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Abstract In this paper, we present a stochastic dynamic planning model called
SMART-Invest, which is capable of optimizing investment decisions in different elec-
tricity generation technologies. SMART-Invest consists of two layers: an optimization
outer layer and an operational core layer. The operational model captures hourly
variations of wind and solar over an entire year, with detailed modeling of day-ahead
commitments, forecast uncertainties and ramping constraints. The outer layer requires
optimizing anunknown, non-convex, non-smooth, and expensive-to-evaluate function.
We present a stochastic search algorithmwith an adaptive stepsize rule that can find the
optimal investment decisions quickly and reliably. By properly capturing the marginal
cost of investments in wind, solar and storage, we feel that SMART-Invest produces a
more realistic picture of an optimal mix of wind, solar and storage, resulting in a tool
that can provide more accurate guidance for policy makers.

1 Introduction

There has been a flurry of interest in determiningwhetherwe canmeet the energy needs
of our electrical grid purely through renewable sources (see [5,12,13]). Budischak et
al. [7], for example, argues that renewables can provide asmuch as 99.9%of the energy
required by a grid designed to serve 10% of the US population using nothing but wind,
solar and a very large battery (with occasional hiccups that need to be covered by fossil
generators).
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We appreciate the value of this research which challenges us to think about renew-
ables at dramatically higher levels than are present today. At the same time, we feel
that it is valid to ask whether these levels are actually achievable if we challenge some
of the assumptions made in their model of the problem.We applaud the study in [7] for
using an adaptive simulation of wind, solar and loads, which is a significant improve-
ment over the steady state analyses which simply use average production from solar
and wind (typically obtained by multiplying the capacity times a “capacity factor”).
For example, the Budischak simulator requires the use of storage, and provides an
estimate of how much storage would have to be available to handle the variability of
an all-renewable system serving virtually the entire load.

At the same time, the Budischak study suffers from some weaknesses that would
limit our ability to cover our needs purely from wind and solar, supported by a large
battery (or other forms of storage). For one, even their study indicates that there are
outages on the order of 20 GW for brief periods, occurring roughly once each year.
The paper suggests that these can be covered by traditional fossil generators, but it is
hard to conceive of a system designed to produce 20 GW for such brief periods each
year. However, we are going to focus on two different issues:

1. The Budischak model does not consider the marginal cost of wind, solar and
storage investments. For example, a sufficiently large storage device would be at
capacity only a tiny fraction of the time. Similarly, wind and solar generators run
at their capacity only a small amount of time.

2. Given the high marginal cost of a pure renewable portfolio, we believe that fossil
generationwould retain a significant share of the generation stack even if incentives
such as carbon taxes and lower utilization pushed the price of fossil-generated
electricity to very high levels. The problem is that fossil generation, in particular
steam (which is the most economical, from both cost and pollution perspectives),
requires some level of advance planning which introduces the issue of forecasting
uncertainties when planning in the presence of wind and solar.

We also note that our model is specifically geared toward modeling the PJM region.
Our wind data are from actual PJMwind farms, while our solar data are based on solar
farms in New Jersey. The loads and generator stack are all for PJM. By contrast, the
Budischak study was a more generic study of an electricity market consisting of wind,
solar and battery technologies and occasional outages (or backup fossil generation).
We fully recognize that any model can be criticized. A recent study by General Elec-
tric for PJM found that PJM could manage renewable penetration of as much as 30
percent using an older grid simulator called MARS, which models the grid and indi-
vidual generation, but without proper handling of uncertainty (which would overstate
the ability to handle renewables). The second author is involved in a very detailed
grid simulator called SMART-ISO [1,23] which models the full grid, all generators
(with ramping constraints and min up/down requirements) and a careful handling of
uncertainty. However, SMART-ISO requires several hours to simulate a week, and is
not designed for high level policy studies that would explore potentially very high
penetrations of wind and solar.

In this paper, we describe a newmodel we call SMART-Invest which can be viewed
as an aggregate version of SMART-ISO. SMART-Invest does not model the grid or
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Fig. 1 Wind and solar generation over a year

individual power generators, but is able to model the complete supply stack (as an
option), using actual fuel costs and heat rates of a set of generators. It models an entire
year in hourly time-steps, capturing hourly variations, diurnal solar patterns, weather
patterns, and seasonal patterns. Figure 1 shows the energy from the PJM wind farms,
and the solar farms for PSE&G, in 5-min increments over an entire year, illustrating
the nature of variability from each source. It also models the fact that slow generators
have to be planned 24 h in advance, where we carefully capture the uncertainty in both
wind and solar forecasts.

SMART-Invest then uses a stochastic search algorithm to optimize over different
combinations of investments. Each evaluation of a set of investments uses a full sim-
ulation over the entire year, capturing all forms of variability as well as forecasting
uncertainty. Parallel computation dramatically accelerates these intensive computa-
tions, allowing the model to search over different combinations of investments using
a specially designed stochastic search algorithm.

SMART-Invest is very flexible and can be used for a variety of experiments. Table 1
lists the main capabilities of SMART-Invest for solving different problems. SMART-
Invest allows the cost of fossil fuels to be modeled in two ways. It can use an actual
generation stack that captures the mix of generators, fuel types and heat rates. As an
alternative, the user can choose to simply specify the costs of slow and fast fossil
generators, allowing it to be used for studies where it is necessary to directly control
these costs. We categorize all generation types into the seven generation technologies
listed in Table 1. It is possible to vary the assumed costs of each type of generation to
assess its impact on optimal portfolios. For example, in a particular problem, one may
be interested in finding the optimal battery investment for a specific mix of other types
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Table 1 Different ways to use SMART-Invest for a wide range of experiments

Generation Complete Aggregated Single Optimize Fixed
technology stack stack price capacity capacity

Wind NA NA Yes Yes Yes

Solar NA NA Yes Yes Yes

Battery NA NA Yes Yes Yes

Slow fossil (steam) Yes Yes Yes Yes Yes

Fast fossil (gas) Yes Yes Yes Yes Yes

Nuclear and other slow Yes Yes Yes No Yes

Other fast Yes Yes Yes No Yes

of generation (i.e. six capacity types are constant numbers and the battery capacity is
the decision variable). In another experiment, an analyst might want to find the optimal
mix of different generation technologies. SMART-Invest is able to optimize for up to
five technologies (wind, solar, battery, slow fossil, and fast fossil), but it cannot handle
the min up/down constraints for individual generators, and it does not model the grid.
It can model the complete offer stack from PJM (around 1000 cost bands), or the user
may accelerate the model by using an aggregated supply stack, even using a single
cost band for each generator technology. Note that the aggregated supply stack uses
a normalized capacity representation, and thus, we can still optimize for a particular
technology with an aggregated supply stack. In addition to these, SMART-Invest has
a reserve parameter to produce robust policies in the face of forecast uncertainties; a
process is available for optimizing the reserve parameter for a particular generation
mix. In addition to investment or marginal cost parameters, the user has the option of
tuning emission costs (i.e. CO2, SO2, and NOx costs) and renewable incentives (e.g.
SREC prices).

SMART-Invest is a contribution to the literature that optimizes renewable energy
portfolios, a topic that is attracting growing attention. Prior to the [7] study, one of
the most comprehensive studies was performed in [8,11], which considers a portfolio
focusing on wind, water and sunlight (WWS). A major problem faced by all portfo-
lios involved high penetrations of renewables is handling the variability. These studies
assume a conversion of a large portion of the transportation system to hydrogen, a
fuel source that requires considerable energy to produce. Hydrogen (liquid or com-
pressed gas) can be viewed as a form of storage, taking advantage of periods when
wind and solar exceed the load. But this assumes adoption of hydrogen as a major
fuel source, and as of this writing this seems unlikely. Ekren and Ekren [9] also con-
siders the optimization of a solar-wind-storage system. Other authors try to mitigate
the variability of renewables (especially wind) by combining wind farms from wide
areas—see [2,14] and the references cited there. A more careful model of off-shore
wind integration using wind with fossil backup [23] showed that significant reserves
are needed to handle the uncertainty of wind. This paper studied high levels of off-
shore wind using SMRT-ISO, and found that grid constraints limited integration at
around 3GW of offshore generation.
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Nahmmacher et al. [15] provide a method to select representative days to avoid the
need to simulate an entire year, but this approach (which is quite popular) ignores the
sequencing of decisions, where steam generation decisions are made 24 h in advance.
Toproperly handle uncertainty, it is necessary to properly capture the lag betweenwhen
decisions are made and when they impact the system (e.g. 24 h out for steam, 1 h out
for gas turbines, and real-time ramping). Wogrin et al. [25] provide a more detailed
unit commitment model, but make no attempt to handle the uncertainty in day-ahead
and hour-ahead forecasts. The most detailed unit commitment model we are aware
of is reported in [23] called SMART-ISO which carefully handles the scheduling of
generators, and the uncertainty of day-ahead and hour-ahead forecasts, but SMART-
ISO requires several hours to simulate a single week, which makes it impractical for
doing portfolio optimization, where it is critical to handle seasonality.

SMART-Invest can be viewed as a more sophisticated version of the Budischak
model, or a streamlined version of SMART-ISO. It can be used to simulate an entire
year in hourly increments, optimizing commitments to slow and fast fossil generators,
and optimizing the use of storage over a 36 h horizon, while exploiting wind and solar
energy as it becomes available. The model correctly handles advance commitments
based on day-ahead forecasts of wind and solar (for steam commitments) and hour-
ahead forecasts for scheduling fast generators, and it handles ramping constraints
at an aggregate level. These decisions require solving a linear program on a rolling
basis to make commitments to steam generators 24 h in advance. This process is then
embedded in a stochastic search algorithm for optimizing investments in wind, solar
and storage, where we take advantage of the approximate convexity of the problem.
We demonstrate that our search algorithm consistently finds near-optimal mixes of
wind, solar and storage given the capital costs of each of these resources, along with
the cost of slow and fast fossil generators.

In this paper, we are going to show the following:

• A true cost minimized solution (where fossil is part of the mix) that achieves 96%
from renewables requires marginal fossil costs over $2000/MWh, and results in a
levelized cost of $255/MWh.

• Renewables do not enter the portfolio until the cost of energy from fossils hits
$60/MWh, at which point it rises quickly to 30% of the portfolio using just wind
generation.

• Investments in solar do not enter the portfolio until fossil costs reach more than
$300/MWh. Battery storage at $500/kWh does not enter the portfolio until fossil
costs hit more than $500/MWh (these analyses ignore the use of batteries for other
purposes such as frequency regulation, backup power and peak shifting to avoid
transmission investment).

• The investment in wind begins to increase when a CO2 tax of $50/ton is imposed,
growing quickly and then leveling off for a tax above $70/ton.

The intent of this paper is primarily to propose amodelingmethodology, rather than
to draw any policy conclusions. For example, there is now a fairly substantial literature
in the algorithmic community focusing on handling uncertainty in lookahead models
using the technology of stochastic programming [22,24].We take a different approach
known as a parametric cost function approximation [17,18] that more closely mimics
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industry practice. This approach uses a parametrically modified lookahead model that
is optimized in a stochastic base model. SMART-Invest represents a compromise in
the development of policymodels, offering amuchmore accurate model of wind, solar
and storage by capturing hourly, daily and seasonal variations. Our initial experiments
ignore state-imposed renewable portfolio targets and tax credits, although these can
be handled using appropriate modifications of inputs.

A major contribution of this paper is the proper modeling of the sequencing of
information and decisions, including the lag between when commitments are made
and the information available when these decisions are made. We handle the need
to make commitments for slow energy generation 24 h in advance, while fast gen-
eration is planned 1 h in advance. We model the evolution of forecasts, and propose
a robust policy for handling the uncertainty. Considerable care has been invested in
the notation, including the modeling of the stochastic base model and the lookahead
model that forms the basis of our policy (a major point of confusion in the literature
on stochastic unit commitment). We hope that our model may serve as a template for
other researchers.

We begin in Sect. 2 by presenting the operating model which determines the mix
of wind, solar, storage and fossil generation (fast and slow), given a fixed level of
investment. We distinguish between the stochastic base model which spans an entire
year, and the operating policy based on a cost function approximation in the form
of a parametrically modified deterministic lookahead model. Then, Sect. 3 describes
the search algorithm that optimizes the investment decisions. Section 4 presents a
series of experiments to investigate the optimal generation mix under different market
conditions. Section 5 concludes the paper.

2 The operating model

The operating model steps forward in hourly increments, optimizing over a 36 h hori-
zon. Themodel determines howmuch energy to use from each of our seven generation
technologies inG (wind, solar, battery storage, slow and fast fossil generation, and slow
and fast non-fossil generation). Decisions for the available slow generation capacity
are fixed 24 h out, which means that the amount of slow generation for hours 0–23 are
capped by the fixed values from prior hours. We use actual wind forecasts from PJM’s
forecasting vendor, as well as day-ahead and short-term solar forecasts. We use nor-
malized historical wind and solar generation numbers for simulating wind and solar.
The difference between the forecast and actual generation is the noise parameter. A
tunable reserve parameter is used to produce robust policies in the face of forecasting
uncertainties.

2.1 The stochastic base model

Throughout, we let w, s, and b be indices to represent wind, solar, and battery gen-
eration. Let Gslow and G f ast represent the mutually exclusive sets of slow generators
(e.g. steam and nuclear) and fast generators (e.g. gas turbines), respectively. Also,
let G = {w, s, b} ∪ Gslow ∪ G f ast be the set of sources of energy generation. New
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investment decisions can be made for up to (but not necessarily all) five generation
technologies including wind, solar, battery, slow fossil, and fast fossil. Note that Gslow

and G f ast can include the existing fossil and non-fossil slow and fast generators, as
well as any new investment in slow and fast fossil generation. We represent the set of
generation types for which we make an investment decision by I ⊆ G.

We define the following notation.

Indices: (g, t)

g =The generic index for generator set G or its subsets.
t = The hour for which we are solving the problem. This is a number in the range
of 0–|T | − 1. Since we simulate for a whole year, |T | = 365 ∗ 24 = 8, 760.

Parameters: (nT , nH , xinv
g , coprg , rug , rdg , ec, ed , ccb, cdb, nB)

nT = The horizon of the problem, i.e. the number of hours in the future for which
we tentatively plan.
nH , (nH ≤ nT ) = The notification time, which is the number of hours that a slow
generator has to be notified before it can be turned on.
xinv
g = The capacity of generator type g ∈ G (in MW). Although this is a decision

variable of the investment problem (for g ∈ I), xinv
g is a fixed parameter in the

operating model. Wind and solar installed capacities are represented by xinv
w and

xinv
s , respectively.
coprg = Operational cost of generating one MWh of electricity using generator
g ∈ G (MWh).
rug , rdg =Normalized rampup and rampdown rates (as a percentage of the capacity)
for generator g ∈ G.
ec, ed = Charging and discharging efficiency for the battery technology.
ccb, cdb =Marginal cost of charging and discharging the battery (in MWh). These
costs are set to zero in our experiments where we assume storage is a battery, but
storage can come in many forms, some of which introduce actual storage costs.
nB = The number of hours required to fully charge or discharge the battery. We
use this rate along with the battery energy capacity to calculate power capacity of
the battery (in MW).

State variables: St =(Rb
t , (R

slow
t,t ′,g)t ′≥t , q0t,g, ( f

w
t,t ′)t ′≥t , ( f

s
t,t ′)t ′≥t , ( f

d
t,t ′)t ′≥t , qw

t , qst , dt )

Rb
t = State of charge of the storage device at time t (in MWh).

Rslow
t,t ′,g = The available capacity of slow generator g ∈ Gslow for time t ′, as it is

known at time t (in MW). If t ′ − t > 24, then this is equal to xinv
g . The available

slow generation is fixedwhen t ′ = t+24, and then remains the same for t ′−t < 24
due to notification time requirements.
q0t,g = The starting generation level for generator g at time t (in MW). This
parameter is decided at time t − 1.
f w
t,t ′ = The normalized (i.e. as a percentage of capacity) wind forecast of hour t ′

measured at hour t (in MW). These data points are obtained from the official wind
forecast figures of the PJM. In our model, we assume that, at each hour t , a wind
forecast is available for 48 h in the future.
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f st,t ′ = Solar forecast of hour t ′ made at hour t , expressed as a percentage of the
maximum solar output (in MW).
f dt,t ′ = Demand forecast of hour t ′ made at hour t.
qw
t , qst = The actual wind and solar generation at time t (in MW).
dt = Demand in hour t (in MW).

Decision variables: (xgent,g , xbct , xbdt , xgent,b , Rslow
t,t+nH ,g

)

xgent,g = The amount of generation from g at time t (in MW).
xbct , xbdt = The amount that the battery is charged from (discharged into) the
market at time t (in MW).
xgent,b =xbct − xbdt .

Rslow
t,t+nH ,g

= The available slow generator g for time t + nH , which is determined
at time t (in MW).

A policy π represented by the function Xπ
t (St |(xinv

g )g∈G) makes hourly planning
decisions. The first step in simulating the market for a whole year is finding a policy.
First of all, during each hour, total generation must be equal to demand. The market
operator must solve an optimization problem to ensure that demand is met for each
hour. In addition to this, our market operator manages the battery, and to plan the
battery appropriately, it needs to consider future requirements of the market. Thus,
in our model, the policy is to solve a lookahead model that optimizes generation
and storage over a 36 h horizon, subject to notification constraints (e.g. slow steam
generators may not be fully available in less than 24 h notification). Although we
solve the market operation problem for up to 36 h in the future, we only implement the
market plan for the current hour. The future plan is only a tentative plan for determining
the best decision now, and we discard any results related to the future (except some
generation figures for the slow generators that we discuss in the next section). We
provide a detailed description of our policy Xπ

t (St |(xinv
g )g∈G) in section 2.2.

Exogenous information processes (Wt ) the exogenous information process

Wt =
((

ε
w f
t,t ′

)
t ′≥t

, εw
t ,

(
ε
s f
t,t ′

)
t ′≥t

, εst ,
(
ε
d f
t,t ′

)
t ′≥t

, εdt

)

is defined as the random variables that capture the stochastic updating of wind, solar,
and demand forecasts on a rolling basis, in addition to the error between actual and
(hour-ahead) forecasted wind, solar, and demand. Let ω ∈ � be a sample path for
(W1, . . . ,WT ). Let F be the sigma-algebra on �, and let Ft = σ(W1, . . . ,Wt ) be
the sigma-algebra generated by the information known up to time t . Throughout our
presentation, we assume that any variable indexed by t is Ft -measurable, which is to
say that we have all the information we need to compute any variable indexed by t , at
time t .
Transition functionWerepresent the transition functionusing St+1= SM (St , xt ,Wt+1).
The transition function is given by the following equations:
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• The battery status Rb
t evolves according to:

Rb
t+1 = Rb

t + ecxbct − 1

ed
xbdt .

• Slow ramping generators require advance notification to prepare for generating
the requested amount. Therefore, energy markets also run longer-term problems,
for example a day ahead of actual generation (a day-ahead problem). We plan
generation over a 36 h horizon, but make commitments to slow units nH = 24 h
into the future, meaning that slow generation may not be fully available for times
less than 24 h in the future. The decision function Xπ (St |(xinv

g )g∈G) determines

the value of Rslow
t,t+nH ,g

.
• Starting generation from g for hour t + 1 is equal to the generation level of g at
hour t :

q0t+1,g = xgent,b .

• The wind forecast, solar forecast, and generation noise parameters determine how
wind and solar forecasts and generation processes update through time:

f w
t+1,t ′ = f w

t,t ′ + ε
w f
t+1,t ′ ,

f st+1,t ′ = f st,t ′ + ε
s f
t+1,t ′ ,

f dt+1,t ′ = f dt,t ′ + ε
d f
t+1,t ′ ,

qw
t+1 = f w

t,t+1 + εw
t+1,

qst+1 = f st,t+1 + εst+1.

dt+1 = f dt,t+1 + εdt+1.

Objective function The goal is to minimize the total cost of meeting demand consid-
ering the physical constraints of the market such as capacity or ramping constraints.
Let C(St , xt ) denote the contribution function at time t, then we have

C(St , xt ) =
∑
g∈G

coprg xgent,g + ccbxbct + cdb

ed
xbdt .

The total cost over the year would be written
∑

t∈T C(St , xt ), but writing the objective
function this way onlyworks for a deterministic process. Since St is a random variable,
we let Xπ

t (St ) be the policy that returns decision xt when we are in state St . If we fix
the policy, the objective function would be written

Fπ = E

∑
t∈T

C(St , X
π
t (St )),
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where St+1 = SM (St , xt ,Wt+1). Our optimization problem is to find the best policy,
which we write as

F∗(S0) = min
π

E

{∑
t∈T

C(St , X
π
t (St ))|S0

}
. (1)

The next section describes a class of robust lookahead policies based on a parametric
cost function approximations, where our search over policies is handled by searching
for the best policy within this class.

2.2 The hourly optimization model Xπ
t (St |θ, (xinv

g )g∈G)

The lookahead model is formulated over a horizon nT spanning t ′ = t, t + 1, . . . , t +
nT . The model uses point forecasts of wind, solar and loads, but achieves robust
behavior using a modified formulation which factors the forecast of energy from wind
and solar to account for uncertainty. This adjustment, known as a parametric cost
function approximation, has to be tuned using the stochastic base model represented
by Eq. (1). Let us first define the following notation.

Parameters (θ)

θ = A parameter that factors the forecast of wind and solar to handle uncertainty
(θ = 1 implies no adjustment for uncertainty, θ > 1 factors up the forecast to
introduce a buffer to handle uncertainty).

Decision variables (x̃ gent,t ′,g, x̃
bc
t,t ′ , x̃

bd
t,t ′ , x̃

gen
t,t ′,b, x̃

bs
t,t ′)

To avoid confusionwith the decisions xt in the basemodel, we designate all decision
variables in the lookahead model using tildes. The decision variables in the lookahead
model are also indexed by t , representing the time at which the lookahead model is
created, and t ′, representing the point in time within the lookahead model.

x̃ gent,t ′,g = The decision variable of the hourly problem indicating the amount of

generation from g at time t ′ (t ≤ t ′ < t + nT ) according to the hourly problem
solved at hour t ,
x̃bct,t ′ , x̃

bd
t,t ′ = The amount that the battery is charged from (discharged into) the

market at time t ′ according to the hourly problem solved at hour t ,
x̃ gent,t ′,b = x̃bct,t ′ − x̃bdt,t ′ ,

x̃bst,t ′ = The battery status (energy stored in the battery) at hour t ′ according to the
hourly problem solved at hour t .

A robust look-ahead policy (in the form of a linear program) finds the value of these
decision variables by minimizing total generation cost:

Xπ
t (St |θ, (xinv

g )g∈G) = arg min
(x̃t,t ′ )t ′

t+nT∑
t ′=t

∑
g∈G

(
coprg x̃ gent,t ′,g + ccb x̃bct,t ′ + cdb

ed
x̃bdt,t ′

)
.
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These variables are then used to determine the decision variables of the operating
model at time t :

xgent,g = x̃ gent,t,g, ∀g ∈ G,

xbct = x̃bct,t ,

xbdt = x̃bdt,t ,

xgent,b = x̃ gent,t,b,

Rslow
t,t+nH ,g = x̃ gen

t,t+nH ,g
, ∀g ∈ Gslow.

The linear program solved at hour t is as follows.

Xπ
t (St |θ, (xinv

g )g∈G) = arg min
(x̃t,t ′ )t ′

t+nT∑
t ′=t

∑
g∈G

(
coprg x̃ gent,t ′,g + ccb x̃bct,t ′ + cdb

ed
x̃bdt,t ′

)
(2)

This is solved subject to the following constraints (for t ≤ t ′ ≤ t + nT , except where
indicated differently).∑

g∈G
x̃gent,t ′,g = θ f dt,t ′ , (3)

x̃ gent,t ′,b = x̃bdt,t ′ − x̃bct,t ′ , (4)

x̃bst,t ′+1 = x̃bst,t ′ + ec x̃bct,t ′ − 1

ed
x̃bdt,t ′ , t ≤ t ′ ≤ t + nT − 1 (5)

x̃ gent,t ′+1,g ≤ x̃ gent,t ′,g + rug x
inv
g , g ∈ G\Gslow, t ≤ t ′ ≤ t + nT − 1 (6)

x̃ gent,t ′+1,g ≥ x̃ gent,t ′,g − rdg x
inv
g , g ∈ G\Gslow, t ≤ t ′ ≤ t + nT − 1 (7)

x̃ gent,t ′+1,g ≤ x̃ gent,t ′,g + rug R
slow
t,t ′,g, g ∈ Gslow, t ≤ t ′ ≤ t + nT − 1 (8)

x̃ gent,t ′+1,g ≥ x̃ gent,t ′,g − rdl R
slow
t,t ′,g, g ∈ Gslow, t ≤ t ′ ≤ t + nT − 1 (9)

x̃ gent,t,g ≤ q0t,g + rug x
inv
g , g ∈ G\Gslow (10)

x̃ gent,t,g ≥ q0t,g − rdg x
inv
g , g ∈ G\Gslow (11)

x̃ gent,t,g ≤ q0t,g + rug R
slow
t,t ′,g, g ∈ Gslow (12)

x̃ gent,t,g ≥ q0t,g − rdg R
slow
t,t ′,g, g ∈ Gslow (13)

x̃ gent,t ′,w ≤ f w
t,t ′x

inv
w , (14)

x̃ gent,t ′,s ≤ f st,t ′x
inv
s , (15)

x̃ gent,t ′,g ≤ Rslow
t,t ′,g, g ∈ Gslow, (16)

0 ≤ x̃ gent,t ′,g ≤ xinv
g , ∀g ∈ G\{b}, (17)

0 ≤ x̃bst,t ′ ≤ xinv
b , (18)

0 ≤ x̃bdt,t ′ ≤ ed xinv
b /nB, (19)

0 ≤ x̃bct,t ′ ≤ xinv
b /(ecnB), (20)
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x̃bst,t ′ + ec x̃bc
t,t ′ ≤ xinv

b , (21)

x̃bst,t ′ − 1

ed
x̃bdt,t ′ ≥ 0, (22)

x̃bst,t = Rb
t . (23)

The constraints are as follows:

Equation (3)—Balancing constraint, i.e. total generation must be equal to demand
at each point in time, where θ is a parameter (typically greater than 1) that forces
the system to schedule reserve generation to compensate for uncertainty.
Equation (4)—Battery generation can be negative (if charging), and we can rep-
resent it using two non-negative variables x̃bdt,t ′ and x̃bct,t ′ .
Equation (5)—Battery status transition from 1 h to the next.
Equations (6)–(7)—Ramping constraints for all generators except slow generators.
Equations (8)–(9)—Ramping constraints for slow generators. These generators
may not be available fully at a particular time, and thus the ramping is also pro-
portional to their available capacity instead of xinv

l .
Equations (10)–(13)—Similar to (6), (7), (8) and (9), but for the first hour.
Equation (14)–(15)—Wind and solar generation must be less than or equal to the
forecasted value.
Equation (16)—Available capacity for slow generators.
Equation (17)—Capacity constraint.
Equation (18)—Energy capacity constraint for the battery.
Equation (19)–(20)—Power capacity for charging or discharging the battery.
Equation (21)–(22)—Maximum amount of charging or discharging the battery is
also constrained by the status of the battery. For example, if the battery is full,
charging is not possible.
Equation (23)—Initial battery status.

The hourly problem is a linear programwhich we solve using Cplex.We emphasize
that solving the lookahead model in (2) is not an optimal policy, but we obtain robust
behavior by tuning θ using the base model given by Eq. (1).

3 The investment problem

We next consider the problem of finding the optimal mix of investment in generators
I ⊆ G while minimizing the total yearly costs. Total cost includes prorated yearly
cost of investment, operational costs (independent of generation amount), and cost of
generation (e.g. fuel costs).

Before proceeding, we need to introduce some new notation.
Parameters: (i, nLg , ccapitalg , cyrOper , cinv

g , kg)

i = The interest rate.

nLg = The lifetime of generation technology g.

ccapitalg = The capital cost of investment in one MW of generation type g.
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cyrOper
g = The yearly operational cost for each MW of generation type g.

cinv
g = The prorated yearly cost of investment in MW of generation type g.

kg = The installed capacity of generator g ∈ G\I.

We include the yearly operational costs (independent of generation level) in our
estimation of the yearly investment cost cinv

g . For each type of generation, we can
calculate the yearly investment cost as follows:

cinv
g = iccapitalg

1 − (1 + i)−nLg
+ cyrOper

g . (24)

Decision variable: (xinv
g )

xinv
g = The decision variable indicating the amount of investment in generation

type g ∈ G (measured in MWh for battery and MW for the others).

Other functions: (Cinv,Cgen)

Cinv((xinv
g )g∈I) = Total cost of investment

=
∑
g∈I

cinv
g xinv

g .

Cgen((xinv
g )g∈G) = The total yearly cost of generation

=
|T |∑
t=0

∑
g∈G

(
coprg xgent,g + ccbxbct + cdb

ed
xbdt

)
.

Cgen is calculated by solving the operating simulation discussed in section 2. The
objective function is equal to the sum of yearly prorated investment and generation
costs:

Call((xinv
g )g∈G) = Cinv((xinv

g )g∈I) + Cgen((xinv
g )g∈G)

=
∑
g∈I

cinv
g xinv +

|T |∑
t=0

∑
g∈G

(
coprg xgent,g + ccbxbct + cdb

ed
xbdt

)
. (25)

The investment problem is written as the following optimization problem:

min
xinv
g :g∈G

Call((xinv
g )g∈G)

subject to

xinv
g ≥ 0, g ∈ I,

xinv
g = kg, g ∈ G\I.

123



290 J. Khazaei, W. B. Powell

3.1 The investment optimization algorithm

Assuming that generator installed capacities are known, we can simulate the yearly
operation of the market by going forward in time and solving hourly problems for
all hours t ∈ T . As we mentioned earlier, the purpose of this yearly simulation is to
calculate total yearly generation cost (i.e. Cgen((xinv

g )g∈I , (xinv
g )g∈G\I)). Although

we can calculate Cgen numerically, it is an unknown non-smooth function, and in
order to solve the investment problem (Eq. (26)) we need to develop an appropriate
algorithm to solve this complex problem.

3.2 An adaptive stepsize rule

The basic idea of the stepsize rule is to use a form of Armijo rule [4,6] by taking a large
stepsize, and then cutting it in half if the solution gets worse. We can continue this
until either we obtain an improvement in the objective function or the step becomes
so small that we accept it even though it does not improve the objective value (this is
to try new directions and avoid getting stuck in local minima). We use the gradient
only as a guide for the direction of the next move (and we do not use its size). The
largest stepsize is determined by expert knowledge; for example, in our problem,
one may choose 30 GW as the largest step. Note that we remove the superscript inv
from xinv in the following equations to simplify the equations, allowing us to write
C(x ) = Cinv(x) + Cgen(x).

• Superscript n: Iteration counter.
• αn : The stepsize at iteration n.
• δMax : The maximum change in each iteration (maximum step) in all directions.
• δMin : The minimum acceptable change in each iteration. If the change in all direc-
tions becomes smaller than δMin , we accept that move regardless of whether it
improves the objective value or not.

The algorithm is stated as follows:

1. Initialization: Start with an initial capacity level (e.g. x0g = 0,∀g ∈ I), and set
n = 0.

2. Numerically calculate ∇C((xng )g∈I ) using finite differences:

∇g′C((xng )g∈I ) = C((xng + εeg,g′)g∈I ) − C((xng )g∈I )
ε

,

where, ε is a small non-negative parameter that needs to be tuned for an application
(we used ε = 1 MW for SMART-Invest), and

eg,g′ =
{
0 g �= g′,
1 g = g′.
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3. Set n = n + 1, and calculate α0
n from (26) and (27), and set αn = α0

n .

xng (αn) = max
{
0, xn−1

g − αn∇gC(xn−1)
}

(26)

α0
n =

{
αn : max

g

{∣∣∣xng (αn) − xn−1
g

∣∣∣} = δMax
}

(27)

4. Calculate (xng )g∈I from (26) and then compute C((xng )g∈I).

5. If C((xng )g∈I) ≤ C((xn−1
g )g∈I) or maxi

{∣∣∣xng − xn−1
g

∣∣∣} ≤ δMin go to step 2,

otherwise, set αn = αn
2 , and go to step 4.

6. If the objective function has not improved in kmax iterations stop the algorithm.

Different features of this adaptive stepsize algorithm are designed to efficiently
find a near-optimal solution for our problem, and similar problems with non-convex,
non-smooth expensive objective functions that exhibit global convexities with local
roughness.

• Computing the gradient numerically is computationally expensive since it requires
running the yearly simulation (which itself includes running almost 9000 hourly
problems) several times (once for each decision variable). By only accepting
improving steps, this algorithm reduces the number of iterations, and therefore
decreases the number of times the gradient is computed. Note that finding an
improving step does not require recomputing the gradient.

• The large steps allow the algorithm to jump over the small bumps. The minimum
stepsize ensure that, when it seems that we have already obtained the optimal
solution, the algorithm travels to other points and checks new directions.

This algorithm is also significantly different from the grid search algorithm used in
[7]. It only requires between 10 and 15 iterations before it satisfies its stopping criteria.
Each iteration consists of calculating the gradient a maximum of five evaluations if
optimizing for five technologies, and some stepsize tries (between one to eight evalua-
tions). Therefore, in theworst case scenario, this algorithm requires 15×(8 + 5) = 195
evaluations, while the grid search in [7] needs 28 billion evaluations. Also, other algo-
rithms could be used, such as surrogate models (e.g. see [19–21]). This involves fitting
polynomial approximations. The problem is that low-order (specifically quadratic) can
be a poor fit, while higher order approximations are very sensitive to oversampling.
However, this is a potential area of research.

3.3 Parallelization

As mentioned before, finding the optimal solution requires running roughly 200 eval-
uations of the total yearly cost. Each evaluation is expensive computationally, since it
consists of solving a linear program that looks 36 h into the future for each hour in a
year (i.e. 8760 relatively large linear programs). SMART-Invest uses parallelization as
an optional feature to expedite these evaluations. For example, each yearly evaluation
can be represented as 12 separate monthly evaluations, if we use a multi-threaded
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Table 2 Running time for each
function evaluation with and
without parallelization (yearly
vs. monthly) on a computer with
16 CPUs and 3059 MHz CPU
speed

Without
parallelization (s)

With
parallelization (s)

Complete offer stack 8738 1786

Aggregated offer stack 135 30

Table 3 Optimal investment
with and without parallelization

Without
parallelization

With
parallelization

Wind (MW) 93718.15 93699.62

Solar (MW) 8619.51 8610.29

Battery (MWh) 6365.69 6442.68

computer. The issue is, however, that the problem solved at each hour is dependent on
the problem solved for the previous hours because of day-ahead planning of the slow
generators. To overcome this problem, we define a warm-up period of 24 h before
each of the monthly evaluations, so that day-ahead considerations are in place when
SMART-Invest start running themonthly simulation. Thewarm-up period is ignored in
the cost calculations. Table 2 shows how parallelization can reduce the computational
time.

Table 3 compares the optimal investment decisions for a problem solved with and
without parallelization, and shows that parallelization does not significantly affect the
results.

3.4 Algorithm performance

In this section, we present some experiments to test the performance of our algorithm,
and ensure that it reliably produces near-optimal solutions. In order to do this, we use
a benchmark by solving the problem using a grid search. We discretize the decision
variables, and for each point of this grid (i.e. a set ofwind, solar, and battery capacities),
we run the simulation, and compute total yearly investment and generation cost. The
minimum of the cost function over this discretized grid provides a near-optimal cost,
and the associated capacities would be our near-optimal capacities. (This method may
not result in the exact optimal solution since the optimization is run over a discretized
grid).

Figure 2a, b show two heat maps of the cost function on a two dimensional dis-
cretized grid. Each dimension spans for about 600 GW and the smallest unit in each
direction of the grid is 3 GW. Therefore, in a two dimensional problem (e.g. the one
in Fig. 2a) there are 40,000 grid points. In these heatmaps the cost value ranges from
blue (minimum) to red (maximum). The first figure represents a case where the solar
capacity is fixed, and the second figure corresponds to a case with a fixed wind capac-
ity. The first observation is that although the cost function is not a convex function
(because of small bumps), it looks like a convex function (in large-scale) with very
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Fig. 2 Algorithm performance for different starting points (each arrow starts from one starting point and
ends at the optimal solution for that starting point)

Table 4 The algorithm results from different starting points (left) vs. best results from the grid search
(right)

Optimal point (stochastic stepsize rule) Best six points (grid search)

Initial Initial Opt. Opt. Total cost Opt. Opt. Total cost
solar batt. solar batt. ($ ×1011) solar batt. ($ ×1011)

0 0 121,862 279,313 1.0594 120,000 291,000 1.0607

400,000 550,000 121,064 283,872 1.0596 120,000 282,000 1.0609

300,000 300,000 121,693 280,869 1.0592 117,000 291,000 1.0611

400,000 0 121,902 273,427 1.0605 120,000 279,000 1.0612

100,000 100,000 118,847 217,409 1.0618 117,000 300,000 1.0614

0 550,000 118,602 283,613 1.0598 111,000 279,000 1.0619

Wind capacity is fixed to 600,000 MW. Solar capacity is in MW, and battery capacity is in MWh

small non-convexities (bumps). Thus, if our algorithm can avoid the small bumps, we
can be hopeful to obtain a near optimal solution.

One way to test our algorithm is to start from various starting points. The algorithm
performs reliably if the algorithm solution lies in the blue area of the heat maps in
Fig. 2a, b regardless of the starting point. Each arrow in Fig. 2a, b represents a run of
the algorithm from different starting points. The beginning and the end points of the
arrows represent the starting point and the stopping point of the algorithm respectively.
These experiments suggest that our algorithm reliably finds a near-optimal solution
each time.

To obtain a more precise understanding of the algorithm performance, we can
compare the stopping points of our algorithm with the most cost-effective solutions
from the grid. Tables 4 and 5 compare the results of different runs of our algorithm
with the best grid points (i.e. the least cost solutions from the heat map). According to
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Table 5 The algorithm results from different starting points (left) vs. best results from the grid search
(right)

Optimal point (stochastic stepsize rule) Best five points (grid search)

Initial Initial Opt. Opt. Total cost Opt. Opt. Total cost
wind batt. wind batt. ($ ×1011) wind batt. ($ ×1011)

400,000 400,000 646,497 220,771 1.0709 657,000 215,000 1.0710

0 0 664,763 215,292 1.0714 651,000 224,000 1.0716

0 550,000 624,963 240,337 1.0713 654,000 209,000 1.0717

600,000 200,000 656,181 215,311 1.0709 660,000 215,000 1.0717

800,000 0 657,941 216,443 1.0706 654,000 218,000 1.0719

Solar capacity is fixed to 157,901 MW. Solar capacity is in MW, and battery capacity is in MWh

these tables, our algorithm outperforms the best solution over the gridmost of the time.
When wind capacity is assumed to be a fixed number (Table 4), the algorithm provides
better results than the best solution from the grid search for five out of six starting
points. The remaining starting point which provides the worst algorithm performance
among these six starting points yields a better objective function than the sixth best
point on the grid. Table 5 presents similar results for a case with a fixed solar capacity.
In this case as well, three out of five starting points lead to better solutions than the
best solution over the grid.

These results show that our algorithm not only is effective and fast in solving this
optimization problem, it can also produce better solutions than a coarse grid search.

3.5 The optimal reserve parameter (θ )

In this section, we investigate the optimal reserve parameter θ used to produce a robust
policy. It may be argued that the optimal level of θ depends on the level of renewables
and the accuracy of wind and solar forecasts, as well as the availability of storage,
which may also be used to accommodate forecast errors.

Table 6 consists of three different parts, each representing a separate experiment.
Results of the first part of this table are obtained from two sets of experiements. First,
CO2 tax is changed and the optimal level of renewable investment is calculated. Then,
CO2 tax and the optimal levels are assumed to be a fixed number, as given in the table,
and SMART-Invest is used to find the optimal θ value for each market configuration.
In the second part, we investigate the effect of larger renewable integration on the
value of optimal θ . There is no CO2 tax in this case. In the third part, only CO2 tax
changes and the renewable capacity is fixed.

If there are no renewables in the generationmix, we expect the optimal θ to be equal
to 1.0, because there is no uncertainty in such a system. As expected, the optimal θ

obtained from SMART-Invest is 1.0 for this case, as shown in Table 6. However, with
larger amounts of renewables, one may expect to observe a larger θ value, which
is equivalent to planning generation reserves as a hedge against the risk of using
expensive fast fossil generators to deal with unexpected variations in energy from
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Table 6 Optimal θ for different
levels of renewable integration
and CO2 tax

CO2 tax Wind Solar Batt. Wind gen. Opt.
$/ton MW MW MWh (%) θ

0 0 0 0 0.0 1.000

50 51284 170 19738 19.0 0.985

80 82066 3741 4556 29.8 0.998

100 80250 6584 6005 29.2 1.001

150 120251 33372 30939 42.0 1.020

0 0 0 0 0.0 1.000

0 51284 170 19738 18.8 1.191

0 80250 6584 6005 29.2 1.041

0 120251 33372 30939 40.7 1.197

0 120251 33372 30939 40.7 1.197

50 120251 33372 30939 41.0 1.134

80 120251 33372 30939 42.2 1.011

100 120251 33372 30939 42.1 1.011

wind and solar sources. Table 6 (second part) shows that this may not be always true.
Planning for larger demand means pre-planning larger amounts of slow generation
and thus the system operator may end up using the more expensive slow fossil instead
of wind in some time periods.

A tax on CO2 is another important parameter that affects the optimal θ value. The
result from the third part of this table shows that a larger CO2 tax results in smaller
θ values. This can be attributed to the fact that a larger CO2 tax, as we show in Sect.
4.3, causes less generation from slow fossil sources and more from fast fossil sources,
and this increases the ability of the system to deal with uncertainty and decreases the
need for pre-planning and thus results in a lower θ value.

4 Policy studies

We are now ready to illustrate the use of SMART-ISO in the context of a series of
policy questions. These include:

• Is it possible to generate a large percentage of our electricity needs (e.g. 99%)
from renewable sources such as wind, solar, and battery?

• What is the sensitivity of our results to cost parameters (e.g. for a future scenario
where investment cost in solar is half of today’s cost)?

• How much renewable investment is optimal in today’s market, and how much
renewable incentives such as CO2 tax can affect the results?

We start by introducing our set of base values for different model parameters. We
may change some of these values in particular experiments. We use the parameter
values given in Tables 7 and 8, unless stated differently in the description of the
experiments. We use a penalty of $3000/MWh for unmet demand; however, any large
penalty value that avoids loss of load can be used and does not change the results.
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Table 7 Parameter values for different generation technologies

Wind Solar Battery Slow Fossil Fast Fossil

Capital cost ($/MW) 2,213,000 3,873,000 500,000 1,023,000 676,000

Yearly oper. cost ($/MW/yr) 39,550 24,690 0 15,370 7,040

Life time (year) 30 30 15 30 30

Ramp up rate (frac. of cap.) 1 1 1 0.038 1

Ramp down rate (frac. of cap.) 1 1 1 0.037 1

Table 8 Battery parameters and
interest rate

ec ed ccb cdb nB r

0.90 0.90 0.00 0.00 6.00 0.02

Fig. 3 Percentage of electricity generation from different technologies (left) and optimal investment in
MW for wind and solar and in MWh for battery (right) as a function of marginal cost of fossil generation

4.1 Experiment 1: cost of fast fossil

For our first experiment, we find the optimal investment decisions for wind, solar, and
battery technologies, assuming fast fossil generation is available at different cost levels
and large capacity. This experiment also provides a comparison with Budischak’s
paper, since the scenario with very large costs of fast fossil generation is equivalent to
the model of [7].

Figure 3 shows that if fast fossil generation is available at $60/MWh, an invest-
ment of 100 GW in wind generation is optimal and will amount to 30% of total
electricity generation, while at $50/MWh, renewables do not appear in the solution.
At $100/MWh, the wind percentage increases to 60% of total generation, while solar
and battery technologies are not economical. Solar and battery are invested only at
prices higher than $300/MWh and $500/MWh respectively.

We also calculate the levelized cost of electricity which is the average cost of
generating one MWh of electricity using different technologies. We compute the lev-
elized cost of electricity by dividing total generation cost (including investment and
operational costs) over the length of the simulation by total met demand during the
simulation. Note that investment and operational costs are calculated proportional to
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Fig. 4 Levelized cost of generating electricity and battery level (full or empty) as a function of marginal
cost of fossil generation

the length of the simulation, and we include the time value of money in our compu-
tations. The levelized cost of electricity at different fossil generation costs is given in
Fig. 4.

At a cost of $2000/MWh for fossil generators, 96% of generation is from renew-
ables, and this is equivalent to a levelized cost of $255/MWh. Therefore, one may
conclude that figures such as 99% generation from renewables are not viable. The rea-
son for the big discrepancy between this conclusion and that of the Budischak paper,
we believe, is because a) we evaluate the value of investments on the margin and b)
we require that the entire load be covered by our system, without having to resort to
asking the grid to cover rare (but significant) outages. As long as the marginal cost
of fast fossil generation is smaller than the value of lost load, we will not observe
uncovered load in the solution.

Figure 4 also shows the fraction of hours in which the battery is full or empty.
According to these results, the battery is empty most of the time, and even as the
optimal storage capacity grows, it is rarely full. This behavior is partially explained by
the large cost of fossil generation (ranging from $300 to $3000/MWh). The substantial
investment in batteries at these penetration levels reflects those rare instances where
we would not cover the entire load with a smaller battery. Also, as Fig. 3 shows,
although investment in storage increases quickly with the fossil price and greatly
exceeds investment in solar technology, its contribution (as the percentage of total
generation) remains small (less than 4% of total generation), and does not change too
much for different fossil cost levels.

As discussed before, different motivations can incentivize investment in renew-
ables and the investment cost may not be the only determining factor. For example,
tax credits, carbon taxes, or SREC requirements are some of the key factors. We have
exclusively included renewable incentives such as emission taxes, and SREC prices
in the SMART-Invest model, and many other factors (e.g. tax credits) can be modeled
as reductions in the investment cost or simply as added wind and solar incentives.
Investment costs and renewable incentives can also change in the future, and one may
be interested in how markets respond to these changes. Figure 5 shows the renewable
penetration plot under four scenarios. Thewind investment cost of $500/kW represents
the base case discussed earlier in this section. We produce the same plot for wind costs
of $375/kW, and $250/kW, and also for a case with SREC prices of $100/MWh. This
figure shows that, even if the cost of investment in wind is half of today or if we intro-
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Fig. 5 Levelized cost of generating electricity and battery level (full or empty) as a function of marginal
cost of fossil generation

duce other renewable incentives, reaching renewable integration above 80% is only
optimal if the alternative flexible generation technology costs more than $300/MWh.

4.2 Experiment 2: cost of investment

In this section, we investigate the effect of investment cost on the optimal technology
mix. The economics of renewables is fairly complex, and the investment in wind and
solar is affected by a mixture of state requirements (RPS portfolios), tax credits and
feed-in tariffs. There is also some evidence of companies that are simply willing to
pay more as a hedge against what they project is higher gas prices. So, the wind and
solar might be more expensive for investment now, but because of hedging, people
might still invest in them even without subsidies. Thus, it is interesting to investigate
other investment cost scenarios to account for these incentives or as a hypothetical
technology change in the future resulting in a reduction in investment costs.

In the following experiments, we use a similar market structure as the previous
section. As discussed before, solar and battery technologies appear in the optimal mix
only when the cost of fast fossil generation is above $300/MWh. In this experiment,
we assume a cost of $400 for each MWh of electricity from fast fossil generators.

Figures 6 and 7 compare optimal wind, solar, and battery capacities under different
levels of wind, solar and battery investment costs. The base cost values are given in
Table 7, and we multiply these numbers by a factor to account for different cost levels.

Simulations testing the effect of battery costs on investment in wind and solar indi-
cate that battery costs have very little impact on the optimal investment in renewables.
However, Fig. 6 shows the impact of battery costs on the optimal investment in battery.
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Fig. 6 Optimal battery capacity for different levels of battery and wind investment costs

Fig. 7 Optimal wind, solar, and battery capacity and percentage of generation from renewables for different
levels of wind and solar investment costs

An interesting observation from Fig. 7 is that total generation from renewables is
nearly the same under different scenarios. It only decreases slightly for higher levels of
wind and solar investment costs (e.g. it has a very shallow slope as a function of wind
investment cost in Fig. 7). However, a change in the investment cost can significantly
impact total investment in renewables (i.e. sum ofwind and solar capacities). As shown
in Fig. 7, the amount of investment in wind alone is in the range of 300–1000 GW,
which is several times more than total demand (which is around 100–150 GW), and
the same can be said about solar and battery. So in most time periods, a change in
wind or solar capacity does not change their generation (because they already generate
more than load), but in some periods with a very small wind and solar availability, the
amount of installed capacity can make a difference. One may conclude that most of
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Fig. 8 The optimal mix of generation sources for different levels of CO2 tax (battery generation is not
used for percentage calculations)

the changes in investment (due to various levels of investment costs) are to avoid the
high cost of $400/MWh only for a small percentage of time periods.

Another interesting observation from Fig. 7 is that a battery investment is more
responsive to solar capacity rather than wind capacity. When solar capacity increases
(and thus wind capacity decreases), investment in the battery also increases. This may
indicate that the existence of some storage is more critical for solar generation. This
can be attributed to the fact that solar generation is not available at all during the night
time.

These results also show that an increase in wind investment cost is equivalent to
lower investment in wind and higher investment in solar and vice versa. Also, battery
capacity, as expected, decreases, when the cost of investment in the battery increases.

4.3 Experiment 3: carbon tax

In the previous experiments, we assumed that unlimited fossil generation is available
at a fixed cost level. When concerned with large levels of renewable integration into
electricity markets, this seems to be a logical assumption, since many of the conven-
tional sources of electricity generation may not be fast and large enough to cope with
huge variability and unpredictability resulting from large integration of intermittent
renewables.

Another interesting experiment, however, is to find the optimal investment under
current market conditions (with different types of generators and various levels of
generation cost and ramping ability), and then investigating the effect of introducing
a carbon tax on the generation profile.

Figure 8 shows the results of an experiment with the current market configuration
(before and after CO2 tax). In this experiment, we optimize investment decisions for
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wind, solar, and battery, while we assume the other types of generation have a constant
capacity equal to their current installed capacity in PJM. According to this figure, no
investment in wind, solar, and battery is economically efficient in today’s market
conditions. However, when CO2 tax increases to $50/ton, about 10% generation from
wind appears in the optimal solution, and at $70/ton 30% of generation is met by wind.
Prices above $100/ton is required to observe some generation from solar and battery.
This figure also shows that higher CO2 tax values do not change total generation from
nuclear energy greatly, but has a dramatic effect on slow fossil generation. In effect,
slow fossil is replaced with fast fossil and wind while CO2 tax increases from $0/ton
to $150/ton.

Another observation is that the percentage of nuclear generation is decreased at the
CO2 tax level of $150/ton. Also, slow fossil completely vanishes from the optimal mix
after leveling off at lower tax levels. To explain this, we first note that the marginal
cost of wind and solar is zero, while it is around $9/MWh for nuclear and is more
expensive for slow fossil generators. At high levels of CO2 tax, investment in wind
is large enough to replace a large portion of more expensive slow generation. Among
slow generation types, slow fossil has become very expensive because of the CO2
tax, and is removed first from the energy mix. When we have a large investment in
wind e.g. more than total load, less expensive (but more expensive than wind) nuclear
generation can also be replaced with wind at some time periods.

5 Conclusion

In this paper, we introduced a new model (called SMART-Invest) that is able to find
the optimal generation configuration under different market conditions. It is a very
flexible model, and can be used for a wide range of experiments. SMART-Invest can
model the generation technologies using the existing offer stack, an aggregated version
of offer stacks, or a single offer band. It can also optimize for up to five technology
types. SMART-Invest provides a flexible framework for a wide range of experiments.

The mathematical model of SMART-Invest carefully captures the distinction
between a stochastic base model and a robust operating policy using a parametric
cost function approximation in the form of a modified deterministic lookahead model.
This is widely used in practice, but this appears to be the first time the entire pro-
cess has been modeled formally. We then describe a stochastic optimization algorithm
for the investment problem which exploits the approximate convexity of the problem
while overcoming the fine-grained non-convexities using a carefully designed stepsize
algorithm. The algorithm makes it possible to find near-optimal solutions with only a
few hundred function evaluations.

We also design a few experiments to gain insights into the optimal generation mix
under different market conditions. Firstly, we show that reaching really large levels of
renewable integration (e.g. 99% as claimed in the literature) is very expensive socially
and so may not happen in a real electricity market, although it is possible to reach
relatively large-scale wind integration. We also evaluate the market conditions for
reaching such levels. In addition to this, we investigate the level of wind and solar
integration under different investment cost scenarios. The results of our experiments,
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for example, show that the battery investment cost is not a very important parameter
in determining the optimal wind and solar capacities. Even more interesting, different
levels of investment cost in battery or wind do not greatly change the percentage of
generation from renewables. A higher cost of investment in, say, wind, means more
generation from solar and less from wind, but the total generation percentage does
not change greatly. However, this amounts to a noticeable change in total renewable
installed capacity. We also analyse the current PJM electricity market and investigate
the effect of CO2 cost on the amount of renewable generation. It turns out that without
renewable incentives such as CO2 tax or SREC markets, no investment in renewables
is economical; however, for higher levels of these economical incentives, we observe
that less generation from slow fossil and more from renewables and fast fossil appears
in the optimal solution.

We would like to emphasize that this research is not about predicting the future and
more about what level of renewable energy integration is socially optimal. That is why
a cost-minimization approach is used in this paper. This model is striking a balance
between the very simplistic Budischak model, and muchmore detailed models such as
SMART-ISO (which still does not model market behavior, and is not appropriate for
this study). It is important to remember that all models have to make approximations
to handle the questions they are trying to answer. Readers can refer to [10] for more
information on the market behaviour.

The ongoing changes in the climate have elevated the risk of integrating large
amounts of renewable energy into the power mix. Future extensions of SMART-Invest
can include the addition of risk-averse optimization methods (see e.g. [3,16]).
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