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Abstract Increasing levels of renewable power generation require changes in invest-
ment models to deal with intermittent supply. We present a Markov decision problem
that can be used to model thermal plant operation with intermittent demand, and show
how this can be incorporated into a mixed integer programming model for optimally
choosing investments. The model is extended to deal with staging investment over
long planning horizons.

Keywords Wind · Investment · Intermittency · Markov chain · Dantzig–Wolfe
decomposition

1 Introduction

Recent years has witnessed an enormous growth in investment in renewable energy
generation. A description of the recent history of this development under incentive
schemes in the United States and Europe is given in [2]. Wind and solar power have
zero short-run marginal cost of production and if the load factors are high enough or
the capital cost can be reduced by taking advantage of incentives then they provide
an inexpensive and environmentally acceptable generation technology. A number of
authors [1,12,13] have commented on the extra costs that must be borne by a system
with large amounts of wind or solar power. Some of these costs relate to the vari-
ability of power supply that affects the system frequency and voltage, requiring extra
equipment to be installed to deal with this variability. On the other hand, electricity
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systems that require reliable sources of power must have either storage or reserve
capacity available in case the wind does not blow or the sun does not shine. Although
the distinction is not precise, the reserve capacity to meet this intermittency problem
typically has slower response time than frequency-keeping or instantaneous reserve
required to deal with variability and outages. Most authors focus on the variability
and capture this aspect through time dynamics (see e.g. [11,12]) without allowing
for intermittency. Wogrin et al. [18] address the variability problem of introducing
renewables through the concept of system states that takes the place of a discretized
load duration curve.

In this paper we derive a model for determining the optimal investment in con-
ventional generating plant to provide the required levels of reserve to deal with an
intermittent supply of renewable power. The model we describe seeks an optimal mix-
ture of peaking plant and plant with limited ramping ability (such as combined-cycle
gas turbines) to provide this reserve. Limited ramping plant will be cheaper to run
than peaking plant. By scheduling the start-up and shut-down times of such plant it
is possible to use less peaking plant to cover periods when renewable power becomes
unavailable. Our model seeks to represent this flexibility in an optimal investment
plan.

The paper assumes a central planning paradigm that seeks the optimal level of
investment to minimize total capital and expected fuel cost incurred by a social plan-
ner. Our aim is to understand the differences in investments that are made when the
flexibility of generating plant is accounted for. While our model would pertain to a
perfectly competitive electricity market, other studies investigate generation invest-
ments under oligopolies, but do not incorporate intermittency (see for example [19]).
Although the central planning approach to investment in electricity plant is becoming
increasingly rare in market economies, regulators and analysts still use optimization
models as benchmarks of what investments might emerge from a competitive mar-
ket. However in the authors’ experience, predictions made from deterministic capital
planning models are rarely matched by real investments.

Our goal in this paper is to provide a methodology to solve the stochastic capital
planning problem to serve as a different, and possibly improved, benchmark. Such
a benchmark might correspond to a competitive equilibrium in which all agents are
risk neutral and share the same probability distributions for future uncertainty. In
practice, agents making investment decisions based on discounted cash flows will
be risk averse, with possibly different discount rates. Unless the market for risk is
completed, a competitive equilibrium will not necessarily correspond to an optimal
social plan. In these circumstances a more realistic benchmark might come from a
complementarity model of the form discussed by [5].

Classical central-planning investment models [7,17] use a screening curve (Fig. 1)
to rank generation options by their long-run marginal cost (LRMC), thus finding
the best option to serve the production profile for each additional demand unit. The
screening curve shows the annual total cost per MW capacity plotted against the
number of annual operating hours. The total cost is a combination of fixed and variable
cost based on the number of production hours in a year. A minimum cost for each
capacity factor can be found by combining the screening curve with the load duration
curve (LDC). The projection produces the least-cost capacity combination that can
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Fig. 1 The screening curve: how capacity is traditionally planned in electricity systems

serve the load profile. For example, to supply the part of the LDC that has higher
capacity factor (i.e. running most of the year), base load is the least cost option. As
the number of operating hours decreases, the plants that are less expensive to build
but more costly to run start to become more economical. For a small capacity at the
tip of the duration curve, the very high variable cost peakers are the most economical.

The screening curve approach can be formulated as a linear program (LP), where

– i denotes different generating technologies,
– t ∈ T denote the operational hours in the year.
– the variable yi is the capacity invested in technology i ,
– ri (t) denotes the production at time t with technology i .
– Fixed and variable cost for technology i is defined as Fi and Vi respectively.

This gives:

LP: min
∑

i Fi yi + Vi
∑

t ri (t)
s.t. g(t) ≥ d(t), t ∈ T ,

g(t) ≤ ∑
i ri (t), t ∈ T ,

0 ≤ ri (t) ≤ yi , t ∈ T .

Formulations like LP appeared as early as the 1950s [10], although the basic formu-
lation has been extended in the past two decades to include operational constraints,
and some supply-side uncertainties such as plant outages and technological changes
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were added. Demand distributions are still represented by load duration curves, or
their discretized versions [3].

The ability to produce electricity on demand becomes valuable in a world with
intermittency, but such flexibility cannot be valued in the traditional models based
only on the marginal cost of energy. In fact, when running the ex-post dispatch prob-
lem, the optimization no longer follows the short-run marginal cost merit order when
expensive plants must be started because of ramp constraints. To account for flexibil-
ity, the model we use requires some representation of load uncertainty. Although we
assume that overall demand for power is relatively predictable, the residual demand
after renewable energy has been subtracted, is not. In our context, residual demand
is demand net of renewable generation. In other words intermittent generation will
always be dispatched first and provides the system with a level of residual demand
which must be met by conventional plant (or not satisfied at some penalty cost).

In our model, demand net of intermittent generation is treated as a time-
inhomogeneous Markov process. This represents the case where demand is deter-
ministic and intermittent generation is Markov, but the model also admits stochastic
demand as long as the net demand is Markovian. The Markov assumption enables us
to treat the dispatch problem as a Markov decision problem, in which dispatch actions
for ramping plant and peaking plant are chosen to meet the residual demand at least
expected cost per period. It is of course possible to include some provision for ramping
plant in the LP model by requiring a given number of hours of ramping capacity, and
then requiring that the optimal choice of plant type provide this. The requirements
are however endogenous as they depend on the operating policies of the plants faced
with uncertain residual demand. Specifying the correct ramping capacity requirement
in LP begs the question of what this should be, which is the question that our model
seeks to answer.

The paper is laid out as follows. In the next section we outline a Markov decision
process for dispatching generation in systems with intermittent generation. We then
explore how this model can be extended to optimize capacity expansion decisions.
Section 4 describes a multistage framework for capacity expansion over a long plan-
ning horizon and applies this to some simple examples. Finally, Sect. 5 makes some
concluding remarks. The paper is intended to be an exposition of a new methodology
and so the results presented are from simple examples. More realistic examples can
be found in the first author’s PhD thesis [20].

2 A Markov decision process for dispatch

In this section we describe the Markov decision process used for dispatch with inter-
mittent generation. Consider demand net of intermittent generation. We refer to this
amount, which must be met by non-renewable electricity generation, as net demand
or residual demand. Clearly intermittent generation leaves the system with a random
level of residual demand. If the levels of renewable penetration are relatively low, then
the net demand series will look like a typical daily demand curve with some random
variation.

123



Investment and generation optimization in electricity systems… 131

Fig. 2 A realization of a Markov chain with N = 8 and M = 5, corresponding to the sequence of states
3, 5, 2, 5, 2, 1, 2, 5

To model the residual demand, we divide each 24-h period into N time intervals,
and represent residual demand by an average demand (shown by the blue curve in
Fig. 2), and a random variation about this average.

The random variations are represented by a discrete process that moves between a
finite number (M) of states (five are shown in Fig. 2.) By studying historical renewable
dispatch and electricity demand over each of these intervals, one can estimate the
parameters of a Markov chain that models the transitions between each state. We
denote the elements of theM×M transitionmatrix by pi j (t). Since these probabilities
depend on t the Markov chain is time-inhomogeneous. A typical realization of a five-
state Markov chain is shown in Fig. 2.

The investment model that we define in this paper accounts for the operations of
the chosen plant bearing in mind the variability of the residual demand process. These
operational decisions are undertaken at a different time scale from the investment
decisions, but the expected cost of them depends on what plant investment decisions
have been made. Given a Markov decision process in which state transitions occur
every few hours the expected annual operating cost of the system is best represented by
an average reward per period objective. A infinite-horizon discounted reward model
is also possible in our framework, but we do not pursue this as the discounting in
each transition would be negligible. In both cases the optimal operating policy can be
computed by solving a linear program. This linear program can then be embedded in
an “upper level” optimization problem that will determine the optimal investments in
e.g. generation capacity of various types, as we will observe.

Residual demand in our model will be satisfied by a mixture of baseload plant,
ramping plant, and peaking plant. For notational simplicity we restrict attention in
what follows to a model with a single ramping plant that can operate at discrete
levels L = {1, 2, . . . , L}, and a peaking plant that can operate at discrete levels H =
{1, 2, . . . , H}. Several ramping plants with different characteristics could be included
in themodel. However the increase in complexity would obscure themethodology that
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we are trying to illustrate. We assume that all baseload plant provides an exogenous
level of generation that reduces the residual demand uniformly, and as such is not
varied over the optimization. Peaking plant is utilized (as a last resort simple recourse
decision) to deal with demand that cannot be met by any other means. The only
remaining form of action is to move the ramping plant from its current operating level
to a feasible operating level for the next period. This action is constrained by its ramp
rate. To model this action we must record the current operating level of the ramping
plant. This requires a state variable that measures its operating level.

The seven characteristics of our Markov decision process model are formally laid
out below.

1. States The states of the Markov decision process are s = (t, l, i) where

t = period of day, 1, 2, . . . , N ,

l = operating level of ramping plant, 1, 2, . . . , L ,

i = residual demand level, 1, 2, . . . , M.

Since residual demand varies over the day, the optimal action to be taken in any
state will depend on the time of the day, and so a time variable is added to the state
space to enable the construction of a stationary optimal policy.

2. Action sets For each state s = (t, l, i), we choose an action a ∈ L × H that
determines the operating levels of the ramping plant and the peaking plant for
the next period. Any remaining demand is met by load shedding. The operating
levels of the ramping plant defined by a is restricted to a subset L(s) of L that is
determined by the ramping plant’s current operating level.

3. Decision time points The decision time points t correspond to discrete points in
time when the operating level of a ramping plant can be adjusted, e.g. every five
minutes or each half hour.

4. The immediate rewards (or costs) The immediate cost of action a in state s is
the fuel cost of the ramping plant for the corresponding time period t plus the
cost of meeting deficit in the net demand through peaking plant utilization or load
curtailment. We denote this by c(s, a).

5. Transition probabilities Pa(s1, s2) denotes the probability that the system tran-
sitions to state s2, given that it is in state s1 and action a is taken.1 If we denote
s1 = (t, l, i) and s2 = (u, k, j) then

Pa(s1, s2) =
⎧
⎨

⎩

pi j (t), if u = (t + 1)mod N , and taking action a ∈ L(s1)×H
results in operating level k for the ramping plants.

0, otherwise.

6. Planning horizon and optimality criterion We consider an infinite planning hori-
zon and optimize the average reward. Let the policy π be defined by the generation
action a ∈ L(l)×H in each state s = (t, l, i). We can state the infinite horizon

1 Note that we make the standard infinite time horizon MDP assumption that the transition probabilities
are stationary. We can extend this basic model to accommodate time-varying transition probabilities by
classifying time periods by season and time-of-day so that this assumption still applies.
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average reward Markov decision problem of finding the optimal policy π by solv-
ing

min
π

lim
N→∞E

[
1

N

N∑

ν=1

c(sν, π(sν))

]

.

This defines a minimum cost operational policy for dispatching thermal plant to
meet residual demand in case renewable generation is not available. The problem of
computing this policy can be formulated as a linear program (see e.g. [14]).

MDP: minx
∑

s∈S,a∈L(s)×H c(s, a)x(s, a)

s.t.
∑

a∈L(s)×H x(s, a)

−∑
k∈S,a∈L(s)×H Pa(k, s)x(k, a) = 0, s ∈ S,

∑
s∈S,a∈L(s)×H x(s, a) = 1,

x(s, a) ≥ 0. a ∈ L(s) × H,

s ∈ S.

In the next sectionwe showhowMDPcan be extended to inform capacity expansion
in thermal plant.

3 Capacity expansion

Wewish to select a capacity investment in peaking plant and an investment in ramping
plant that will cover predicted increases in intermittent generation. An increase in
peaking plant capacity might decrease the cost of load shedding in some states. An
increase in capacity of ramping plant changes the set of actions available in each state.
The formulation MDP in the previous section restricts the action a to be within a
subset L(s) × H of L × H, the set of operating levels at the next time period. In our
application, L(s) depends only on the current level of ramping generation, l , where
s = (t, l, i), and defines the set of operating levels k that can be ramped to from l in
one time period. For example, we might have L(s) = {l − 1, l, l + 1}.

We proceed to describe a model in which L(s) can be altered by investment deci-
sions. To do this we model L(s) using a flexibility matrix U where

Ulk =
{
1, if ramping operating level k ∈ L(s), s = (t, l, i)
0, if ramping operating level k /∈ L(s), s = (t, l, i)

.

In the example where L = {1, 2, 3} and for each s, L(s) = {l − 1, l, l + 1} we have

U =

⎡

⎢
⎢
⎢
⎢
⎣

1 1 0 0 0
1 1 1 0 0
0 1 1 0 0
0 0 0 0 0
0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎦

.
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Fig. 3 Two flexibility matrices. Investment in ramping plant gives the right hand matrix which has more
capacity (a longer diagonal) and more ramping ability (a wider diagonal)

In general U will be zero everywhere except in the neighbourhood of its leading
diagonal, thewidth ofwhichdefines howmuch ramping is feasible at the corresponding
state. Thus row l corresponds to ramping level l, and the nonzero entries in row l are
in columns corresponding to ramping levels k that are reachable from l in one period.
So this includes column l, of course, and some columns either side of column l. The
last diagonal entry of 1 corresponds to the ramping plant capacity. Flexibility matrices
allow us to augment the linear programming formulation MDP to give an equivalent
formulation MDPU with variables x(s, a), s ∈ S, a ∈ L × H.

MDPU: minx
∑

s∈S,a∈L×H c(s, a)x(s, a)

s.t.
∑

a∈L×H x(s, a)

−∑
k∈S,a∈L×H Pa(k, s)x(k, a) = 0, s ∈ S,∑

s∈S,a∈L×H x(s, a) = 1,
x(s, a) ≤ Ulk, a = (k, h), k ∈ L,

h ∈ H, s = (t, l, i),
x(s, a) ≥ 0. a ∈ L × H, s ∈ S.

Note that the constraints on ramping thatwere previouslymodeled by a ∈ L(s)×H are
now represented by bounds on x(s, a) defined by the elements of the flexibility matri-
ces. The formulation MDPU can be used to represent different amounts of ramping
generation. An investment choice g that increases ramping capacity can be modeled
by a new flexibility matrixUg with an increased number of nonzeros. Therefore some
variables x(s, a) representing (infeasible) ramping actions that were originally con-
strained to be 0 can now become positive since Ulk < Ug

lk for some l and k. This is
illustrated in Fig. 3.

We are now in a position to define an investment optimization model based on
MDPU. Suppose we are considering ramping investments g ∈ G and peaking invest-
ments h ∈ H, and wish to choose at most one of each. Let zg ∈ {0, 1} denote the
choice of ramping investment (at amortized capital cost Mg) and vh ∈ {0, 1} denote
the choice of peaking investment (at amortized capital cost Nh). We choose indices
g = g0 and h = h0 to denote existing capacity (with Mg0 = Nh0 = 0).
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The investment optimization model is then a mixed integer program:

MIP: minx
∑

s∈S,a∈L×H c(s, a)x(s, a) + ∑
g∈G Mgzg +∑

h∈H Nhvh

s.t.
∑

a∈L×H x(s, a)

−∑
k∈S,a∈L×H Pa(k, s)x(k, a) = 0, s ∈ S,∑

s∈S,a∈L×H x(s, a) = 1,
x(s, a) ≤ vh, a ∈ L × {h}, h ∈ H,

s ∈ S,

x(s, a) ≤ ∑
g∈G zgU

g
lk, a = (k, h), k ∈ L, h ∈ H,

l ∈ L, s ∈ S,∑
g∈G zg = 1,

∑
h∈H vh = 1,

zg, vh ∈ {0, 1}, x(s, a) ≥ 0, g ∈ G, h ∈ H,

a ∈ L × H, s ∈ S.

Observe that the choice vh = 1 for some h ∈ H precludes peaking-plant actions for
all other h, and the choice zg = 1 for some g ∈ G restricts ramping actions to those
that satisfy the restrictions defined by flexibility matrix Ug .

The size of problemMIP grows very rapidly with the number of investment choices
and Markov states. It is easy to see that each investment option considered gives a
new Markov decision problem with its own collection of state-action variables. To
overcome this we use the Benders decomposition approach of Dimitrov and Morton
[4]. This replaces MIP by a restricted master problem

RMP:minz,w φ + ∑
g∈G Mgzg + ∑

h∈H Nhvh

s.t. αi + β�
i z + δ�

i v ≤ φ, i ∈ O,

γi + λ�
i z + μ�

i v ≤ 0, i ∈ F,
∑

g∈G zg = 1,
∑

h∈H vh = 1,

zg, vh ∈ {0, 1}, g ∈ G, h ∈ H.

Here the first and second sets of constraints are optimality cuts and feasibility cuts.
The coefficients of these are determined by solving the following subproblem.

SP: φ (z̄, w̄)=minx
∑

s∈S,a∈L×H c(s, a)x(s, a)

s.t.
∑

a∈L×H x(s, a)

−∑
k∈S,a∈L×H Pa(k, s)x(k, a) = 0, s ∈ S,∑

s∈S,a∈L×H x(s, a) = 1,
x(s, a) ≤ vh, a ∈ L × {h}, h∈H,

s ∈ S,

x(s, a) ≤ ∑
g∈G zgU

g
lk, a = (k, h), k ∈ L, h∈H,

l ∈ L, s ∈ S,

zg ≤ z̄g, g ∈ G,

vh ≤ v̄h, h ∈ H,

x(s, a) ≥ 0, a ∈ L × H, s ∈ S.
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At each iteration i the subproblem SP is solved with a candidate solution (z̄i , v̄i ). At
optimality, the dual multipliers (βi and δi ) on the constraints containing z̄i and v̄i give
the coefficients for the i th cutting plane constraint

αi + β�
i z + δ�

i v ≤ φ

in the restricted master problem, where we set

αi = φ
(
z̄i , v̄i

)
− β�

i z̄i − δ�
i v̄i .

In case SP is infeasible, a feasibility cut is added to the restricted master problem. The
details are provided in [8].

The solution of MIP using Benders decomposition is complicated by the presence
of binary variables in the restricted master problem, which requires a branch-and-cut
procedure. We have used the procedure described by Rubin that uses the callback
classes in CPLEX 12.2. (see [15]).

4 Multistage investments

In the previous section we showed how investment in ramping capacity could be
formulated as a two-stage stochastic mixed integer program, in which the second
stage is a Markov decision process. In this section we extend our basic model to the
case where investments are to be staged over time as an uncertain future unfolds. We
discriminate here between the uncertainty arising from intermittency (modeled by a
Markov chain) and the coarse-grained uncertainty that applies to states of the world in
future years. These uncertainties (for example in future demand, fuel prices or taxation
levels) are modeled using a scenario tree N with N nodes as shown in Fig. 4. Each
node n represents a state of the world at a given future time period, occurring with
probability φn . In the tree Pn denotes the set of predecessors of node n, and Sn the set
of successors of node n. A scenario is a set of nodes consisting of a leaf node and its
predecessors.

Fig. 4 A scenario tree with
three stages and four scenarios
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The investment model we use is based on that described in [16]. We first introduce
this for a general investment problem, and then specialize it to investment in peaking
capacity and ramping plants in the presence of intermittent sources of generation.
Suppose we have initial capacity u0 ∈ R

U that we increase with actions zn ∈ {0, 1}Z
in node n of N . Investment in node n costs c�

n zn and contributes additional capacity
Knzn ≥ 0 to the system in every node h ∈ Sn . So, given actions zn , n ∈ N , the
resulting capacity in node n will be u0 + ∑

h∈Pn
Khzh . In the state of the world

corresponding to node n we operate our capacity choosing actions yn ∈ Yn , (where
Yn denotes the space of all feasible operating decisions in state of the world n), to
minimize the operating cost q�

n yn . The operations in the state of the world defined by
node n are futher restricted by capacity constraints

Vnyn ≤ u0 +
∑

h∈Pn

Khzh,

where Vn and Kn are matrices of order U × Y and U × Z respectively. Here Vn is a
matrix that transforms operational decisions yn to compute their resource usage which
is then constrained by the capacity u0 + ∑

h∈Pn
Khzh .

The capacity planning problem then becomes a multistage stochastic mixed integer
program.

SIP: min
∑

n∈N φn
(
c�
n zn + q�

n yn
)

s.t. Vnyn ≤ u0 + ∑
h∈Pn

Khzh, n ∈ N ,

yn ∈ Yn, n ∈ N ,

zn ∈ {0, 1}Z , n ∈ N .

Observe that SIP has a set of binary variables (yn, zn) defined for each scenario node,
which makes it a very large problem to solve as a single mixed integer program. The
actions yn , however, are not affected by any decisions in other nodes of the scenario tree
apart from through capacity decisions zh , h ∈ Pn . We observe that SIP has the form of
a multi-horizon stochastic programming problem as discussed by [9]. Our approach
to solving this differs from theirs in that we use the Dantzig–Wolfe decomposition
technique developed by [16].

Following [16] we assume for simplicity that each facility can be expanded at most
once over the planning horizon, and the matrix Kn of possible capacity expansions
for node n is a constant matrix K . As shown in [16] the model SIP is then equivalent
to the following problem.

SIPS: min
∑

n∈N φn
(
c�
n zn + q�

n yn
)

s.t.
∑

h∈Pn
zh ≤ 1, ∀ n ∈ N ,

z′
n ≤ ∑

h∈Pn
zh, n ∈ N ,

Vnyn ≤ u0 + K z′
n, n ∈ N ,

yn ∈ Yn, n ∈ N ,

zn, z′
n ∈ {0, 1}Z , n ∈ N .
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Observe that SIPS has a split-variable formulation where new variables z′
n have been

introduced to represent the extra capacity available for utilization in node n. This
cannot exceed the accumulated investment defined by

∑
h∈Pn

K zh .
Applying a Dantzig–Wolfe decomposition, the problem SIPS decomposes into a

restricted master problem and single node subproblems of the form

SP(n): min φn
(
q�
n yn + π�

n z
′
n

)

s.t. Vnyn ≤ u0 + K z′
n,

yn ∈ Yn, z′
n ∈ {0, 1}Z .

Here we select a single node n, and ignore all variables ym , m 
= n, while accounting
only for variables z′

n . SP(n) can be interpreted as a two-stage investment problem of
the same form as MIP in Sect. 3. Given the investment in capacity defined by z′

n , we
seek to minimize the cost q�

n yn of operating the capacity in node n.

The problem SP(n) is still a mixed integer program so it is challenging to solve
numerically. The difficulty arises in the operational constraints yn ∈ Yn which might
involve many integer variables depending on the application. Our approach will work
well if integer programming methodologies can be applied to give strong formulations
of SP(n) and branch-and-bound strategies that solve rapidly. In our case SP(n) takes
the special form

SP(n): minx
∑

s∈S,a∈L×H cn(s, a)x(s, a)−(π�
n z

′
n+σ�

n v
′
n)

s.t.
∑

a∈L×H x(s, a)

−∑
k∈S,a∈L×H Pa(k, s)x(k, a) = 0, s ∈ S,∑

s∈S,a∈L×H x(s, a) = 1,
x(s, a) ≤ v′

nh, a ∈ L × {h}, h ∈ H,

s∈S,

x(s, a)≤∑
g∈G z′ngU

g
lk, a=(k, h), k∈L, h∈H,

l ∈ L, s∈S,∑
g∈G z′ng =1,

∑
h∈H v′

nh =1,
z′ng, v′

nh ∈{0, 1}, x(s, a)≥0, g∈G, h∈H,

a ∈ L × H, s ∈ S.

Here the role of K z′
n is played by replaced by v

′
n , the peaking plant capacity choice, and∑

g∈G Ug
ik z

′
ng , which defines the increases in ramping capacity provided by the extra

capacity made available by the variable z′n . We solve SP(n) using Benders decompo-
sition as discussed in Sect. 3.

Suppose the solution to SP(n) yields z′
n = ẑn ∈ {0, 1}Z and v′

n = v̂n ∈ {0, 1}V .
This defines a column

[
ẑn v̂n

]� of capacity decisions which is added to the columns
of a Dantzig–Wolfe restricted master problem, as long as its reduced cost is negative.
The columns are generated dynamically with different πn and σ n the dual variables
at the optimal solution of the restricted master problem
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Fig. 5 A schematic showing the nonzeroes of the restricted master problem matrix for a scenario tree with
7 nodes. The columns on the left correspond to variables z, and those on the right correspond to variables
w

RMP: min
∑

n∈N φn(c�
n zn + d�

n vn) + ∑
n∈N

∑
j∈Jn

φnq�
n ŷ

j
nw

j
n

s.t.
∑

j∈Jn
ẑ jnw

j
n ≤ ∑

h∈Pn
zh, n ∈ N , [πn]

∑
j∈Jn

v̂ j
nw

j
n ≤ ∑

h∈Pn
vh, n ∈ N , [σ n]∑

h∈Pn
zh ≤ 1,

∑
h∈Pn

vh ≤ 1, n ∈ N ,
∑

j∈Jn
w

j
n = 1 n ∈ N , [μn]

w
j
n ∈ {0, 1} n ∈ N , j ∈ Jn,

vn ∈ {0, 1}V , zn ∈ {0, 1}Z n ∈ N .

The reduced cost of the column defined by the optimal solution of SP(n) is then

φn

⎛

⎝
∑

s∈S,a∈L×H
cn(s, a)x(s, a) − (π�

n ẑn + σ�
n v̂n) − μn

⎞

⎠ .

The essential matrix structure of the restricted master problem for a seven-node
binary scenario tree after four iterations is depicted in Fig. 5, where we omit the
coefficients of constraints

∑

h∈Pn

zh ≤ 1,
∑

h∈Pn

vh ≤ 1, n ∈ N .

The seven blocks of columns on the right of the matrix correspond to
[
ẑ jn v̂ j

n

]�
,

j = 1, 2, 3, 4, n = 1, 2, . . . , 7, and the blocks to the left of the matrix yield
[−∑

h∈Pn
zh −∑

h∈Pn
vh

]�
, n = 1, 2, . . . , 7. The constraints are all ≤ 0, except

for the last 7 convexity constraints on the variables wn .
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Fig. 6 Comparison of screening curve investments and MIP investments for different wind penetration.
The MIP model puts more in peak load generation, resulting in lower costs when simulated

5 Results

In this section we present the results of running the models on some examples. These
are designed to give an indication of improvement in computational performance
obtained as comparedwith alternative models, and to show how the solutions obtained
account for flexibility in investment and operation.

Thefirst experiment computes the solution toMIP inSect. 3 (called theMDPmodel)
and compares this to the solution computed using a screening curve. The results are
shown in the table in Fig. 6.

The columns headed “Theoretical Results” show that the screening curve yields
a solution with more ramping capacity and lower peaking capacity than the MDP
model. Since ramping plant has lower short-run marginal cost than peaking plant, the
screening curve model predicts a lower cost per period for the screening curve optimal
solution than the cost per period for the MDP solution. The amount of ramping plant
recommended by both models increases when the wind is more variable, while the
screening curve solution recommends a lower investment in peaking plant. In both
scenarios the screening curve model predicts a lower cost for the screening curve
solution (as one might expect).

The right-hand side of the table shows the result of simulating the operation of
each solution for 2920 consecutive eight hour-periods over 50 random sequences of
wind accounting for the limited ramping capability of the ramping plant. The cost-
per-period for each solution is averaged over the 50 simulations. Now the screening
curve solution has a higher cost per period than the solution recommended by the
MDP model. Much of this stems from insufficient peaking capacity leading to load
shedding (at very high costs). The MDP model accounts for ramping limitations and
so installs more peaking plant to account for this.

The next experiment we describe compares investments for two net demand profiles
as shown in Fig. 7. The first net demand profile comes from a wind process that is
negatively correlatedwith demand variation, sowind reduces the net demand variation.
The second net demand profile comes from a wind process that is positively correlated
with demand variation, so wind increases the net demand variation. For both cases the
net demand duration curves are the same.

The investment solutions yielded by the MDP model in each case are shown in
Table 1. The second (more volatile) net demand scenario results in more peaking
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Fig. 7 We compare investments from theMDPmodel for the two different windmodels shown. The second
profile gives a more volatile net demand curve, although both demand duration curves are identical

Table 1 Results for wind profile example from MDP model

Ramping (MW) Peaking (MW) Cost per period

Demand profile 1 700 780 $189,635

Demand profile 2 600 960 $223,047

and less ramping plant than that obtained from the MDP model in the first scenario.
Observe that the screeningmodel would give identical solutions in these two scenarios
(as they have identical net demand duration curves).

We now look at a multistage investment model with uncertain demand growth.
This model is called GEMSTONE-MDP as it is based on the GEMSTONEmodel [6].
In all experiments, a discount rate of 8% per year is applied to both investment and
operational costs in the model, so that time value of money is reflected in the reward
calculations.

We first consider a version of GEMSTONE-MDP with no wind variability but
with random demand growth as shown in Fig. 8. This shows a scenario tree with two
demand growth outcomes after each five-year period, each with a 50% probability: in
one outcome demand grows by 10% and in the other demand remains constant.

The net demand satisfies a Markov chain with 40 demand variation states but no
uncertainty so its transition matrix at each stage is a permutation matrix. The peaker
capacity and ramping capacity each have seven expansion options, and the investment
decisions with a delayed implementation period can be made at nodes 1–7 (i.e. the
first three stages of the scenario tree), whereas the operation decisions are made at
nodes 2–15.

We consider two cases. The base case assumes the same technology mix that we
have used in Sect. 3. The second (advanced technology) case assumes an improvement
in technology that doubles the ramping flexibility that would be available in five years.
The optimal investment decisions for each case are shown in Table 2.

If ramping technology is expected to be better after five years, the ramping invest-
ment is delayed in the second case to node 2 and node 3, even though the ramping
capacity decisions are the same as before. The improved ramping technology reduces
the need for peaking plant, giving an investment of 400MW rather than 500MW.
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Fig. 8 Scenario tree showing demand growth for first multistage capacity expansion problem

Table 2 Results on 15-node model, base versus technology advancement details

Dec Node Ramp Expn Peak Expn Ramp Expn Peak Expn
MW-base MW-base MW-tech adv MW-tech adv

1 200 500 – 400

2 – – 200 –

3 – – 200 –

4 – – – –

5 – – – –

6 – – – –

7 – – – –

We now consider the same demand scenarios as in the previous example, but with
increased wind penetration in some scenarios as shown in Fig. 9.

Investment decisions are made in the first 3-stages (nodes 1–7), and operational
decisions are made in nodes 2–15. These assumptions are summarized in Table 3.

The value of more flexible plant and consequently the cost to supplement inter-
mittent generation is very much related to the fuel cost of peakers (i.e. the gas price)
(Table 4). In ourmodel the gas price is assumed to bewell predicted in the next 10years
with one scenario for each existing node, but at the 15-year stage there are two gas-
price scenarios branching out for each existing node. We now have 8 additional nodes,
making the problem slightly larger than before with 23 nodes (shown in Fig. 10).

The results for GEMSTONE-MDP applied to the two cases above are shown in
Table 5.

123



Investment and generation optimization in electricity systems… 143

Fig. 9 Small 15 node scenario tree with uncertain demand and wind penetration

Table 3 Data for the 15-node model with wind variation

Node P-node Decision Operation 
Demand Wind%

1 Yes – –

2 1 Yes Yes +10% 5%

3 1 Yes Yes – 5%

4 2 Yes Yes +20% 15%

5 2 Yes Yes +10% 15%

6 3 Yes Yes +10% 5%

7 3 Yes Yes – 5%

8 4 Yes +30% 25%

9 4 Yes +20% 25%

10 5 Yes +20% 15%

11 5 Yes +10% 15%

12 6 Yes +20% 15%

13 6 Yes +10% 15%

14 7 Yes +10% 15%

15 7 Yes – 15%

With a higher level of wind penetration, GEMSTONE-MDP delays ramping invest-
ment until node 2 and node 3, varying the level of investment according to which
demand level was realised after the first time-stage (very similar to the 7-node model
shown previously). More wind variation results in 600 MW of peaker expansion in
node 1 in contrast to 500 MW in the previous model without wind variation.
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Table 4 Data for the 23-node model with wind variation and fuel cost changes

Node P-node Decision Operation 
Demand Wind% Fuel cost

1 Yes – – –

2 1 Yes Yes +10% 5% $90

3 1 Yes Yes – 5% $60

4 2 Yes Yes +20% 15% $90

5 2 Yes Yes +10% 15% $90

s 6 3 Yes Yes +10% 5% $60

7 3 Yes Yes – 5% $60

8 4 Yes +30% 25% $90

9 4 Yes +20% 25% $90

10 5 Yes +20% 15% $90

11 5 Yes +10% 15% $90

12 6 Yes +20% 15% $60

13 6 Yes +10% 15% $60

14 7 Yes +10% 15% $60

15 7 Yes – 15% $60

16 4 Yes +30% 25% $130

17 4 Yes +20% 25% $130

18 5 Yes +20% 15% $130

19 5 Yes +10% 15% $130

20 6 Yes +20% 15% $70

21 6 Yes +10% 15% $70

22 7 Yes +10% 15% $70

23 7 Yes – 15% $70

When fuel costs are uncertain, GEMSTONE-MDP delays both the ramping and the
peaking decisions to node 2 and node 3. Here the peaker capacity decision is delayed
until the future cost of fuel is clearer.

To demonstrate the effectiveness of the decomposition in GEMSTONE-MDP, we
finish this section by presenting some computation times for the models described
above. All the algorithms were implemented on a desktop machine with Windows
7 (32-bit), duo core 3.2GHz with 4Gb RAM. Software versions used are: JAVA
JDK 7 and CPLEX 14.2. Following [16] GEMSTONE-MDP solved all restricted
master problems using the CPLEX barrier optimizer without crossover. This pro-
duces more balanced dual variables for column generation. The optimal solutions
to the restricted master problems (which are linear programming relaxations) at the
final iteration were all naturally integer. A comparison of CPU times is given in
Table 6. The largest model we solved has 8 scenarios (giving a 23-node tree). Although
this took about 6h to yield an optimal solution, this is far beyond the capacity of a
standard application of mixed integer programming to this class of problems.
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Fig. 10 Small 23 node scenario tree with uncertain gas price andwind penetration. Gas prices are expressed
in $/MWh

Table 5 Results for GEMSTONE-MDP with wind variation and fuel cost uncertainty

Node Ramp Expn Peak Expn Ramp Expn Peak Expn
MW-wind MW-wind MW-fuel MW-fuel

1 – 600 – –

2 300 – 400 400

3 100 – 100 500

Table 6 CPU Time Comparison

Stages Scenario Investment SIP Benders GEMSTONE-MDP
nodes options (CPUs) (CPUs) (CPUs)

1 1 10 12.5 26.4 –

3 7 15 OOM 25,892.1 6,328.2

4 15 15 OOM OOM 15,505.6

5 23 15 OOM OOM 21,091.7

Here SIP is the mixed integer programming problem applied to the scenario tree, Benders is the SIP with
Benders cuts representing the operational costs and GEMSTONE-MDP is the decomposition model. (OOM
denotes out of memory)

6 Final comments

We have described amethodology for combining coarse-grained uncertainty over long
time horizons with fine-grained uncertainty in operations. The ability to solve stochas-
tic planning problems with multi-horizon scenario trees is limited by the capacity of
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mixed integer programming codes to scale. TheDantzig–Wolfe decompositionmethod
described in this paper provides one approach to tackling this computational problem.
An appealing feature of this methodology is the ability to target specific algorithms
at the operational subproblems. In our case we applied Benders decomposition to an
average reward Markov decision process represented as a linear program. The result-
ing algorithm is efficient enough to solve a stochastic capacity programming model
with both fine and coarse uncertainties on a common desktop machine.

The solutions obtained by our GEMSTONE-MDPmodel are fundamentally differ-
ent from those produced using screening curves and give better results when simulated
with out-of-sample data. The objective functions in the new models more accurately
reward flexible generation, and this often leads to different optimal capacity decisions.

Our models have assumed that levels of wind generation investment are exoge-
nous. Such an assumption would be valid if an analyst were seeking the levels of
conventional plant required to support a given level of installed wind capacity. An
interesting extension would be to seek optimal levels of wind investment, given its
effect on the variability in residual demand. This however would require alterations
to the model so as to incorporate the change in transition matrices governing residual
demand that would accompany such an investment, and this is not easy to represent
in the decomposition framework we employ.

Finally, the results we obtain are for optimal capacity expansion by a social planner,
to be used as a benchmark.Asmentioned in the introduction, onemight expect different
expansion plans to be produced from equilibrium models in which agents are risk
averse or exercise market power. Computing equilibrium solutions to such models is
an active area of research.
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