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Abstract In deregulated electricity markets, hydropower producers must bid their
production into the day-ahead market. For price-taking producers, it is optimal to
offer energy according to marginal costs, which for hydropower are determined by the
opportunity cost of usingwater that could have been stored for future production.At the
time of bidding, uncertainty of future prices and inflows may affect the opportunity
costs and thus also the optimal bids. This paper presents a model for hydropower
bidding where the bids are based on optimal production schedules from a stochastic
model. We also present a heuristic algorithm for reducing the bid matrix into the size
required by the market operator. Results for the optimized bids and the reduction
algorithm are analyzed in a case study showing how uncertain inflows may affect the
bids.

Keywords Unit-commitment · Stochastic programming

1 Introduction

In deregulated electricity markets, hydropower companies optimize their production
independently and must determine the optimal supply curve in order to maximize
revenue. This supply curve determines the bids to be sent to the day-ahead energy
market. The main contribution of this paper is the demonstration of how short-term
hydropower schedulingmodels canbe extended to explicitly give optimizedbid curves.
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With this method, we consider the role of inflow uncertainty when determining the
optimal bids.

For price-taking producers, it is optimal to offer energy according to the marginal
costs of production.However, finding the truemarginal costs for hydropower is difficult
due to the storability of the water resources. Precipitation is a “free” resource that only
has a cost due to its limited availability. The marginal costs are therefore given by the
opportunity cost of using water today that could have been stored for production in
the future. The cost of using water therefore has to be based on the optimal production
schedule over the time horizon given by the size of the reservoir. The long-term optimal
release of water is typically calculated on a 3- to 5-year horizon by aggregated models.
The results are used in medium- and short-term models were the physical system is
more precisely described as the operating hour is approached [1,2]. The challenge
for short-term scheduling is to balance the profit obtained from producing within the
short-term horizon with the expected value of storing the water [3]. When bidding into
the day-ahead market, this balance is struck by finding the optimal supply curves.

Prices and inflows are naturally uncertain, and long- and medium-term scheduling
account for these uncertainties. In the short-term, however, prices and inflows have
traditionally been taken as deterministic to allow for greater detail in the modelling
of the physical system. Several efforts [3–8] have tried to incorporate the uncertain
nature of prices and/or inflows also in the short-term. Price uncertainty is to some
degree addressed by the bids themselves due to the price dependency in the bid curves.
The supply curve described by the bids expresses the willingness to produce certain
volumes at a certain price—more production is offered as the price increases. Even if
the realized price is different from the forecasted value, bids according to the marginal
costs should give satisfactory results. The bid curves are however not inherently inflow
dependent, even though inflowmay affect the level of the marginal costs. If a reservoir
is small compared to the inflow or the discharge capacities of connected plants, so
that the reservoir can be filled or depleted weekly or even daily, the availability of
water and hence the opportunity costs may be affected by uncertain inflows in the
short-term. If a large amount of water is available, either stored in the reservoir or
as inflow, the marginal costs of using water for production are generally low. If less
water is available, the marginal costs are higher as the resource is scarcer. Formulating
a model for optimal bidding, we demonstrate that it might be beneficial to account for
uncertainty in inflows as well as prices.

In the next section, we give some background on the hydropower bidding and
scheduling problem. Section 3 outlines the modelling of bids. Sections 4 and 5 show
results for a case study, where we first look at stylized examples of how inflow uncer-
tainty may affect the bids and then show results obtained with realistic input for part
of a Norwegian reservoir system. Section 6 gives some concluding remarks.

2 Short-term hydropower scheduling and bidding

Hydropower scheduling is a subset of the general optimal power scheduling and unit-
commitment problem [9]. The bidding and scheduling problems are closely linked
due to the fact that the cost of production is determined by the opportunity cost.
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Optimizing day-ahead bid curves in hydropower production 259

We refer to [10] for a recent review of methods applied to both problems. In the
following we concentrate on a few studies that are similar to ours. In [4], a model for
determining optimal offer curves using stochastic dynamic programming is presented.
Prices are stochastic, but inflows are taken to be deterministic as it is assumed that
future inflows will come mainly from rain that has already fallen due to the short time
horizon. Depending on local weather conditions and terrain, this may not be a valid
assumption and it might be necessary to also consider stochastic inflow. Aimed at
medium-term scheduling, [5] extends the dynamic programming framework to also
include stochastic inflows, and notes that the optimal bids for one trading period
depend on what happens in the rest of the time horizon of the reservoir. The authors
of [3] formulate a model of optimal bidding that accounts for uncertain prices and
inflows, but the effect of including inflow uncertainty is not investigated. The related
work in [6] involves no bidding but shows examples of how uncertain inflow affects
the spatial distribution of production between the plants in a river cascade. In [7],
stochastic inflow is considered in an effort to balance the conflicting objectives of high
pressure height and risk of spillage. Higher head means increased efficiency which
gives greater returns on the water released. On the other hand, keeping the reservoir
level high when inflows vary may lead to losses due to spillage. For small reservoirs,
this dynamic may be important on a daily or even hourly basis and should be reflected
in the bid curves. Larger hydropower systems may consist of several different sized
reservoirs and plants along the same river system, and the total offer strategy may be
constrained by the decisions for the smaller reservoirs. To get a correct assessment of
the cost of production, uncertainty in inflow should be included for reservoirs where
it may have an effect—but this is difficult to determine a priori. As adding a new
stochastic parameter increases the complexity of a stochastic model, the sensitivity of
the marginal costs to uncertainty in inflow should be investigated.

We base our modelling on the current Nordic market setting, where large producers
solve the short-term scheduling problem by deterministic successive linear program-
ming (SLP) [11]. The SLP method involves solving MIP and LP’s in iterations to
account for nonlinearities in the problem, and is available as a general software that
is in operational use for a range of different topologies [12]. A stochastic version of
successive linear programming (SSLP) has been implemented within the framework
of the current software [8]. The method is based on a discrete representation of uncer-
tainty in the form of scenario trees [13]. This current work extends the SSLP model
to also include decision support for optimal bidding. The model is implemented in C
and can be solved with CPLEX, Gurobi or Coin solvers. Alternative formulations for
the short-term hydropower scheduling problem are used in other parts of the world,
and the implementation of optimal bids based on the optimized production schedules
may be a relevant extension also in other models.

3 Bid matrix generation and reduction

To explain how bids are modelled, a simplified presentation of the full mathematical
problem [8] is given. Focus is on the basic aspects of themodel, and difficult topologies,
optimization of pressure height and other aspects typical and important for hydropower
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scheduling are not presented. We define T to be the set of time steps and S to be the set
of scenarios. We consider a river chain with R reservoirs, and assume for simplicity
that all reservoirs have an associated generating unit. The objective is to maximize
the revenues from selling power within the short-term model horizon and the value of
water left in the reservoirs at the end of the horizon, less the costs related to start-ups.
Revenues are calculated as the price of electricity (ρts) times the volume produced
(ytsr ). The value of storage πs,r describes the expected value of saving water for
production in later periods. The value of storage is a function of the end-of-horizon
water levels and should be understood as πs,r (sT,s,r ). However, in the remainder of the
text this functional form is dropped to ease notation. The value of storage is calculated
from long- or medium-term models such as [14] and are taken as known input to the
bidding model. Each time a generating unit is started, the variable vtsr will take on a
value of 1 and a cost of CStart

r is incurred. The objective may thus be expressed as in
Eq. (1).

max
∑

TSR

ρts ytsr +
∑

SR

πsr −
∑

TSR

CStart
r vtsr (1)

Storage in reservoirs must adhere to a mass balance equation between time steps, as
expressed in Eq. (2).

stsr = st−1sr − qP
tsr − qB

tsr − qS
tsr +

∑

Rup

(qP
tsr + qB

tsr + qS
tsr ) + Qtsr (2)

The storage level at the end of this hour, stsr , must equal the storage level at the end
of the previous hour less any discharge used for production (qD

tsr ), bypass (q
B
tsr ), or

spillage (qS
tsr ) within this hour. The system consist of a series of connected reservoirs,

and any discharge from connected upstream reservoirs, Rup, must be added to the bal-
ance equation. For simplicity, Eq. (2) does not consider water flow travel time between
reservoirs, but this feature is included in the full model. Inflow, Qtsr , which may be
stochastic, is also added. Reservoir levels also have to be within known maximum and
minimum bounds.

The release of water is linked to power production by a piecewise linear concave
production function for each generator. This production function has I line segments,
each represented with a discharge volume qtsri limited by an upper bound Qmax

ri and
a power output rate Eri . The sum of power produced from all segments must equal
the power produced and requirements for minimum generation level, Pmin

r , if the unit
is on. This is expressed by Eq. (3).

∑

I

Eri q
P
tsr = ytsr + Pmin

r utsr (3)

Here, utsr is a binary variable that describes the on/off decision of each generating
unit. This binary variable is also used in Eq. (4) to determine if a start-up has occurred
between two consecutive time steps. If so, the auxiliary variable vtsr takes on a value
of 1 and a cost is incurred in the objective function.
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vtsr ≥ utsr − ut−1sr (4)

Optimizing the objective in Eq. (1) subject to the restrictions in Eqs. (2)–(4) gives
results in the form of optimal production volumes for every hour of every scenario.

3.1 Bidding in the Nordic day-ahead market

For participants in the Nordic day-ahead market organized by Nord Pool, the bids
are sent to the market operator in the form of price-volume pairs, summarized in a
bid matrix, see [3] for details. This matrix describes the supply curve of the producer
for each hour the coming day. The idea behind our modelling of bids is previously
described in [15,16], and is quite straightforward: Production is optimized in every
hour of every scenario, and it is from these production schedules that the bid matrix
is created. In this matrix, every price found in the scenarios gives a column and every
hour gives a row, while the optimized net power production for that hour and price is
the bid. According to the market rules of NordPool, there are two criteria that must be
fulfilled for all submitted bids:

1. All bids within an hour must be non-decreasing for an increasing price
2. The number of columns in the bid matrix cannot exceed 64.

The first requirement is handled by adding constraints for the production variables,
while the second is addressed by post-calculations. This is further described in the
following two subsections. In the last subsection, we describe the options and require-
ments for the shape of the scenario tree. Our modelling of the shape of the bid curve
(e.g. piecewise linear or piecewise constant) is flexible and may be adapted to criteria
for other market systems.

Our formulation of bids differ from the method used in [3], which also describes
hydropower bidding for the Nordic area. The core of the problem is that simultaneous
optimization of both the bid prices and bid volume is nonlinear. In [3], this is solved
by selecting a set of fixed prices for which to bid. These price points make up the
columns of the bid matrix and may be selected based on the distribution of (price)
scenarios or other heuristics. In our formulation, we give all the scenario prices as
potential bid points to the optimization model, and select the most important points
after the optimization has found the production for every price found in the scenario
tree. This gives a large bid matrix, and a heuristic algorithm is used to reduce the
number of columns in thematrix. The new formulation reduces the number of variables
since no explicit bid variables are needed. Further, post-selecting the bid prices in the
reduction algorithm rather than selecting prices a priori may give stronger guidance
to the selection due to the knowledge of the optimized bid curve. A comparison of our
proposed method to the method in [3] is given in Sect. 5.2.

3.2 Optimization constraints

Consider the three scenarios in Fig. 1. Themodel will optimize the production in all 12
points, corresponding to the 3 scenarios covering 4 h. Looking at each hour separately,
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Fig. 1 Illustration of prices in three different scenarios. Note that the scenarios may cross each other

we can ensure that the bid is always non-decreasing for increasing prices. In the first
hour, the production in scenario s1 cannot exceed that of s2, as the price in s1 is lower
than in s2. Similarly, the production in s2 cannot exceed that of s3. In the second hour,
however, the order has changed since the price in s1 now is greater than in s2. This
leads to restrictions of the type expressed in Eq. (5).

yts ≤ yts+ , if ρts < ρts+ . (5)

Here, ρts is the price in time step t and scenario s, and yts is the corresponding net
production. The index s is part of the set S\smax , where S is the set of all scenarios
and smax is the scenario with the highest price within the hour. The scenario s+ is
defined as the scenario with the lowest price that is still greater or equal to ρts in that
hour. In the case where ρts = ρts+ , the production is required to be equal in the two
scenarios, as expressed in Eq. (6).

yts = yts+ , if ρts = ρts+ . (6)

In fact, any two scenarios that share the same price should have equal volumes in
that hour, as only one volume can be bid for each price. In Fig. 1, s1 and s3 have the
same price in the fourth hour and should thus offer the same production, regardless
of the volumes offered in the other hours. With additional stochastic parameters, such
as inflows or prices in other markets, there might be a situation where two scenarios
have the same price, but differ in the values for other parameters. To get a consistent
bid curve, we require that all (multivariate) scenarios that share a common price must
bid the same volume for that price.

Equations (5) and (6) give (Ns − 1)T new constraints, where Ns is the number of
scenarios and T is the number of hours with bidding. To add these constraints to the
optimization model, we first define

yts = Pts − Cts (7)
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where Pts is generation and Cts is load for the producer. The variables Pts and Cts in
Eq. (7) can be used on any level of aggregation: plant, group of plants or total system.
In general, the plants of the system are divided into Ng groups so that

Pts =
∑

g∈Gn

Ptsi (8)

Cts =
∑

g∈Gn

Ctsi (9)

where Gn is the set of plants in group n ∈ Ng .
Letting all plants be part of the same group enforces the net production of the entire

system to obey the requirement of non-decreasing bids for increasing price, and a bid
matrix for the total system is the output. Creating a group for each plant will result in
bids on plant level, which is useful for validation of the results as operating points for
each plant can be recognized from the supply curves.

Our modeling assumes that all production is sold in the day-ahead market so that
net production corresponds to sale. The method can easily be adapted to handle fixed
delivery or purchase obligations by subtracting the net committed load from the right-
hand-side of Eq. (7). To allow for optimization of trade in multiple markets with
delivery in the same hour, new variables would have to be added to allocate the
production to the different markets.

3.3 Bid matrix reduction

The restriction on the total number of columns, or prices, in the final bid matrix is
not enforced by the optimization. The bid matrix directly from optimization will have
one column for each price found in the scenario tree. This means that a case with 25
scenarios over 24 h may have up to 600 columns, which is far more than the allowed
number of 64. A method for removing the least significant price columns, based on a
greedy algorithm, is therefore used to reduce the optimal bid matrix.

Before reducing the number of columns, the bid matrix needs to be completed. In
the given example, we have 600 columns for any given hour, but only 25 optimized
bids corresponding to the prices in any hour. The 575 remaining columns are chosen
to be linear interpolations of their neighbouring optimal bids, as interpolation is what
is done in the market clearing if the realized price falls between two bids. This means
that the 575 extra columns do not change the geometric shape of the bid matrix. The
lowest and highest optimized bids within each hour are set as the endpoints.

From the completed matrix with the optimized and linearized bids, we start the
reduction algorithm. The consequence of removing a column is illustrated in Fig. 2.
Removing any of the optimized columns in this hour will, in general, change the shape
of the bid curve. Removing one of the linearized bid columnswill not change the shape
of the bid curve in this hour, but it will affect the curve in other hours as each column
is significant in at least one hour.

The goal of the reduction algorithm is to make the minimum geometric change to
the total bid matrix. The immediate cost of removing a price column in a given hour
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264 E. K. Aasgård et al.

Fig. 2 Part of a bid curve for a single hour with three optimized bid points (black dots) and a number of
linearized bids (white dots). Removing the middle optimized bid from the matrix changes the geometric
shape of the curve by the area A. The cost can be calculated from areas B, C and D

is defined as the area between the original curve and the reduced curve, as shown by
area A in Fig. 2. Bid number i has the coordinates (ρi , yi ), where ρi is the price of
column i and yi is the bid volume in column i . To calculate the cost of removing the
middle point in Fig. 2, area A must be calculated. The area of the total triangle is

A + B + C + D = 1

2
(y3 − y1)(ρ3 − ρ1) (10)

where

B = 1

2
(y3 − y2)(ρ3 − ρ2), (11)

C = 1

2
(y2 − y1)(ρ2 − ρ1), (12)

D = (y2 − y1)(ρ3 − ρ2). (13)

Solving for area A results in

A = 1

2
y3(ρ2 − ρ1) − 1

2
y2(ρ3 − ρ1) + 1

2
y1(ρ3 − ρ2). (14)

The expression of the cost Γti of removing column i in time step t is thus

Γti =
∣∣∣∣
1

2
yti (ρi − ρi−1) − 1

2
yti (ρi+1 − ρi−1) + 1

2
yti−1(ρi+1 − ρi )

∣∣∣∣ (15)

The absolute value in Eq. (15) is necessary to account for both concave and convex
areas of the bid curve. The total cost of removing column i from the bid matrix will
be the sum over all hours as in Eq. (16).

Γi =
∑

t∈T
Γti (16)
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Equation (15) is not valid for the first and last columns, and the costs of removing
these are set to a large value as they are often decisive to the structure of the bid matrix
and should not be removed. Using the sum in Eq. (16), the total immediate cost of
removing a column is found. The final reduced bid matrix is found by removing the
cheapest column one by one until the bid matrix has sufficiently few columns left.
Always removing the cheapest column is a greedy heuristic that may not give the
overall optimal strategy. It should be noted that the term cost or immediate cost as
used above is simply ameasure of the area between the full and reduced curves, not the
actual cost of being dispatched according to alternative curves. A change in any offer
curve will have real cost consequences not only for the period the offer curve is put
into, but also for subsequent periods due to time-dependencies of discharges along the
river. The immediate cost of removing any column of the bid matrix is thus internal to
the optimization model, while the actual cost of dispatches resulting from alternative
bid curves are very real to the producer. The greedy algorithm we propose is only
concerned with removing the cheapest columns one by one, and does not consider any
other consequences of removing the column. The performance of using the reduced
versus the full curve in actual operations is a topic for further research, but we do show
some results for the reduction algorithm in Sect. 5.1.

3.4 Scenario tree structure

Input for the stochastic parameters is described in the form of multivariate scenario
trees. In this work the day-ahead market price and inflows to the reservoirs are con-
sidered to be stochastic. Price uncertainty is needed for our formulation of the bid
decisions, but inflow can be chosen to be stochastic or deterministic depending on
how important it is for the specific topology. Other stochastic parameters may be
included in the model in the future, such as loads, maintenance and prices in other
markets.

Regarding the scenario tree structure, the model handles both two-stage (fan) and
multi-stage trees. We recommend having a high branching factor prior to the bidding
period, since the prices should span out a bid curve that covers the operating area of
the plants. With fewer scenarios, there is less information to build a good bid curve
from. Figure 3 shows different tree structures that are allowed in our formulation. In
the case study in Sects. 4 and 5, we show results for fan trees of the type to the left
in Fig. 3. We also recommend adding (extreme) minimum and maximum scenarios
to make sure that the bid curves are meaningful even for prices outside the forecasted
values, similarly to what is done in [17].

4 Case study: examples with exaggerated inflow uncertainty

This section presents results for a case study from part of a Norwegian watercourse.
A sketch of the topology is given in Fig. 4. For all cases, a 1-week horizon is used and
we bid for the second day, i.e., hours 25–48. The marginal value of water is given as a
constant value for each reservoir. We first analyze how inflow uncertainty may affect
the bid curves by looking at special situations for the downstream reservoir. By looking
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Fig. 3 Examples of scenario trees. Bidding occurs for the hours enclosed in the grey box. To the left, a
two-stage (fan) tree with six scenarios is shown. The middle tree also has six scenarios in total, but only
three individual scenarios during the bidding period. This tree may therefore give a less precise bid curve,
as there is less information to construct the curve from. The tree to the right shows that branching also may
occur within the bid period

Fig. 4 The topology of the system under study. The upstream reservoir represents the aggregated capacity
of several upstream reservoirs and is very large. Inflow can be stored here between seasons. Water is drawn
from the upstream reservoir to two plants in series with a small reservoir in between, which can be depleted
and refilled almost daily. The small reservoir is a bottleneck in the system. The difficulty when determining
the production schedule for this system is to find the correct balance between production from the upper
plant, high pressure height and risk of spillage from the downstream reservoir

at problem instances with stylized inflow uncertainty, we are able to isolate and explain
the effects of considering uncertain inflows. We also investigate the sensitivity of the
bid curves to uncertain inflows depending on the size of the downstream reservoir.

4.1 Special situations with high and low inflow

To look at the effect of inflow uncertainty, we look at two special cases: (1) possible
high inflows and (2) possible low inflows. In both cases, the scenario tree consists of
five scenarios for price combined with two scenarios for inflow. In the first instance,
the highest inflow scenario provides inflow of the same size as the discharge capacity
of the plant below. In the deterministic case, mean inflow is used which is less than
the capacity of the plant. The bids are optimized with and without considering inflow
uncertainty and the results can be seen in Fig. 5.
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Fig. 5 The bid curves with (black) and without (grey) inflow uncertainty for the problem instance with
possible high inflows. The results show that the bid curve based on deterministic inflows is below the bids
with stochastic inflows, meaning that a somewhat higher marginal cost is calculated in the deterministic
case

Fig. 6 The bids obtained with and without inflow uncertainty for the same situation as in Fig. 5, but for a
single hour (Hour 7). The results for the other hours are comparable

To explain why the bid curves differ, we look at how the offered energy is divided
between the plants. This is accomplished by running the same problem instance with
the restriction in Eqs. (5) and (6) on plant level instead of for the total system. In the
face of possible spill in the downstream reservoir, it is desirable to release less water
from the upstream plant while releasing more water from the downstream plant. In
fact, neither the case with deterministic nor stochastic inflow release any water from
the upstream plant in this case, so the volumes offered in Fig. 5 are all supplied from
the downstream plant.

Looking at Fig. 6 which shows the bids for a selected hour, it can be seen that for
low prices, the bid curve based on deterministic inflow reflect that some water should
be saved, while the stochastic inflow case produce close to maximum production of
150MW almost independent of the price. The instance with deterministic inflow does
not see the full risk of spill, and will not produce at lower efficiency above best-point
for the lower prices. The stochastic inflow model, however, recognizes that in the face
of potential spill, it is better to produce at lower efficiencies to avoid spill.
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Table 1 The time to fill or deplete the downstream reservoir with maximum discharge from the connected
upstream and downstream plants

Downstream reservoir size Time to fill (h) Time to deplete (h)

Normal 27.8 13.9

Large (double) 55.5 27.8

Small (half) 13.9 6.9

In the second situation, one of the inflow scenarios gives zero inflow and thus a
potential for low pressure height in the downstream reservoir. This is unwanted as a
higher head gives greater returns on the water released. In this case, it is desirable
to release more water from the upstream plant in order to raise the pressure height
in the small reservoir. By releasing water from the upstream plant, it is possible to
fill the downstream reservoir in about 28 h, after which the situation is again similar
to the high inflow case as even small amounts of inflow gives a minor potential for
spill in the downstream reservoir. This strategy is reflected in the bid curves with both
stochastic and deterministic inflow, which both suggest that water should be released
at maximum production for the upstream plant independently of the price. For the
downstream plant, the results are comparable to what is shown for the high inflow
case in Figs. 5 and 6.

From these two special cases of possible high and low inflow, it is evident that
uncertainty in inflow affects the production strategy. Including stochastic inflow in the
optimization of bids gives offer curves that better reflect the true opportunity costs.

4.2 Sensitivity of bid curves to river chain flexibility

To investigate the effect of considering inflow uncertainty depending on the limited
flexibility of the downstream reservoir, the size of the reservoir is changed. Particularly,
we look at situations where the downstream reservoir is doubled or halved in size.
Keeping the capacities of the upstream and downstream plants the same, the time to
fill/deplete the reservoir for the instances tested is given in Table 1. The results for all
test instances are summarized in Table 2.

We first show results for the situation with possible high inflow. When the down-
stream reservoir is larger, the increased storage capacity allows for some production
from the upstream plant, which was not the case in the face of high inflows in the
previous section. The bid curve for the upstream plant is shown in Fig. 7. For this
situation, it is possible to release some water from the upstream plant without spillage
downstream, and this is recognized by both bid strategies. For lower prices, more
production is offered when inflow is deterministic because the model does not see that
releasing water now might lead to production at lower prices or efficiencies later in
the week to avoid spillage. This risk is recognized with stochastic inflow, and hence
more modest volumes are offered. For the downstream plant, the bids for the larger
reservoir are comparable to the results shown in Figs. 5 and 6 for the normal reservoir
size.
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Table 2 Summary of test results with exaggerated inflow uncertainty

Reservoir size High inflow Low inflow

Upstream plant Downstream plant Upstream plant Downstream plant

Normal No production Similar to Fig. 6 Max production Similar to Fig. 6

Large Similar to Fig. 7 Similar to Fig. 6 Max production Similar to Fig. 6

Small No production Similar to Fig. 6 Max production Similar to Fig. 6

For all instances, the strategy is to produce as much as possible from the upstream reservoir to have a high
pressure height in the downstream reservoir and then bid similarly as in Fig. 6 for the downstream plant

Fig. 7 The bid curve for the upper plant when the downstream reservoir is doubled in size and high inflows
are expected

When the reservoir size is halved, there is again no production from the upstream
plantwhen high inflow is expected. The bids for the downstreamplant are again similar
to Figs. 5 and 6.

If we instead look at the situation with possible low inflow, the strategy for all
reservoir sizes is to release atmaximumproduction from the upstream plant to refill the
lower reservoir. After the lower reservoir is replenished, the bids are again comparable
to Figs. 5 and 6.

5 Case study: realistic input

We nowmove away from the exaggerated examples of the previous section and inves-
tigate how the bid optimizationmodel behaves for more realistic input for the topology
presented in Fig. 4. To generate a scenario tree, 60 scenarios for price are obtained from
a market analysis company [18] and 50 scenarios for inflow are taken as the ensemble
forecast from the HBV model [19] for the same day. The input corresponds to 10
individual days in August 2012. We assume that prices and inflows are independent
and combine them into a scenario fan with 3000 scenarios from which scenario trees
are generated using the scenario tree reduction algorithm described in [20]. Prices
and inflows may indeed not be independent, and the yearly or seasonally accumulated
inflow within a price area is in fact a strong driver of the price in hydro-dominated
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Fig. 8 Example of inflow scenarios to the downstream reservoir

Fig. 9 Example of scenarios for prices

systems. The correlation between local inflow and the price is much weaker, and may
also vary from watercourse to watercourse. Independence is assumed in [3,6] where it
is found that prices and inflows are only contemporaneously correlated. Any correla-
tions between inflows and prices may be considered by properly constructing the tree
and combining scenarios. Examples of scenario values for inflow to the downstream
reservoir and price can be seen in Figs. 8 and 9, respectively.

For the input values given in Figs. 8 and 9, we obtain the bids shown in Fig. 10
for all hours and in Fig. 11 for one selected hour. The results show that slightly
larger volumes are offered if inflow is considered stochastic rather than deterministic.
The difference in the bid curves stem from the same effects described earlier for the
example problems, and strikes a balance between production upstream, high head and
risk of spillage for the downstream reservoir. As risk of spillage is best represented
by stochastic modelling of inflows, bid curves obtained when considering uncertain
inflow will better represent the true opportunity costs.
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Fig. 10 Bid curves with (black) and without (grey) inflow uncertainty for the realistic case study. For all
hours of the day, the same or a higher bid curve (lower marginal cost) is found for the stochastic inflow case

Fig. 11 Bid curves with and without inflow uncertainty for the realistic case study for a selected hour (Hour
1). When inflow is considered to be stochastic, slightly more production is offered for the same price than if
inflow is considered deterministic. This means that the calculated marginal cost is lower for the stochastic
inflow case

5.1 Bid matrix reduction

For the realistic case study, we show the effect of reducing the bid matrix from its
initial size down to the 64 points currently allowed by Nord Pool. For each individual
hour, the bid curve will be a piecewise linear function between the price-volume pairs
given in the bid matrix. This can be seen from Fig. 12 which show the points from the
complete and reduced bid matrix for a selected hour. For all hours and for all instances
tested, we do not find any significant differences between the full and reduced matrix.
The costs of reducing the matrix are very small, totaling less than a few euros even
for the largest instances.

The costs of reducing bid matrices of various sizes down to the required size are
plotted in Fig. 13. The size of the initial matrix is determined by the number of unique
price scenarios in the tree. The cost is really a measure of the change in the shape of
the bid curve due to reduction, but has units of Euro. The change in shape is very small
and so are the costs.
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Fig. 12 The bid curve for an individual hour with the points form the full and reduced matrix plotted

Fig. 13 The cost of reducing the full optimal bid matrix down to the required size of 64 columns

5.2 Comparison to fixing bid points prior to optimization

As discussed in Sect. 3.1, our model differ from the model presented in [3] by the fact
that the columns in the final bid matrix are chosen after the optimization. In contrast,
[3] choose bid points prior to the optimization based on the characteristics of the prices
in the scenario tree. Our reasoning for selecting bid prices after the optimization is
that knowledge of the optimal quantity for each price would give a better guidance for
selecting the bid points that best represents the true curve given that only 64 points
may be used. A comparison between our proposed method and the method in [3] is
shown in Fig. 14. The same holds for other hours and days tested, which indicate
that the two methods give the comparable results and may be used interchangeably
by producers. Indeed, the method in [3] is implemented as an option in our model,
whereby the user gives a self-selected set of bid prices as input to the model. Even so,
an advantage of our method is that it is less reliant on user input in the form of a good
selection of bid points.
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Fig. 14 The bid curves obtained from our proposed model compared to the method presented in [3], where
bid prices are selected prior to the optimization. For the alternative method, 64 bid prices were selected
based on the distribution of prices in the scenario tree, so that a finer resolution of points is used in the
most likely range of prices. The bid curves obtained from the two methods are very similar. Tests using
equidistant points in the alternative method also shows the same results

5.3 Problem size and calculation time

This section gives details of the computational performance of themodel. The numbers
given in this section has been obtained by using CPLEX 12.6.3 on a 3 GHz Intel PC
with 8.0 GB RAM. A set of scenario trees of different sizes are generated from an
initial fan tree of 3000 scenarios. For the instance with 25 scenarios, the problem has
287,151 variables (of which 3600 are binaries) and 111,195 constraints. The problem
size grows linearly with the number of scenarios. Calculation times are shown in
Fig. 15. The results show that the calculation time is higher when finding the optimal
bids and not just the production schedule. The constraints expressed in Eqs. (5) and
(6) that are added in order to optimize the bids couple decisions in individual scenarios
that are otherwise independent. These constraints, although in another form, are also
included in the method in [3], and for our instances we cannot assert which of the
methods is fastest in general. The scenario-coupling constraints makes the problem
harder to solve, but gives the bid matrix as a direct result from the optimization. This
means that less manual adaptation of the results from either a stochastic model or
multi-scenario runs of the deterministic model is needed. The time taken to reduce the
matrix is less than 2 s for all instances and is thus negligible compared to solving the
optimization problem for all but the smallest cases.

6 Conclusion

A method for determining optimal bids to the day-ahead market for a price-taking
hydropower producer has been presented. The method builds on a model that finds
the optimal short-term production schedule for hydropower. The new feature is that
optimal bid curves are available as a direct result from the optimization.
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Fig. 15 The calculation time for our method (dots) and the method in [3] (triangles) for bid optimization,
and production scheduling only (cross). For more than 40 scenarios, a time limit of 2 h per iteration of the
successive linear programming algorithm (see Sect. 2) is reached. The numbers shown are averages over
the 10 days tested

The bids are an expression ofmarginal costs, which for hydropower are given by the
opportunity cost of using water that could have been stored for future production. The
cost of production therefore has a temporal element and may be affected by uncertain
inflows within the inherent time horizon of the reservoir. For reservoirs that are small
compared to the inflow and/or the capacity of connected plants, inflow uncertainty
may be important when determining the supply curves. We have shown by examples
that this is in fact the case. If the model is to be used for bidding in the industry,
the sensitivity of the marginal costs to uncertainty in inflow should be assessed and
included where it is important.

To get a bid matrix that complies with the current market rules set by Nord Pool, a
reduction method based on a greedy algorithm is used. This method is not guaranteed
to preserve the optimal bid curves, but performs well in our tests with only marginal
deviations between the optimized and reduced bid matrixes.

In the future, a quantification of the gain from improved decision support for bid-
ding should be done through a comparison with the methods currently used in the
hydropower industry. Lastly, the computational burden of the bidding model in its
current form is too excessive for operational use and could be improved by algorith-
mic refinements.
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