negative edge weights
ai j , i j ∈ E . Then, given matrix A = (ai j )

n
i, j=1 (non-negative and symmetric), the

graphminimum K -cut (or K -partition) problem is to find a partition π = (s1, . . . , sK )

of a vertex set N into K disjoint parts that minimizes CutA(π).1

If, in addition, positive volume wi is assigned to every vertex i ∈ N , the min-
imum balanced K -cut problem is to minimize CutA(π) by choosing a partition
π = (s1, . . . , sK ), such that w(sk) ≤ W, k = 1, . . . , K , where W ≥ W (N )/K
is an upper cluster volume limit.

The minimum K -cut problem is known [26] to be solvable in polynomial time
O(nK 2

) for any fixed K , but is NP-complete [23] when K is not limited. Theminimum
balanced cut problem is NP-complete [23] even for the graph bipartition problem
(when K = 2, n is even, wi = 1, and W = n/2).

Many efficient approximate graph partitioning algorithms were developed since
then, with spectral clustering being among most popular ones. For spectral clustering
the balanced K -cut problem is replaced with NCutA(π |w) minimization problem
with no cluster volume constraints resulting is some sort of relaxation: for partition
π = (s1, . . . , sK )

NCutA(π |w) = CutA(s1)

w(s1)
+ · · · + CutA(sK )

w(sK )
, (5)

and denominators in (5) penalize small cluster volumes, while for equal cluster vol-
umes (such that w(s1) = · · · = w(sK )) we have

NCutA(π |w) = CutA(π) · K

w(N )
.

Spectral clustering is based on the spectral lower bound for the trace minimization
problem [33]. For an arbitrary real symmetric n × n matrix A let λi (A), i = 1, . . . , n,
be its eigenvalues enumerated in ascending order, and let ui (A) be corresponding
eigenvectors. Then for any n×K orthogonalmatrix Z , K ≤ n, the following inequality
holds:

tr Z T AZ ≥ λ1(A) + · · · + λK (A) = trU T AU, (6)

where U = (u1(A), . . . ,uK (A)) is a matrix composed of K first (normalized) eigen-
vectors of matrix A.

Any K -partition can be written in the form of an orthogonal n × K binary
matrix X = (xik), where xik = 1 if an only if i-th node belongs to k-th clus-
ter. Spectral clustering algorithms approximate expression trU T AU in (6) with
some admissible partition X , which is close in some sense to matrix U . The

1 Alternatively, the minimum K -cut problem is to minimize the total weight of edges, which, if removed,
break the graph into K connected components. These two definitions are, in fact, equivalent.
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convenient notation is developed below for basic algorithms of spectral clus-
tering, which is used in the next section to build combined partitioning algo-
rithms.

According to Eq. (1), the normalized cut is written with normalized Laplace matrix
Lsym(A|w), so in the classical algorithm [34] the rows of matrix U , whose columns
are the first K eigenvectors of Lsym(A|w), are normalized to the unit Euclidian norm
and then partitioned with k-means clustering. Each row corresponds to a graph vertex.
Denote the resulting K -partition with κK (A|w).

The algorithm of k-means is known to be sensitive to outliers (arising, for example,
when graph has pendent vertices). It is shown in [15] that more stable island-
ing schemes for real power grids can be obtained when k-means is replaced with
the more robust k-medoids algorithm. The corresponding partition is denoted with
μK (A|w).

Both k-means and k-medoids often suggest disconnected subgraphs as partition
elements. To deal with this problem it is suggested in [39] to use hierarchical clus-
tering instead. In the Hierarchical Spectral Clustering (HSC) algorithm [39] the
graph is pre-processed by iteratively merging pendent vertices to their neighbors.
No pendent vertex is left in the graph to avoid the outlier problem. Then eigen-
vector matrix U is calculated for the normalized Laplacian of the absolute power
flow matrix |P|. Normalized rows of matrix U are considered as points on a K -
dimensional sphere and the graph being partitioned is embedded onto this sphere.
The distance between any pair of graph vertices is calculated as the length of the
shortest path in the embedded graph (the cosine distance between incident nodes is
considered). A hierarchical clustering algorithm [47] is then applied to the obtained
distance matrix (Standard Matlab implementation with complete linkage [14] is used
below). The shortcoming of this algorithm is bigger variation of island volumes: a
partition often consists of one or two big islands and a collection of small islets.
Let χK (|P| |w) stand for the K -partition built with hierarchical normalized spectral
clustering.

Let us consider a simplistic numeric example by partitioning a tiny power grid (the
IEEE 9-bus system shown in Fig. 1) by HSC algorithm. The network has 3 generators
installed, 3 loads and the total of 9 buses. The (outbound) real power flows, current
real power generations and loads calculated using AC-OPF are presented in Fig. 1
with arrows showing the flow direction. To calculate a bisection of this network with
HSC algorithm, pendent nodes 1, 2, and 3 are joined, respectively to nodes 4, 7, and
9. The matrix of absolute power flows for the resulting 6-nodal graph is

|P| =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 27.15 17.60 0 0 0
27.15 0 0 36.05 0 0
17.60 0 0 0 0 27.45
0 36.05 0 0 30.95 0
0 0 0 30.95 0 19.10
0 0 27.45 0 19.10 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

and matrix
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Fig. 1 Example of pre-islanded network and power flows

U =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

−0.4603 −0.0075
−0.2665 0.3019
−0.4708 0.7119
−0.2808 −0.0240
−0.5631 −0.5882
−0.3155 −0.2355

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

stores the two smallest eigenvectors of its normalized Laplacian.
Each diamond or cross on the unit circle in Fig. 2a represents some row of matrix

U additionally normalized to the unit norm. Each point corresponds to a graph node
(their numbers are listed in the figure with generator nodes marked with the star),
and connecting the points with graph edges (bold curves in the figure) we obtain the
spectral graph embedding. Every edge is labelled with a weight being equal to the
distance on the circle between its ends. The dendrogram of the hierarchical clustering
applied to the weighted distance matrix of this graph is also shown in Fig. 2a. The root
of the dendrogram is located at zero, and the smaller dashed circle in Fig. 2a shows
the level, at which exactly two clusters are separated. The nodes of the first cluster are
denoted with diamonds, while the nodes of the second one are denoted with crosses.
It is worth noting that since we use graph distances, node 1, 4∗ is closer to node 5 than
to node 8 (which can also be seen at the dendrogram).

The resulting islanding scheme is presented in Fig. 2b, which shows teared lines
and equilibrium post-islanding generations, power flows, and loads (the shares of
demand served are shown in frames). Islandingperformancemetrics are also presented:
generator coherence C , disruption D and the amount of load shedding S (according
to AC–OPF model).
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Fig. 2 An illustration of HSC algorithm

In many applications it is important to keep some pairs of vertices in different clus-
ters (e.g., generators with low dynamic coupling) and the other pairs should always be
assigned to a single cluster (e.g., highly coupled generators). The algorithm of con-
strained spectral clustering [6] uses projectionmatrix technique to generalize the spec-
tral clustering approach to the case of suchmust-link and cannot-link constraints, but it
can be applied only for graph bisection (for K = 2). Constrained spectral clustering is
used in [16,17,37] to control coherent generator groups. In the first step of SCCI algo-
rithm [16] the dynamic graph with set Ng = {1, . . . , ng} of generators and weights’
matrix �̃ is considered and all generators are divided in two coherent groups using
some spectral bisection algorithm. In the second step unnormalized constrained spec-
tral clustering is used to select a bisection of grid graph that minimizes flow disruption
and fulfills must-link and cannot-link constraints: generators from the same coherent
group must go to one island while those from different groups cannot go to one island.

Therefore, the first two eigenvectors u1,u2 of the generalized eigenvalue problem

H T L(|P|)Hu = λH T Hu

are calculated, where H is a projection matrix. If, without loss of generality, s′
1 =

{1, . . . , n1}, then

H =
⎛

⎝
1n1 1n1 0n1

1ng−n1 −1ng−n1 0ng−n1
1n−ng 0n−ng I(n−ng)×(n−ng)

⎞

⎠ .

After that the rows ofmatrixU = (u1,u2) are split in two clusters using the k-medoids
algorithm. The same procedure should be applied recursively to the biggest island of
the partition until the desired number of partitions is obtained.

Another Constrained Spectral Clustering (CSC) methodology of intentional con-
trolled islanding is proposed in [37]. CSC algorithm starts from predefined groups
sg
1 , . . . , sg

K ⊆ Ng of coherent generators (probably, identified with independent com-
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Fig. 3 An illustration of CSC algorithm

ponent analysis [4] or hierarchical trajectory cluster analysis [28]) and aims at forming
islands by distributing loads between these generator groups to minimize the normal-
ized cut of absolute power flow matrix.

Analogously to HSC algorithm, K first eigenvectors of the normalized Laplacian
of absolute power flow matrix |P| are used to calculate the graph embedding onto
the K -dimensional unit sphere. As in HSC algorithm, the distance between a pair
of graph vertices is evaluated as the length of the shortest path in the embedded
graph (again, cosine distance between incident vertices is considered). Finally, the K -
partition of the graph is built by assigning each vertex to the i-th island if and only if
the nearest generator vertex in the embedded graph belongs to group sg

i . Let us denote
with σK (|P| |w, π g) a K -partition built by CSC algorithm given absolute power flow
matrix |P|, partitionπ g = {sg

1 , . . . , sg
K } of generators into coherent groups, and vector

w of bus weights.
To illustrate CSC algorithm, let us bipartition the 9-bus network (see Fig. 1). The

spectral graph embedding coincides with that of HSC algorithm (see Fig. 3a). From
Fig. 1 we see that generators at buses 2 and 3 have higher dynamic coupling φi j , so
let us form the two generator groups: {1} (denoted with the black cross in Fig. 3a)
and {2, 3} (denoted by two black diamonds in Fig. 3a). Any other bus is assigned to
the generator group being closest to this bus in the graph embedding (see the dashed
arrows in Fig. 3a). Two resulting islands, post-islanding power flows, and islanding
performance metrics are presented in Fig. 3b. Load shedding at buses 5 and 6 is
required to balance generation and load in the bigger island.

Like SCCI, CSC algorithm takes care both of generator coherence and power flow
disturbance, but CSC is shown in [37] to work faster. At the same time, it disregards
load shedding (e.g., compare S in Figs. 2b, 3b). Also, under this methodology the size
of islands being created is hardly controllable.

The goal of the present article is to improve spectral clustering algorithms of OCI
(namely, HSC and CSC algorithms) by proposing a methodology, which flexibly
accounts for generator coherence, power flow disruption, load shed, and island sizes.
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The deeper insight into spectral clustering techniques can be found in [38,39,45]
and in the references provided by these articles.

5 Improved spectral clustering algorithm

5.1 Problem setting

Effect of islanding criterion on the stability of the islanded grid was analyzed in [29].
An experiment with IEEE 118-bus scheme has shown that an islanding scheme with
minimum power flow disruption is the most stable one; the scheme with minimum
excess demand results in considerably lower load shedding at the cost of longer relax-
ation time, while under a coherency-based islanding scheme, which ignores disruption
and imbalance, generators fail to stabilize.

It is not clear at the moment to what extent these observations generalize to other
contingency cases and to other power grids: different performance metrics may be
valuable predictors of island stability in different situations. Therefore, a universal
algorithm of OCI should combine multiple criteria (generator coherency, power flow
disruption, some metric of load shedding, minimum or maximum island volume, and
others) and their relative importance should be flexibly adjusted.

Distinct to numerous approaches to OCI that consider preserving generator coher-
ence as a primary optimization goal and calculate coherent generator groups in advance
using the two-time-scale theory [8,10,11] or recent approaches [4,28], below the
slow coherency detection technique from [16] is adopted and dynamic coupling C(·)
is included into the optimization criterion along with other performance metrics.
OCI is considered as a multi-objective optimization problem: to find a K -partition
π = (s1, . . . , sK ) of grid graph 〈N , E〉 that minimizes the weighted sum of multiple
metrics

F(π) = αC C(π) + αD D(π) + αEC I EC I (π) + αS S(π) (7)

and has the limited maximum island volume:

w(sk) ≤ W, k = 1, . . . , K . (8)

The proper choice of weights is discussed in the last section.
Without loss of generality assume αS = 1. Then F(π) can be written as

F(π) = CutA(π) + S(π), (9)

where
A = (ai j )

n
i, j=1 := αC� + αD|P| + αEC I �. (10)

If load shedding is estimated using the maximum flow approximation (see the
previous section), OCI reduces to choosing xik ∈ {0, 1}, zi j ∈ {0, 1}, yi j ∈[− p̄i j zi j , p̄i j zi j

]
, li ∈ [0, Di ], gi ∈ [0, Gi ] for i ∈ N , k = 1, . . . , K , i j ∈ E

to
minimize tr X T L(A)X + ∑n

i=1 li (11)
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subject to constraints:

island volume
n∑

i=1

wi xik ≤ W ∀k = 1, . . . , K ,

nodal flow balance Di − li = gi +
∑

j : j i∈E

y ji −
∑

j :i j∈E

yi j ∀i = 1, . . . , n,

islands’ detachment
K∑

k=1

k(xik − x jk) ≤ K (1 − zi j ),

−
K∑

k=1

k(xik − x jk) ≤ K (1 − zi j ) ∀i j ∈ E,

vertex partitioning
K∑

k=1

xik = 1 ∀i = 1, . . . , n.

Here X = (xik) is an n × K indicatory matrix of the grid partition, so that xik = 1
if and only if bus i belongs to island k, yi j is a real power flow through line i j ∈ E
(limited by the maximum flow p̄i j), zi j = 1 if and only if line i j ∈ E lies inside a
single island (and, thus, is not switched off when the grid is partitioned), li and gi are,
correspondingly, the amount of load shedding and real power output at bus i ∈ N ,
while Di and Gi being, respectively, real power demand and maximum real power
output of generator at bus i .

Since the Laplace matrix is always positively semidefinite, the problem in hand is
convex MIQP with nK + m binary and 2n + m real variables. Nevertheless, numeric
optimization packages (e.g., CPLEX) cannot be applied directly to this problem due
to its high dimension. Below an efficient computational approach is introduced that
avoids the combinatorial explosion.

5.2 Idea of algorithm

Matrix A in expression (10) is symmetric and non-negative, so existing algorithms of
spectral clustering can minimize CutA(π), the first term of cost function (9). At the
same time, distinct to the standard graph cut problem the sparsity pattern of matrix A
does not coincide with that of graph adjacency matrix due to coupling coefficients φi j

that directly “connect” non-adjacent generator buses i, j ∈ Ng . As a result, the clas-
sical spectral clustering algorithm [34] often suggests disconnected islands with lots
of generation-rich and generation-deficient connected components (and, hence, with
poor load shedding). The connectivity problem can be avoided by using hierarchical
spectral clustering [39] that, in most cases, generates connected islands.

Absolute power flow matrix |P| is included, among the others, into matrix A, so
partition π with low CutA(π) typically has reasonably low flow disruption D(π).
In turn, disruption, to some extent, correlates with load shedding: when losses are
neglected, the inequality
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Fig. 4 An illustration of the idea of the algorithm

SE L(s) = max [CutP (s); 0] ≤ Cut|P|(s) = D(s)

holds for any island s ⊆ N , which means that low disruption implies low excess load
(but not vice versa, in general). So, when looking for the partition that minimizes a
combination of load shedding and disruption, one can limit attention to partitions with
relatively low disruption.

We use this observation to propose the Improved Spectral Clustering (ISC) algo-
rithm of controlled islanding. In the first step of the algorithm a limited set of partitions
is obtained with low CutA(·), while in the second step a partition that minimizes
CutA(·) + SM F (·) is selected from this set (load shedding is estimated using the
maximum flow model). To detect more candidate partitions, in the first step different
spectral clustering techniques are combined to build several alternative graph r K -cuts,
where r > 0 is some granularity factor. Then, in the second step, some of r K islands
are merged to obtain a K -partition that minimizes CutA(·) + SM F (·).

The following story illustrates the idea of the algorithm. Imagine someone has a
porcelain plate with flowers painted on it (see Fig. 4a and wants to divide it into four
pieces of roughly equal size keeping flowers unbroken. To obtain such pieces a plate
can be sawed carefully (one of possible solutions is shown in Fig. 4b but it is extremely
time-consuming. Instead, one can break a plate into small pieces with a strong hammer
blow and then glue some pieces back to compose as much unhurt flowers as possible.
Although the latter approach may result in a suboptimal solution (e.g., five flowers
are broken in Fig. 4c), it is much faster and can be the only alternative when time is
expensive.

Details of the algorithm are explained in the next two subsections.

5.3 Step 1: spectral clustering

Below we simplify presentation by assuming that αEC I = 0 in (7). To apply nor-
malized spectral clustering, the balanced cut problem with maximum cluster volume
constraints is replacedwith the correspondingminimumnormalized cut problemwith-
out cluster volume constraints. Seven different strategies are used in parallel in the
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first step to build overdetailed partitions. Then, in the second step of the algorithm,
each of these partitions is rolled up into a K -partition.

I Fixed-granularity strategy for matrix A. Granularity factor r1 > 1 (which
is a tunable parameter of the algorithm) is chosen and r1K -partition π I :=
χr1K (A|w) of the grid is built with HSC algorithm [39].

II Fixed-granularity strategy for matrix |P|. It has already been noted that low
disruption implies low excess load, so partitions with low D(·) seemmore likely
to minimize cost function (7) than those with low C(·). Therefore, partition
π I I := χr2K (|P| |w) is computed, where granularity factor r2 > 1 is a yet
another tunable parameter.

III Minimum-granularity strategy for matrix A. From inequality (6) it follows
that exactly K Laplacian eigenvectors are enough to characterize a K -partition
with small normalized cut. So, overdetailed partitions in Strategies I and II are
forced by the need to satisfy volume constraints (8) and to leave some combina-
torial space for the load shedding optimization. Instead, in Strategy III partition
π I I I := χK ′(A|w) is chosen with minimum granularity K ′ ∈ {K , . . . , r1K }
that satisfies cluster volume constraints (8) (i.e., if s ∈ π I I I then w(s) ≤ W ).

VI Minimum-granularity strategy formatrix |P|. Similarly to the previous strat-
egy, we choose the partition π I V := χK ′′(|P| |w) with minimum granularity
K ′′ ∈ {K , . . . , r2K } that satisfies cluster volume constraints (8).

V Minimum-granularity-refined CSC algorithm. CSC algorithm minimizes
disruption under given groups of coherent generators. In our methodology selec-
tion of coherent generator groups on the basis of dynamic coupling � (or
alternative generator coherence metric) is a part of the optimization process.
In Strategy V coherent generator groups for CSC algorithm are calculated by
HSC algorithm applied to reduced dynamic coupling matrix �̃. Consequently,
πV := σK ′′′(|P| |χK ′′′(�̃|w),w) for the minimal granularity K ′′′ ∈ {K , r3K }
that allows to satisfy island volume constraints (8) (as before, r3 > 0 is a tunable
parameter).

VI Fixed-granularity sequential strategy for |P| and A.HSCalgorithmgenerates
a partition χK (|P| |w) that has low disruption but neglects generator coherency.
So, recursive bisection for graph edge weights’ matrix A is applied to partition
χK (|P| |w) to obtain more granulated r4K -partition (again, r4 > 1 is a tunable
parameter), which combines low disruption and coherency.
Let us denote with ν(σ, π |w) a partition obtained from partition π by splitting
island s ∈ π , which has the biggest volume w(s), with a bisection procedure σ .
Define

νK (σ, π |w) = ν(σ, ν(. . . , ν(σ, π |w)| . . .)|w)

a partition being a result of K recursive bisections ν of the initial partition π .
Then, πV I := ν(r4−1)K (χ2(A|w), χK (|P| |w)|w). The idea behind this strategy
is that we never miss low-disruption partition χK (|P| |w) and potentially can
improve by joining islands in another order in the second step of the algorithm.

VII Crossing CSC and HSC partitions. CSC algorithm builds a partition
σK (|P| |χK (�̃|w),w) focusing mainly on generator coherence. On the con-
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trary, HSC algorithm constructs a partition χK (|P| |w) caring only for flow
disruption. A finer partition πV I I := σK (|P| |χK (�̃|w),w) ∧ χK (|P| |w) is
obtained as a meet of these two partitions in the aggregation lattice. Set s ⊆ N
belongs to the meet if an only if s = s1∩s2 for some s1 ∈ σK (|P| |χK (�̃|w),w)

and s2 ∈ χK (|P| |w).

We limit ourselves to the above seven strategies, although other approaches to granu-
lated partition construction are also possible.

5.4 Step 2: Partitioning aggregated grid

In the second step of the algorithm the granulated partition is transformed into K -
partition by fusing some islands together. Each of detailed partitions π I , . . . πV I I is
processed separately and, probably, in parallel.

First of all, all connected components of islands in partitionπ i are detachedmaking
separate islands. Let π = (s1, . . . , sn′) be the resulting detailed partition where each
island is connected (n′ > K ).

An aggregated grid is built such that each island sk in π becomes its vertex with:

maximum real power outputG ′
k :=

∑

i∈sk

Gi ,

current real power output g′
k :=

∑

i∈sk

gi ,

real power demand D′
k :=

∑

i∈sk

Di ,

current real power load d ′
k :=

∑

i∈sk

di ,

injection p′
k := p(sk),

volume w′
k := w(sk).

Also, for all island pairs k, k′ = 1, . . . , n′ define

aggregated real power flows p′
kk′ =

∑

i∈sk , j∈sk′
pi j ,

real power limits p̄′
kk′ =

∑

i∈sk , j∈sk′
p̄i j ,

dynamic coupling coefficientsφ′
kk′ =

∑

i∈sk , j∈sk′
φi j .

Edge kk′ is included into edge set E ′ of the aggregated grid if p̄′
kk′ > 0. Let

m′ := |E ′| be the edge count of the aggregated grid, m′ ≤ n′(n′ − 1)/2.
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OCI problem (11) for the aggregated grid is a relaxation of the sameOCIproblem for
the original power grid, because it replaces a group of detailed constraints for vertices
of one island with a lump-sum constraint for the island as a whole. The aggregated
grid problem is MIQP with K n′ +m′ binary and 2n′ +m′ real variables. Its dimension
depends on the dimension of the aggregated grid but not on the dimension of the
original grid, and if granularity n′ of partition π is small enough, this problem can be
solved in eligible time using exact algorithms implemented in commercial numeric
solvers (we use CPLEX 12.6.2.0).2

If there are too many disconnected islands in π i , dimension n′ of the aggregated
grid can still be too high for exact algorithms. In this case we suggest decreasing its
dimension with the following greedy heuristics.

At each iteration this heuristics simplifies the partition by joining a pair of adjacent
islands to minimize cost function (9) while fulfilling island volume constraints. The
amount of load shedding in (9) is estimated with the excess demand SE D(·):

FE D(π) := CutA(π) + SE D(π) = CutA(π) +
∑

s∈π

max[p(s), 0]. (12)

The pseudo code is presented in Listing 1.

Listing 1 Greedy heuristic algorithm for OCI
1: function GreedyPartition(Grid, K ) � cuts graph Grid into K parts
2: with Grid
3: π ← ⋃

i∈N {i} � start from the finest partition
4: end
5: while |π | > K do � until requested island count is reached
6: π ← Argmin{FE D(π ′) |π ′ ∈ Coarsen(π), π ′ = ConnectedComponents(π ′)}
7: end while
8: return π

9: end function
10:
11: function Coarsen(π ) � all admissible partitions obtained by fusing two islands in π

12: return {π ′ | π ′ = {{s ∪ s′}} ∪ (π\{s}\{s′}) for some s, s′ ∈ π, w(s ∪ s′) ≤ W }
13: end function

The K -partition calculated by this greedy heuristics is also used as a record in the
exact partitioning algorithm of the aggregated grid.

Finally, ISC algorithm selects the partition with the lowest cost of MIQP solution
for seven aggregated grids built on the basis of partitions π I , . . . , πV I I .

The pseudo code of ISC algorithm is presented in Listing 2.

2 For further acceleration of calculations the problem in hand can be reduced to the mixed-integer linear
problem (MILP) with the techniques described in [20,42] but in the present article this possibility is not
studied in detail.
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Listing 2 Improved Spectral Clustering algorithm for OCI
1: function ImprovedSpectralPartition(Graph, K )
2: with Graph � assignments can be done in parallel
3: π I ← χr1K (A|w)

4: π II ← χr2K (|P| |w)

5: K ′ ← min {k = K , . . . , r1K : s ∈ χk (A|w) ⇒ w(s) ≤ W }
6: π III ← χK ′ (A|w)

7: K ′′ ← min {k = K , . . . , r2K : s ∈ χk (|P| |w) ⇒ w(s) ≤ W }
8: π IV ← χK ′′ (|P| |w)

9: K ′′′ ← min
{

k = K , . . . , r3K : s ∈ σk (|P| |χk (�̃|w),w) ⇒ w(s) ≤ W
}

10: πV ← σK ′′′ (|P| |χK ′′′ (�̃|w),w)

11: πVI ← ν(r4−1)K (χ2(A|w), χK (|P| |w)|w)

12: πVII ← σK (|P| |χK (�̃|w),w) ∧ χK (|P| |w)

13: end
14: for i = I, . . . ,VII do � iterations can be performed in parallel
15: π ← ConnectedComponents(π i )

16: Graph′ ← AggregatedGraph(Graph, π)

17: if |π | ≥ K max then � if partition dimension is too high
18: π ← GreedyPartition(Graph′, K max ) � decrease dimension
19: Graph′ ← AggregatedGraph(Graph′, π)

20: end if
21: π0 ← GreedyPartition(Graph′, K ) � record for exact algorithm
22: [π ′, Costi ] ← SolveMIQP(Graph′, K , π0) � exact solution with MIQP solver
23: π i∗ ← FullPartition(π ′) � obtain K -partition of Grid graph
24: end for
25: j := Argmini=I,...,VII Costi � the best calculated K -partition

26: return π j∗
27: end function

5.5 Numeric example

This subsection illustrates the proposed ISC algorithm by partitioning the 9-bus net-
work (see Fig. 1) to minimize the sum of dynamic coupling, flow disruption, and
load shedding (with unit weights). The desired number of clusters K = 2 and the
granularity factor is set to ri = 1.5, i = 1, . . . , 4, so, strategies I, II, and VI in the
first step of ISC algorithm try to partition the network into 3 islands. Therefore, three
eigenvectors are calculated, and the spectral graph embedding in Strategies I and II is
three-dimensional. Strategy I is based on matrix A (a linear combination of dynamic
coupling matrix� and absolute power flowmatrix |P|), while Strategy II relies solely
on matrix |P|. Spectral embeddings for these strategies (see Fig. 5a, b, respectively)
differ a bit, but hierarchical clustering of the nodes of the spectral embedding results
in the same three islands {1, 4, 5}, {2, 7, 8}, and {3, 6, 9} outlined in Fig. 5a, b.

In the second step of the algorithm, MIQP (11) is solved for the 3-nodal aggregated
network, and the resulting bipartition is equal to that calculated by HSC algorithm
(see Fig. 2b). In the considered example, Strategy IV (based on HSC algorithm) and
Strategy V (based on CSC algorithm) work as explained in Sect. 4 above, and the
resulting islanding schemes are shown in Figs. 2b and 3b, respectively.
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Fig. 5 Spectral graph embedding and 3-cluster partitioning for strategies I and II

Fig. 6 Steps of ISC algorithm: strategy III

The two-dimensional spectral embedding for Strategy III based on matrix A is
presented in Fig. 6a. The corresponding islanding scheme, post-islanding power flows,
and islanding performance metrics are shown in Fig. 6b.

Strategy VI starts with the K -partition of the network generated by HSC algorithm
(see Fig. 2a) and sequentially bisects the biggest island using CSC algorithm until r4K
islands are obtained. The three resulting islands are encircled by dotted lines in Fig.
7a. In Strategy VII we meet partitions generated by HSC algorithm (the dotted line in
Fig. 7b) and CSC algorithm (the dashed line in Fig. 7b) and obtain three islands: {1, 4},
{2, 5, 3, 8}, and {3, 6, 9}. In the second step of the algorithm, MIQP (11) is solved for
the corresponding aggregated 3-nodal networks, and the resulting partitions coincide
with those shown in Fig. 2b both for Strategies VI and VII.
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Fig. 7 ISC algorithm: strategies VI and VII

Table 2 Test power systems

Notation Power system Buses Generators Lines

SMALL IEEE 118-bus test system [12] 118 54 186

MEDIUM Polish system, winter peak 1999–2000 [1] 2383 327 2896

LARGE European system (PEGASE project) [22] 9241 1445 16049

Finally, the islanding scheme with the minimum cost is selected from the three
distinct schemes (those shown in Figs. 2b, 3b, and 6b) obtained by running two steps
of ICS algorithm for Strategies I–VII.

6 Performance evaluation

6.1 Experimental setup

Three test systems fromMATPOWER 5.1 Simulation Package library [53] were used
to evaluate performance of the proposed ISC algorithm (see Table 2). These relatively
big systems were taken to verify computational efficiency of ISC algorithm and its
applicability to bulky real-world grids.

For each of three considered power systems 100 test caseswere generated by switch-
ing off 5 random generators, breaking 5 random lines, and multiplying all demands by
a random factor from 1 to 2. For every case consistent power flows were calculated by
solvingAC–OLS problemwith opf routine ofMATPOWER5.1 [53] for dispatchable
loads.3

3 To some extent these starting conditions can be interpreted as a situation in contingency case after the load
shedding program run to balance demands and available generation/transmission capacities. It is assumed
that these efforts where not enough to stabilize the system, and the controlled islanding is performed.

123



Improved spectral clustering for multi-objective controlled. . . 81

Fig. 8 Examples of power flow variables’ variation for 100 cases in SMALL system

These power flows and corresponding generators’ angles were used to calculate
stability indicators (power flow disruption D(·) and dynamic coupling C(·)) when
an islanding operation is planned. Information on generator inertia constants was
not available, so equal inertia constants were assumed when coefficients of dynamic
coupling φi j were calculated.

The sample line power flow and the sample real power output in SMALL grid are
depicted in Fig. 8. High variance of these variables shows that considered collection
of cases represents a wide range of power flow conditions in a grid. Such massive
durability testing ofOCI algorithms under the broad variety of grid and flow conditions
is rarely performed in the existing literature. The only known exception is [27], where
partitioning algorithms were tested under 2000 different power flow conditions in
SMALL system.

We did not perform transient stability analysis to verify system stability after island-
ing, as themain focus of ISC algorithmwas to improve the partition quality for existing
island stability indicators and their combinations.4 At the same time, although simpli-
fiedmetrics of load shedding (such as excess demand)were employedwhen an optimal
islanding scheme was searched, for performance evaluation the AC–OLS model was
applied to the system partitioned according to seven partitioning strategies of ISC
algorithm.

Additional constraints were imposed when AC–OLS problem was solved for the
islanded system: generators’ output was limited by the short-term ramp rate and pre-
viously shed load could not be restored in the process of islanding. So, controlled
islanding always results in extra load shedding compared to the pre-islanding system
state.

Dynamic coupling, power flow disruption, and load shedding had equal weights
αC = αD = αS = 1 in the optimization criterion (7) of ISC algorithm. The requested
island count K = 4 was selected for all three systems and granularity factors were
set to r1 = · · · = r4 = 4, i.e., 16 islands were demanded when calculating detailed
partitions. The maximum island volume was W = 3

8W (N ). In particular, this means

4 Some analysis of different islanding performance metrics can be found in [37].
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that any admissible partition with four connected islands has at least three big islands
(those having the volume ≥ W (N )

4 ).

6.2 Partitioning quality

ISC is an approximate algorithm, and there are several possible sources of its inaccu-
racy that should be inspected.

Firstly, theremay be the discrepancy between real objectives of controlled islanding
(i.e., preserving the transient stability and preventing a blackout with minimum load
shedding) and their representation in the model (7) (a combination of computation-
ally efficient metrics). Although being critical for the final efficiency of an islanding
technique, analysis of model adequacy falls beyond the scope of the present article,
which concentrates on the existing OCI metrics.

Another important aspect is themethod used to evaluate load shedding. The estimate
SAC (·) of the amount of load shedding calculated fromAC–OLSmodel is assumed the
most accurate one, but ISC algorithm employs its maximum-flow relaxation SM F (·)
to reduce the problem to MIQP (11). Large discrepancy between these metrics may
sufficiently distort the optimization criterion.

Figure 9 shows the relation between SM F (s) and SAC (s) for islands met in optimal
partitions of SMALL and MEDIUM powers systems. It can be seen from the figure
that SM F (·) correlates well5 with SAC (s) but systematically underestimates the latter.
Also, there are numerous situations when SM F (s) = 0 while SAC (s) > 0.

Accuracy of SAC (·) prediction can be improved sufficiently by considering a three-
variate non-linear regression

S̄AC (s) = max [SM F (s) − aG RM F (s) + bw(s), 0] , (13)

where a and b are regression parameters (grid-dependent, in general), w(s) is the
volume of island s, while G RM F (s) is the generation reserve. The latter is calculated
as G RM F (s) := ∑

i∈s

(
Gi − g∗

i (s)
)
, where Gi is the maximum real power output

of generator bus i ∈ s and g∗
i (s) is its real power output in the solution of MF–OLS

problem for island s.
For comparison, scattering plots (predicted value S̄AC (s) vs exact value SAC (·))

of regression (13) under the best parameter values (a = 0.43, b = 0.02 for SMALL
system and a = 0.97, b = 0.04 for MEDIUM system) are shown in Fig. 10a, b,
respectively. Correlation is 0.92 with mean absolute error (MAE) 13.9 MW on the
training set and is 0.94 with MAE 14.1 on the testing set6 for SMALL system. For
MEDIUM system correlation is equal to 0.99 with MAE 39.2 MW on the training set
and is equal to 0.98 with MAE 39.5 MW on the testing set.7

5 Correlation is equal to 0.89 for SMALL system and 0.78 for MEDIUM system.
6 Training and testing sets were obtained with halfway random sampling.
7 Distinct to SMALL system, the definition of MEDIUM system includes realistic real power flow con-
straints for transmission lines, which results in better prediction accuracy.
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Fig. 9 Relation (scattering plot) between AC–OLS-based load shedding SAC (s) (vertical axis) and
maximum-flow-based load shedding SM F (s) (horizontal axis). A diagonal line y = x is added for clarity

To take advantage of the more accurate regression (13) only minor change inMIQP
setting (11) is needed. It is enough to introduce the new non-negative continuous
variables σk ≥ 0, k = 1, . . . , K , which satisfy inequality constraints

123



84 M. Goubko, V. Ginz

Fig. 10 Scattering plot for SAC (s) (vertical axis) and S̄AC (s) (horizontal axis). Circles denote points of
the training set, while pluses go for the testing set
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σk ≥
n∑

i=1

xik [li − a(Gi − gi ) + bwi ] , k = 1, . . . , K

and define the new cost function

tr X T L(A)X +
K∑

k=1

σk . (14)

The revised MIQP still has linear constraints and the convex cost function. There-
fore, its complexity does not increase, while its solution accurately predicts the optimal
value of the cost function

F(π) = αC C(π) + αD D(π) + αS SAC (π)

in the considered test systems and is expected to meet application-specific accuracy
requirements.

The final aspect of algorithm accuracy is that MIQP (11) is solved only approxi-
mately by ISC algorithm due to high problem dimensionality, and the approximation
error of ISC algorithm should be estimated by comparing the ISC solution to the exact
solution of MIQP (11). Due to computational intractability of problem (11) for large
grids, such a direct error evaluation is impossible for MEDIUM and LARGE system,
while for SMALL system the mean relative error of ISC algorithm for 100 cases is
just 2% (the maximum error is 9%). Therefore, approximation error is negligible.

Let us continuewith algorithm benchmarking. The proposed ISC algorithm is based
on CSC and HSC, the most efficient spectral-clustering-based algorithms for OCI. It
is natural to use them as a benchmark in performance evaluation of ISC for large grids
where exact solution is intractable. Unfortunately, K -partition χK (|P| |w) computed
by HSC algorithm is often imbalanced, and so does K -partition χK (�̃|w), which we
used to elicit coherent generator groups for CSC.

As a consequence, both CSC and HSC applied directly to our data in most cases
return imbalanced partitions being highly impractical for controlled islanding. Fig-
ure 11 shows the volume of the largest island (relative to the total grid volume) for
SMALL andMEDIUM test systems. The horizontal line shows the maximum volume
constraint. HSC partitions are shown with circles, while crosses stand for CSC parti-
tions. It follows from the figure that CSC returns a balanced partition only in 18 cases
of 100 for SMALL system, while HSC results in a balanced partition in 12 cases. For
MEDIUM system HSC returns a balanced condition just once, while CSC partitions
are always imbalanced.

Win rates of seven strategies of ISC algorithm for three test systems are presented
in Table 3. The winning strategy minimizes the cost function FAC (·) with load
shedding evaluated from AC–OLS problem. Strategies VI and II appear the most
successful for all three test systems, while Strategies IV and V only occasionally win
(These strategies represent the closest balanced analog of HSC and CSC algorithms
consequently, so they can be, to some extent, used as a baseline to compare ISC to
the competing algorithms.)
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Fig. 11 Relative volume (percent) of the largest island for K -partitions generated by CSC and HSC. Case
numbers are depicted along the horizontal axis

Table 3 Win rate (percent) of different strategies of ISC algorithms

Strategy Test power system
SMALL MEDIUM LARGE

I Fixed-granularity strategy for A 21 9 1

II Fixed-granularity strategy for |P| 16 33 32

III Minimum-granularity strategy for A 20 10 4

VI Minimum-granularity strategy for |P| 3 4 14

V Minimum-granularity refined CSC 0 2 3

VI Sequential strategy for |P| and A 29 37 38

VII Crossing CSC and HSC partitions 11 5 8

Win rates of Strategies IV and V (separated by horizontal lines) can be used as a baseline for comparison
of ISC with, respectively, HSC and CSC algorithms

The average partitioning quality of ISC algorithm for SMALL test system is
depicted in Fig. 12a. The value of cost function is enclosed in a frame, all its compo-
nents are also presented for all seven strategies and for the winning strategy. Although
Strategy II (fixed granularity for matrix |P|) does not account directly for generator
coherency, it suggests competitive coherency cost and wins in disruption and load
shedding. At the same time, Strategy VI (sequential partitioning) has the same aver-
age cost due to a little bit lower generator coherency under a slightly higher disruption
and load shedding. These two strategies remain the leaders for all three test systems.8

A yet another conclusion is that considering excessive number of eigenvectors
(which is the main idea of ISC algorithm) is essential to achieve good performance,
since Strategy IV, which differs from Strategy II only in the number of eigenvectors
considered, is inferior. The same is true for Strategy V, which is based on CSC and
also operates with the limited number of eigenvectors. Performance metrics of ISC
strategies for MEDIUM system are presented in Fig. 12b.

8 This result is valid for the fixed weights of performance metrics: αC = αD = αS = 1. Having the
weights changed, the leading strategies can also change (see the analysis in Sect. 6.3).
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Fig. 12 Average performance metrics for Strategies I–VII of ISC algorithm. Total cost FAC (·) is framed.
Generator coherence C(·), flow disruption D(·), and load shedding SAC (·) are also shown

The similar analysis for LARGE system is hindered by the fact that for this system
some strategies often suggest imbalanced partitions (Strategies I, V, and VII show the
worst success rate: 24, 32, and 34%, respectively) even when 4 K eigenvectors are
calculated. Since island volume constraints are mandatory, ISC algorithm neglects
imbalanced partitions suggested by some strategies when selecting the final solution,
and there is no common base for the comparison of these strategies.

Therefore, maintaining several different partitioning strategies is important to
always obtain a good islanding solution in large power systems.

6.3 Flexibility

In many existing OCI algorithms [16,32,37,39,48] an optimization criterion cannot
be tuned to assign different importance to different performance metrics of controlled
islanding. Distinct to them, in ISC algorithm the weights of cost function components
(dynamic coupling, disruption, and load shedding) can be chosen arbitrary leading to
different resulting partitions. For example, in Fig. 13 optimal islanding schemes for
SMALL system under several extremal settings are presented. In Fig. 13a weights in
cost function (7) were chosen to minimize dynamic coupling C(·)while ignoring D(·)
and S(·). On the contrary, in Fig. 13b disruption D(·) is minimized with no attention
paid to C(·) and S(·). The partition that balances generators’ dynamic coupling C(·)
and disruption D(·) is presented in Fig. 13d, and the one taking care only for the shed
load S(π) is presented in Fig. 13e.

For comparison, the best alternative partition (calculated by HSC algorithm) and its
performance metrics are presented in Fig. 13c. Therefore, every single performance
metric ofHSCpartition or a combination ofmetrics can be improved by ISC algorithm,
and the optimization criterion can be flexibly tuned to adjust relative importance of
different metrics.

6.4 Computational complexity

Compared to the competitive spectral partitioning algorithms (CSC and HSC), the
proposed ISC algorithm requires additional calculations: in the first step several
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Fig. 13 Optimal islanding schemes for different cost functions

overdetailed spectral partitions are calculated (strategies I– VII are introduced in Sect.
4), and in the second step every detailed partition π I, . . . , πVII is merged into a K -
partition by CPLEX optimization routines.9 Therefore, total computation time of ICS

9 cplexmiqp routine of CPLEX 12.6.2.0 was used to solveMIQP; tests were run on Intel Core i-5 3337U
CPU 1.8 GHz.
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Fig. 14 Time complexity of MIQP (the second step of ISC algorithm) for 3 test systems and 7 partitioning
strategies. The median time and quartile boundaries are presented

algorithm is equal to the maximum processing time for partitioning strategies I, …,
VII (although the first suggestion is given as soon as the fastest strategy completes).

The detailed statistics of MIQP solution time is shown in Fig. 14. Solution time
is lower for minimum-granularity strategies III–V due to lower dimensionality of the
problem. On the other hand, solution time depends insignificantly on the test system as
the order of an aggregated graph does not depend on the size of an initial grid but only
on the number of connected islands n′ in the detailed partition, which linearly depends
on the number K of islands requested (remember that K = 4 in all experiments).

Figure 15 presents the average MIQP computation time as a function of dimen-
sionality of aggregated graph n′ (SMALL system is used for this test). Computation
time grows exponentially, therefore, for n′ > Kmax ≈ 20 network dimension should
be reduced by the greedy algorithm before running MIQP.

Figure 16 illustrates average time complexity of the first step of ISC algorithm for
all seven parallel strategies. Comparing to Fig. 14, we conclude that the second step
of ISC algorithm is fast enough compared to the first step in MEDIUM and LARGE
systems, and its computation time is significant only in SMALL system.

The second step of ISC algorithm can be fostered in twoways. The first issue is high
variability of computation time (A typical problem of branch-and-bound procedures.)
Sometimes the exact solution takes much longer than usually, and it may be critical
for online OCI applications. This problem is solved by imposing a sharp time limit
onMIQP calculations. Fortunately, in ISC algorithm the branch-and-bound procedure
always starts with a feasible record solution produced by the greedy algorithm. The
greedy algorithm is fast enough (less than 0.03 s on average) and often provides good
solutions (the average cost improvement of the exact algorithm over the greedy one
varies from 1.5% for LARGE system to 7% for SMALL system).

The second approach to fosterMIQP calculations assumes increasing the number of
processing units. Branch-and-bound procedures are easily parallelized, and doubling
the number of processors almost doubles the performance.

Figure 16 shows that evaluation of eigenvectors of the normalized Laplace matrix
is the most computationally expensive operation of spectral clustering algorithms (at
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Fig. 15 Time complexity of MIQP vs order of aggregated graph being partitioned (logarithmic scale)

Fig. 16 Average time of eigenvectors’ calculation (the first step of ISC) for 7 parallel strategies of ISC
algorithm. Eigenvectors were evaluated with eigs routine of Matlab R2014a run on Intel Core i-5 3337U
CPU (1.8 GHz) laptop

least, for realistically sized grids). Its complexity depends on the number of eigenvec-
tors requested, on matrix dimension, and on its sparsity ratio.

In Strategies I and III r1K eigenvectors of matrix Lsym(A|w) = Lsym(αC� +
αD|P| |w) are calculated. Strategies II and IV require calculation of r2K eigenvectors
of Lsym(|P| |w). The latter matrix is more sparse and, therefore, the first step of
Strategies I and III is computationally more expensive than that of Strategies II and
IV.

Strategy V (CSC-based algorithm) is slightly more computationally expensive than
Strategy IV (HSC-based) for SMALL andMEDIUMsystems as it involves calculation
of the eigenproblem for the Laplacian of denser matrix �̃ of generators’ dynamic
coupling. At the same time, for LARGE system Strategy V is faster than Strategy IV
due to the smaller size of matrix �̃.
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Strategy VI involves the nested spectral bisection of K -partition and appears the
most time-consuming strategy for all three test systems. On the other side, it is the
most successful one (according to Table 3) and is very reliable in generating admis-
sible (balanced) partitions. Comparing Figs. 16 and 12 we see that Strategy II is
approximately three times faster than Strategy IV and results in only minor loss of
partitioning quality. Therefore, one may consider abandoning Strategy VI if it fails to
satisfy application-specific time limits.

Strategy VII takes partitions πIV and πV as an input, so its computation time is the
maximum of those for Strategies IV and V (computation time of the meet operation
can be neglected).

For SMALL system eigenvector calculation is very fast, and, hence, ISC algorithm
is slower than CSC [37] andHSC [39] algorithms (mostly, due to the additional second
step, which takes about 2 sec. irrespective of the system dimension). For MEDIUM
system the speed is comparable (15 seconds is reported for HSC [39], while CSC
algorithm was tested only for the reduced Great Britain 815-bus system in [39]).
These algorithms cannot be directly compared for LARGE system, since CSC and
HSC fail to provide eligibly balanced partitions. If we relax the maximum island
volume constraint, we can expect ISC to be at least three times slower than CSC and
HSC, mostly due to the slow Strategy VI (which, as noted above, can be abandoned
in case of time deficit).

It should be noted that for LARGE system (and, perhaps, forMEDIUMsystem) nei-
ther of existing spectral-clustering-based algorithms is fast enough for online islanding,
when run on a PC. Eigenvectors’ calculation takes most time, and, fortunately, it can
be dramatically fostered by using parallel vector calculus capabilities of graphical
processing units (GPU) [5,31]. Hence, fast implementation of eigenvector calculation
for spectral clustering OCI algorithms in large power systems is no more than a pro-
gramming issue. Potentially, the performance improvement can also be obtained by
replacing spectral clustering with some algorithms of NCut minimization based on
semidefinite programming [3,21]. A yet another promising approach is to use deep
learning techniques to replace the optimization problem solution with fast calculation
by a multilayered artificial neural network. In this case the algorithm proposed in this
article calculates an extensive data set used to learn the neural network. Comparison
of these approaches requires additional work.

7 Conclusion

An improved version of spectral-clustering-based OCI algorithms [37,39] is proposed
in this article, which accounts for generator coherency, power flow disruption, load
shedding and island size, allowing to adjust flexibly relative importance of these per-
formance metrics and caring for the maximum island volume.

An optimal islanding scheme is sought in two steps. Firstly, several alternative
detailed grid partitions are determined that contain more islands than required while
balancing generator coherency and power flow disruption. Secondly, some islands
in these partitions are merged to optimize the weighted sum of generator coherency,
power flow disruption, and the amount of load shedding while fulfilling the maximum
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island volume constraint. The second step reduces to MILP whose dimension does
not depend on the dimension of the original grid and is small enough to use exact
algorithms.

A series of experiments for three standard test grids was performed. The results
show that, compared to competing algorithms, HSC [39] and CSC [37], the proposed
improved spectral clustering algorithm results in substantial improvement of both the
overall composite criterion of partition quality (more than twice for some grids) and
of each its component. The algorithm is computationally efficient. Potentially, it can
be used to partition large power systems in real time.

The proposed algorithm can also be helpful in applications other than energy sys-
tems to partition high-dimensional directed graphs with asymmetric matrix of vertex
weights.

The multi-objective criterion studied is a weighted sum of various performance
metrics (generators’ dynamic coupling, power flow disruption, ECI, excess demand,
load shedding, and, probably, others), but the choice of performance metrics included
into the optimization criterion and assignment of their relative weights is an open
question in general. Further research is needed to establish an empirically grounded
relation between transient stability of an island being created (e.g., with simulation
techniques from [3,40]) and computationally efficient performance metrics (some of
which were mentioned above).
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