
Energy Syst (2017) 8:785–814
DOI 10.1007/s12667-016-0209-5

ORIGINAL PAPER

Non-dominated sorting differential evolution algorithm
for the minimization of route based fuel consumption
multiobjective vehicle routing problems

Iraklis-Dimitrios Psychas1 · Magdalene Marinaki1 ·
Yannis Marinakis1 · Athanasios Migdalas2,3

Received: 22 September 2015 / Accepted: 5 May 2016 / Published online: 18 May 2016
© Springer-Verlag Berlin Heidelberg 2016

Abstract In this paper, three parallel multi-start non-dominated sorting differential
evolution algorithms (PMS-NSDEs) are proposed for the solution of four multiobjec-
tive route based fuel consumption vehicle routing problems (MRFCVRPs) and their
results are compared with the results of a parallel multi-start NSGA II algorithm.
All these algorithms use more than one initial population of solutions. In each algo-
rithm a variable neighborhood search algorithm for the improvement of each solution
separately is used. The problems that are formulated with two competitive objec-
tive functions are the multiobjective symmetric and asymmetric delivery route based
fuel consumption vehicle routing problem (MSDRFCVRP and MADRFCVRP) and
the multiobjective symmetric and asymmetric pick-up route based fuel consumption
vehicle routing problem (MSPRFCVRP andMAPRFCVRP). The objective functions
correspond to the optimization of the time needed for the vehicle to travel between two
customers or between the customer and the depot and to the route based fuel consump-
tion of the vehicle considering the traveled distance, the load of the vehicle, the slope
of the road, the speed and the direction of the wind, and the driver’s behavior when
the decision maker plans delivery or pick-up routes. A number of modified Vehicle
Routing Problem instances are used in order to measure the quality of the proposed
algorithms.
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1 Introduction

In real world applications, most of the optimization problems have more than one
objective functions for optimization. Thus, one way to solve these problems (besides
the multicriteria optimization, the hierarchical optimization, the goal programming
and so on) is the use of an evolutionary multiobjective approach where the finding of
the Pareto Front of the non-dominated solutions is needed [13]. One of the problems in
the supply chain management that could be formulated as a multiobjective optimiza-
tion problem is the vehicle routing problem (VRP) as a number of different objectives
functions could be used. The VRP belongs to the class of NP-hard optimization prob-
lems [34]. For an overview of theVRPplease see [45,77,78]. In realworld applications
in order to prove that the quality of the routes is good enough usually more than one
criterion are optimized. Thus, in recent years a large number ofMultiobjective Vehicle
Routing problems have been published [36]. The multiobjective vehicle routing prob-
lem (moVRP) is a VRP problem where simultaneous optimization of more than one
objective functions is required. For more information about moVRPs please see [43].

In recent years, the optimization of energy reduction or fuel consumption in the
Vehicle Routing Problem and other problems has been studied. The calculation of
the tonne-kilometers (tonne-km or tkm) of the vehicle taking into account the cov-
ering distance and the load of the vehicle could be an easy way to calculate the
“Fuel Efficiency” and the “CO2 emissions” of a vehicle [37,55,56]. Considering the
Leonardi’s et al. research [47] the “Efficiency of the vehicle use” can be calculated
by a ratio tonne-kilometres/mass-kilometres and in order to calculate the “CO2 Effi-
ciency” they assume that there are some other real route and environmental parameters
that are multiplied with the “Efficiency of the vehicle use” in order to calculate the
“CO2 Efficiency” of a vehicle. In order to calculate the mass-kilometres, the weight
of the empty vehicle is added to the load of the vehicle. Another parameter that can be
taken into account for the calculation of fuel consumption is the parameter of speed
[5,6,25,42,49,74]. Xiao et al. [80] propose the fuel consumption rate (FCR) for a
VRP (FCVRP) in order to minimize the fuel consumption using the distance traveled
and the load. The FCR and the “CO2 emission rate” (CER) were used by Zhang et al.
[83] in order to calculate the amount of CO2 emissions of a vehicle. A bi-objective
green vehicle routing problem was proposed in [33] in order to minimize the total
traveled distance and the CO2 emissions. In this research it is referred that in real
world problems the vehicle’s load, the vehicle’s speed, the weather conditions (head-
winds or back-winds) and the traffic congestion are factors that could affect the fuel
economy of a vehicle. The slope of the road (measured in grades between 0 and 10 %)
could affect the CO2 emissions of a vehicle [12,79]. In [17] a bi-objective pollution
routing problem’s model is proposed where the first objective function minimizes the
CO2 emissions of a vehicle and the second objective function minimizes the driving
time. For two more complicated multiobjective Energy VRPs please see [41,59]. Two
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other energy Pick-up and Delivery VRP models are analyzed in [50,75]. Some other
CO2 emissions minimizing models are presented in [10,23,38,39,48,76]. Also, CO2
emissions could be minimized by creating shortest routes and by traveling with the
best speed for the environment [70]. For a more extended review for the energy and
green vehicle routing problems please see [44,51].

In this paper, three parallel multi-start non-dominated differential evolution algo-
rithms (PMS-NSDEs) are used for the solution of the proposed problems. In order
to apply the differential evolution algorithm [63,73] in multiobjective optimization
problems the single objective algorithm has to be modified in such a way in order to
calculate the set of non-dominated solutions. The two main issues that they should be
solved in a multiobjective differential evolution algorithm are how the diversity of the
solutions will be maintained and how to retain and select the best individuals [8,57]. A
number of multiobjective differential evolution algorithms have been applied mainly
in continuous optimization problems and in some cases in combinatorial optimization
problems [1–4,9,32,40,62,66,67,71,81,82].

Although the differential evolution algorithm is suitable for continuous optimization
problems, in the last years a number of publications concerning the application of the
differential evolution algorithm in single and multiobjective routing problems have
been produced. In 2009, Erbao and Mingyong [20] proposed a hybrid intelligent
algorithm based on the Differential Evolution algorithm in order to solve the vehicle
routing problem with fuzzy demands. In the next year (2010), the same group of
authors, Mingyong and Erbao [58] using an intelligent DE algorithm (IDE) solved a
vehicle routing problem with simultaneous pickups and deliveries and time windows
and an open vehicle routing problem with fuzzy demands [21]. Three years later
Silva et al. [72] solved the capacitated vehicle routing problem using four discrete
DE algorithms. In 2014, Erbao et al. [22] solved an open vehicle routing problem
with uncertain demands using the IDE algorithm but in that case it is not necessary
for the vehicle to return to its initial location after the service of the costumers. In
2015, Marinakis et al. [54] solved a vehicle routing problem with stochastic demands
and a probabilistic traveling salesman problem using differential evolution algorithm.
Variants of DE algorithm have been used for the solution of the traveling salesman
problem (TSP). In [69], Sauer proposed a discrete DE algorithm using two different
local search methods for the solution of the TSP while in 2015, Psychas et al. [64]
proposed two variants of the DE algorithm in order to solve the multiobjective TSP.

In this paper, for the solution of the multiobjective vehicle routing problems an
improved version of themethod published in [64] for the solution of themultiobjective
traveling salesman problem is presented. In [64], three new trial vector equations
have been presented and the produced algorithm, denoted as non dominated sorting
differential evolution algorithm (NSDE), used the rank and the crowding distance to
sort the solutions of the parents and the offspring of each iteration. The results of
the algorithm (in the multiobjective traveling salesman problem) were compared with
the results of other multiobjective differential evolution algorithms (MODE) in order
to give the efficiency of the proposed methodology. In this version of the algorithm,
denoted as parallel multi-start non-dominated differential evolution algorithm (PMS-
NSDE), a number of common characteristics with the previous version exist (the
three trial vector equations) but also there are four basic differences (improvements)
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of the proposed algorithm. In the proposed algorithm, more than one different initial
populations are created and the step of the algorithm that sorts the parents and the
offspring according to the rank and the crowding distance is in a different phase of the
algorithm. Also, the VNSmethod that is used in the proposed research is the samewith
the one used in [65] and is much more sophisticated than the VNS method that was
used at [64]. Finally, in the proposed algorithm there is an extra step that improves the
best solutions in every iteration using the proposed VNS method [65]. Also, for this
research in order to test the efficiency of the proposed algorithms the parallelmulti-start
NSGA II (PMS-NSGA II) algorithm is used and is compared with them. PMS-NSGA
II is an improved version of NSGA II (non-dominated sorting genetic algorithm)
[15,16] and was originally proposed in [65]. A number of variants of the NSGA II
algorithm have been used in the literature for solving multiobjective Vehicle Routing
Problems, e.g. for solving VRP with route balancing [35], for solving multiobjective
VRPproblemswith timewindows [30] and for solving a green vehicle routing problem
[33]. Multiobjective Genetic Algorithms for the solution of Multiobjective Vehicle
Routing Problems have been used in [7,61].

The structure of the paper is as follows. In Sect. 2, the optimization models of the
MRFCVRPs are described. In Sect. 3, the proposed parallel multi-start algorithms are
presented and analyzed. In Sect. 4, the evaluation measures used in the comparisons
are presented. In Sect. 5, the computational results are presented. In Sect. 6, a method
to decide the most suitable for a decision maker solution of a Pareto front is proposed
and, finally, concluding remarks and the future research are given in the last section.

2 Multiobjective route based fuel consumption vehicle routing problems

In this paper, four multiobjective route-based fuel consumption vehicle routing prob-
lems (MRFCVRPs) are analyzed and formulated using three different objective
functions that are given in the following. Each of the four problems is a 2-objective
optimization problem. The vehicle routing problems analyzed in this research differ
between them. Two of them are delivery problems and the other two are pick-up prob-
lems. Thus, from the three objective functions presented in this paper the first two
are used for the delivery problems while the first and the third objective functions are
used for the pick-up problems. This formulation is an improvement of the formulation
that was presented in [65] where the multiobjective energy reduction vehicle routing
problem was formulated and solved.

For all multiobjective route-based fuel consumption vehicle routing problems
(MRFCVRPs) studied in this paper, the first objective function is common for the
delivery and the pick-up problems and is used for the minimization of the time needed
to travel between two customers or a customer and the depot. Thus, if tκi j is the time
needed to visit customer j immediately after customer i using vehicle κ and sκ

j is the
service time of customer j using vehicle κ , then, the first objective function is [65]:

minOF1 =
n∑

i=1

n∑

j=1

m∑

κ=1

(tκi j + sκ
j )x

κ
i j (1)
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Table 1 Grade Index and Beaufort Index

Grade Index (Gi) Beaufort Index (Bi)

Uphill Downhill Head-wind Back-wind

1+(Grade/10 %) 1−(Grade/10 %) 1+(Beaufort/12) 1−(Beaufort/12)

where n is the number of nodes and m is the number of homogeneous vehicles and
the depot is denoted by i = j = 1.

The second objective function is used for the minimization of the route based
fuel consumption (RFC) taking into account, also, real life route parameters (weather
conditions or uphills and downhills or driver’s behavior) [33,47] in addition to the
load and the traveled distance when the vehicle travels between two customers or a
customer and the depot in the case that the vehicle performs only deliveries in its route.
The vehicle should begin with full load and after a visitation to a customer the load is
reduced based on the demand of the customer. If we consider that the more loaded is
the vehicle the more fuel it consumes, we take the following objective function:

minOF2=
n∑

j=1

m∑

κ=1

c1 j x
κ
1 j

(
1+ yκ

1 j

Q

)
r1 j +

n∑

i=2

n∑

j=1

m∑

κ=1

ci j x
κ
i j

(
1+ yκ

i−1,i −Di

Q

)
ri j

(2)

with the maximum capacity of the vehicle denoted by Q, the i customer has demand
equal to Di and D1 = 0, xκ

i j denotes that the vehicle κ visits customer j immediately
after customer i with load yκ

i j and yκ
1 j = ∑n

i=1 Di for all vehicles as the vehicle begins
with load equal to the summation of the demands of all customers assigned in its route
and ci j is the distance from node i to node j . The parameter ri j corresponds to the
route parameters from the node i to the node j and it is always a positive number.
Due to the fact that it may be ri j �= r ji the product ci j ri j leads to an asymmetric
formulation of the whole problem. If the values of ri j is lower than 1 we consider
that the route from i to j is a downhill or the wind is back-wind or the driver drives
with smooth shifting. If ri j is larger than 1 we consider that the route from i to j is an
uphill or the wind is a head-wind or the driver drives with aggressive shifting. If the
ri j = 1∀(i, j) that belongs to the route, then, the problem is a symmetric problem.

In order to calculate the ri j parameter in real life problems the following method
is used: Based on Cicero et al. [12] the roads where the vehicles can travel safely
have slope in grades between 0 and 10 %. Also, the beaufort scale that is used for
the measurement of the wind speed consists of an integer number between 0 and 12
[14]. In the proposed model, the Grade Index (Gi j ) and the Beaufort Index (Bi j ) are
calculated in two different ways considering the road (if it is uphill or downhill) and
if the wind is head-wind or back-wind taking into account Table 1.

Considering the Gi j and the Bi j , the ri j parameter is calculated as follows:

ri j = Gi j + Bi j
2

(3)

123



790 I.-D. Psychas et al.

The third objective function is used for the minimization of the route based fuel
consumption (RFC) in the case that the vehicle performs only pick-ups in its route.
The vehicle should begin with empty load and after a visitation to a customer the
load is increased based on the pick-up amount of the customer. If we consider that the
more loaded is the vehicle the more fuel it consumes, we take the following objective
function:

minOF3 =
n∑

j=1

m∑

κ=1

c1 j x
κ
1 j r1 j +

n∑

i=2

n∑

j=1

m∑

κ=1

ci j x
κ
i j

(
1 + yκ

i−1,i + Di

Q

)
ri j (4)

with ri j is the route parameters as in the OF2 and yκ
1 j = 0 for all vehicles as the vehicle

begins with empty load. In that case the Di is the pick-up amount of the customer i .
The constraints of the problems are the following:

n∑

j=1

m∑

κ=1

xκ
i j = 1, i = 1, . . . , n (5)

n∑

i=1

m∑

κ=1

xκ
i j = 1, j = 1, . . . , n (6)

n∑

j=1

xκ
i j −

n∑

j=1

xκ
j i = 0, i = 1, . . . , n, κ = 1, . . . ,m (7)

n∑

j=1, j �=i

yκ
j i −

n∑

j=1, j �=i

yκ
i j = Di , i = 1, . . . , n, κ = 1, . . . ,m, for deliveries

(8)
n∑

j=1, j �=i

yκ
i j −

n∑

j=1, j �=i

yκ
j i = Di , i = 1, . . . , n, κ = 1, . . . ,m, for pick − ups

(9)

Qxκ
i j ≥ yκ

i j , i, j = 1, . . . , n, κ = 1, . . . ,m (10)

xκ
i j =

{
1, if (i, j) belongs to the route
0, otherwise

(11)

Constraints (5) and (6) represent that each customer must be visited only by one
vehicle; constraints (7) ensure that each vehicle that arrives at a node must leave
from that node also. Constraints (8) and (9) indicate that the reduced (if it concerns
deliveries) or increased (if it concerns pick-ups) load (cargo) of the vehicle after it
visits a node is equal to the demand of that node. Constraints (10) are used to limit the
maximum load carried by the vehicle and to force yκ

i j to be equal to zero when xκ
i j =

0 while constraints (11) ensure that only one vehicle will visit each customer.
Another differentiation of the problems is when a symmetric or an asymmetric case

is studied. When the multiobjective symmetric delivery route-based fuel consumption
vehicle routing problem (MSDRFCVRP) is studied, the combination of OF1 and
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OF2 is required considering that ri j = 1∀(i, j) that belongs to the route while when
the multiobjective asymmetric delivery route-based fuel consumption vehicle routing
problem (MADRFCVRP) is studied the combination of OF1 and OF2 is required con-
sidering that ri j �= r ji∀(i, j) that belongs to the route. The same holds when a problem
with pick-ups is solved. More precisely, when the multiobjective symmetric pick-up
route-based fuel consumption vehicle routing problem (MSPRFCVRP) is studied, the
combination of OF1 and OF3 is required considering that ri j = 1∀(i, j) that belongs
to the route while when the multiobjective asymmetric pick-up route-based fuel con-
sumption vehicle routing problem (MAPRFCVRP) is solved, the combination of OF1
and OF3 is required considering that ri j �= r ji∀(i, j) that belongs to the route.

3 Parallel multi-start algorithms

In this Section, all the proposedMultiobjective algorithms are presented. The common
steps of all algorithms are the solutions’ representation, themethod using for producing
the initial solutions and the variable neighborhood search (VNS) algorithm (in order to
increase the exploitation abilities of each solution) that were presented and analyzed
in detail at [65].

For all the algorithms, the solutions are represented with the path representation of
the tour. Each solution (individual for the differential evolution algorithm) is repre-
sented by a n-dimensional vector in problem space and its performance is evaluated
on the predefined fitness functions. For example, if we have a solution with five nodes
a possible path representation would be the “1 2 3 4 5”. If these routes do not start with
node 1 (the depot), we find it and put it at the beginning of the route. As we would
like the size of the solution’s vector to be maintained constant for all members of the
population and for all the procedures in an iteration and, finally, for all iterations we
use a path representation in the solutions without using in the solution’s vector the
return to the depots. The solution vector is transformed in the form of “1 2 3 1 4 5 1”
with the addition of the depots only when the objective functions of the problem are
calculated considering the constraints of the problem in order to find afterwards from
which node the vehicle will return to the depot. Also, for all the algorithms we assume
that we have X different ini tial populations with W solutions for each population.

Each population is separated in K sub-populations of w solutions, where K is the
number of objective functions (w = W/K ). For the calculation of the first solution
of each sub-population, a different method is applied (VNS algorithm [29,65],the
Nearest Neighborhoodmethod [46] and a variant of GRASPmethod [24]). The variant
of GRASP algorithm works as follows: In this GRASP algorithm instead of using the
restricted candidate list (RCL), we use the following procedure: Always node 1 is
used as a starting node. Then, a random number (Rand) equal to 0 or 1 is generated.
If Rand = 0, then, the nearest node to a node i is visited. If Rand = 1, the second
nearest node to a node i is visited. For the calculation of the rest solutions of each
sub-population a Swap method [46], the 2-opt method [52] and a random method are
used. The variant of variable neighborhood search (VNS) works as follows: initially,
the 2-opt local search algorithm [46] is applied for a specific number of iterations
(localmax ). For the proposed algorithm, the vnsmax and the localmax were set equal to
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10 in order not to increase the computational time of the algorithm. If 2-opt improves
the solution (the new solution dominates the old solution), then, 2-opt algorithm is
applied for localmax number of iterations. On the other hand, if 2-opt is trapped
in a local optimum (the new solution is dominated by the old solution or the two
solutions are non-dominated between them) when localmax number of iterations has
been reached, the 3-opt algorithm [46] is applied. The same procedure is followed
when the current local search algorithm is trapped in a local optimum, by replacing the
current algorithm initially with the Swap algorithm, afterwards with the 2-2 exchange
algorithm, then, with the 1-0 relocate and finally, with the 2-0 relocate algorithms [46].
For more information please see [65].

3.1 Parallel multi-start non-dominated sorting differential evolution algorithms
(PMS-NSDEs)

After the calculation of the initial population, the main phase of the non-dominated
sorting differential evolutionmethod is applied. The single objective differential evolu-
tion algorithmworks as follows. Initially, the mutation operator produces a trial vector
ui (i t) for each individual xi (i t) of the current population by mutating a target vector
with a weighted differential. The trial vector, ui (i t), is generated as follows: a target
vector, xi1(i t), is selected from the population, such that i �= i1. Then, two individuals,
xi2 and xi3 , are selected randomly from the population such that i �= i1 �= i2 �= i3 [73].
Using these individuals, the trial vector is calculated by perturbing the target vector
as follows:

ui (i t) = xi1(i t) + β(xi2(i t) − xi3(i t)) (12)

where β ∈ (0,∞) is the scale factor. The upper bound of β is usually the value 1
because as it has been proved if the β > 1 there is no improvement in the solutions
[19,63].

After the completion of the mutation phase of the algorithm a crossover operator
Cr is, usually, applied. Then, depending on the comparison of the Cr value with a
randomnumber for each element of the solution vector, randi (0, 1), the corresponding
value is inherited either from the trial vector or from the parent. In the next generation
the fitness function of the parent and of the offspring are compared and the best one
survives [19,63,73].

The first issue that we have to solve in the algorithm was that the solutions for the
problem are represented via the path representation of the tours but this representa-
tion is not suitable for a DE algorithm. Thus, for the calculation of each trial vector
the solutions are transformed into a floating point in the interval [0,1] and after the
calculation of the trial vector the solutions are transformed back into integer points
creating new routes [53,65].

In the proposed algorithms, the procedure starts with the mutation operator for the
production of a trial vector for each individual of the current population by mutating
a target vector with a weighted differential. In this research, three mutation operators
are applied. All equations are the same with the ones used in [64]:
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ui (i t) = xi1(i t) + β(xi2(i t) − xi3(i t)) (13)

ui (i t) = xi1(i t) + β(Paretoi2(i t) − Paretoi3(i t)) (14)

ui (i t) = Paretoi1(i t) + β(xi2(i t) − xi3(i t)) (15)

where the solutions xi are random solutions from the population and the solutions
Paretoi are random solutions from the Pareto front. In the proposed algorithms, the
crossover operator is not used as it was observed after a large number of tests using
different values for Cr that the results were the best when the Cr is set equal to 1.
The only difference between the three algorithms are these equations and, thus, the
three different produced algorithms are denoted as PMS-NSDE1, PMS-NSDE2 and
PMS-NSDE3, using Eqs. 13, 14 and 15, respectively.

The calculation of the trial vectors could produce some inefficient (due to the
transformation of the solutions from continuous values (suitable for the equations of
DE) to discrete values (path representation) and vice versa) and dominated from the
parents’s solutions of the previous iteration. Thus, it was decided to add another phase
for the calculation of the new parents in the algorithm in order to take advantage of
possible good new and old solutions in the whole set of individuals. Thus, after the
calculation of the trial vectors the parents-individuals xi (i t) and the trial vectors ui (i t)
are combined in a new vector and, then, themembers of the new vector are sorted using
the rank and the crowding distance as in the NSGA II algorithm [65]. The first W
individuals of the new vector are the produced solutions of the iteration i t . With this
procedure we give the opportunity to the solutions of the previous iteration that are
dominated from the new solutions to be improved in the current iteration and we avoid
to add to the next iterations inefficient solutions that will probably be produced using
the equations of the trial vector. At the next step the Variable Neighborhood Search
(VNS) algorithm is applied to the individuals with both the vnsmax and the localmax

equal to 10 [65].
The new solution of each individual is found by using the following observation.

If the offspring in iteration i t dominates its parent of the iteration i t − 1, then, the
parent is replaced by the offspring. On the other hand, if the parent dominates the
offspring, then, the parent remains in the population. Finally, if these two solutions
are not dominated between them, then, the parent remains in the population. This is
performed as it is desirable to give to the individualmore exploration abilities. It should
be noted that the non-dominated solutions are not deleted from the Pareto front and,
thus, the good solutions will not disappeared from the population. Finally, in order to
improve the solutions the VNS method is applied at the best solutions with both the
vnsmax and the localmax equal to 10 [65]. In the next iterations in order to insert an
individual in the Pareto front archive there are two possibilities. First, the individual
is non-dominated with respect to the contents of the archive and second it dominates
any individuals in the archive, but in this case all the dominated individuals have to
be deleted from the archive. At the end of each iteration, from the non-dominated
solutions from all initial populations the Total Pareto Front is updated considering
the non-dominated solutions of the last ini tial population. A pseudocode of the
algorithm is the following:
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Do while the maximum number of the Populations has not been reached:
Initialization
Selection of the number of individuals
Generation of the initial population
Evaluation of the population for each objective function
Selection of the β

Initialization of the Population’s Pareto Front
Main Phase
Do while the maximum number of generations has not been reached:

For every individual
Calculate the trial vector
Evaluation of the individuals trial vector for each objective function

Endfor
Add the individuals and the produced trial vectors in a new vector
Calculate the rank and the crowding distance of the individuals

and the produced trial vector
Sort them according to rank and crowding distance
Select the first W individuals
Application of VNS on each individuals
Update the best solution of each individual
Update of the Pareto front

Enddo
Return Population’s Pareto Front

Enddo
Return Total Pareto Front

In order to test the efficiency of the proposed parallel multi-start non-dominated
sorting differential evolution algorithms, a parallel multi-start NSGA II algorithm [65]
is used to compare with the proposed algorithms.

4 Evaluation measures

In this paper, as the optimum Pareto Front is not known, four different evaluation
measures are used for the comparison of the Pareto Fronts of the four algorithms [65]:

– The range to which the front spreads out is described by the following equation
[84]:

Mk =
√√√√

K∑

i=1

max{‖ p′ − q ′ ‖} (16)

where K is the number of objectives and p′, q ′ are the values of the objective
functions of two solutions that belong to the Pareto front.

– The number of solutions of the Pareto front (L).
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– The � measure includes information about both spread and distribution of each
solutions [60]. For the calculation of the�measure the following equation is used:

� = d f + dl + ∑|S|−1
i=1 |disti − dist |

d f + dl + (|S| − 1)dist
(17)

where S is the number of the intermediate solutions between the extreme solu-
tions, d f and dl are the Euclidean distances between the extreme solutions
[60] and the boundary solutions [60] of the obtained non-dominated set [16],
disti is the distance from a boundary solution i to the next boundary solution,
i = 1, 2, . . . , (S − 1) and dist is the average value of all disti distances.

– Coverage [68,84]: for a pair (A1, B1) of approximation sets of Pareto solutions of
two different algorithms the fraction of solutions in B1 that are weakly dominated
by one or more solutions in A1. The coverage measure (C measure) is calculated
by the following equation:

C(A1, B1) = |{b ∈ B1; ∃a ∈ A1 : a ≤ b}|
|B1| . (18)

5 Computational results

The whole algorithmic approach, which was implemented in Visual C++, was tested
on a set of instances. As it was mentioned previously, in the multiobjective (K -
objective) VRP, K different objective functions are defined. As there are no data
sets of benchmark instances available for the solution of this kind of multiobjective
VRP problems, we created a number of instances as follows. Initially, we took five
instances with the coordinates of 100 cities from the TSPLIB (kroA100, kroB100,
kroC100, kroD100, and kroE100). The data for the capacity, the time limits and the
demands were taken from the third instance (par3) of the classic Christofides bench-
mark instances [11] used for the solution of the capacitated vehicle routing problem
(CVRP).

Thus, we created a new set of instances combining the Kro#100 instances (where #
corresponds to A or B or C or D or E) with the par3 instance where the coordinates of
100 nodes are taken from the corresponding kro#100 data set and the corresponding
demand of each of the 100 nodes, the maximum tour length, the service time and
the capacity of each vehicle were taken from the par3 instance. Also, the maximum
tour length, the service time and the capacity of each vehicle were taken from the
par3 instance. The combination of these five instances are used for the creation of
the instances for the 2-objective functions problems. For example, in order to create a
2-objective functions asymmetric problem instance, we use for the calculation of the
values of the first objective function data from the combination kroA100par3, while
for the calculation of the values of the second objective function we use data from
the combinations kroB100par3, kroC100par3 and kroD100par3. For the production
of the route parameters (ri j ) Table of the second objective function the necessary data
are taken from kroC100par3, kroD100par3 and kroB100par3 as follows. The route
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parameters of the network is an asymmetric table with positive numbers. In order to
create those numbers we divide the route parameters’ Table in two parts. In the first
part all elements that are in the down side from the main diagonal are calculated using
the Euclidean distance between the nodes corresponding to the kroC100par3 set and
in the second part all elements that are at the top of the main diagonal are calculated
using the Euclidean distance between the nodes corresponding to the kroD100par3 set.
Then, each element of the route parameters’ Table is divided with the corresponding
element of a table created by calculating the Euclidean distance between the nodes
corresponding to the kroB100par3 set.

In order to create a route for every objective function the time and the capacity con-
straints are needed. In case of solving a 2-objective functions symmetric problem with
first objective function the OF1 and second objective function the OF2 (OF1-OF2
for the MSDRFCVRP) or the OF3 (OF1-OF3 for the MSPRFCVRP), the combi-
nation “A-B” in all Tables and Figures means that A corresponds to KroA100par3
and B corresponds to kroB100par3. Generally in a problem when the OF1 objective
function is used the Euclidean distances of the corresponding nodes of the instance
correspond to the time durations. In the case that a 2-objective functions asymmetric
problem is selected to be solved with first objective function the OF1 and second the
OF2 (OF1-OF2 for the MADRFCVRP) or the OF3 (OF1-OF3 for the MAPRFCVRP)
the notation for each new generated instance in all corresponding tables includes a
combination of 4 different instances. Thus, a notation “A-B-CD”, means that for the
calculation of the time duration the data from kroA100par3 are used, for the calcula-
tion of the distance the data from kroB100par3 were used while for the calculation of
the route parameters needed for the OF2 (or OF3) objective function, the data from
kroC100par3, kroD100par3 and kroB100par3 were used as it was described previ-
ously.

The parameters of all the algorithmswere selected after testingwith different values
and the ones selected are those that gave the best computational results, taking into
account the quality of the solutions and the computational time needed to achieve
these solutions and, also, taking into account the fact that we would like to test the
algorithms with the same function evaluations. Thus, the selected parameters for each
algorithm are given in the following:

Parallel multi-start NSDEs

– Number of individuals for each initial population: 100.
– Number of generations: 500.
– Number of initial populations: 10.
– β = 0.5

Parallel multi-start NSGA II

– Number of individuals for each initial population: 100.
– Number of generations: 500.
– Number of initial populations: 10.

After the selection of the final parameters, the four algorithms were tested for ten
combinations for the two objective functions. In the following tables the comparisons
performed based on the four evaluation measures presented previously are presented
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Table 2 Results of the first three measures for the four algorithms in ten instances when the symmetric
delivery problem using objective functions OF1-OF2 is solved

Multiobjective symmetric delivery route based fuel consumption VRP

OF1-OF2 PMS-NSDE1 PMS-NSDE2 PMS-NSDE3 PMS-NSGA II

L Mk � L Mk � L Mk � L Mk �

A-B 55 583.11 0.70 48 575.55 0.72 51 575.55 0.72 58 585.38 0.66

A-C 43 590.45 0.69 47 587.11 0.68 47 605.90 0.62 55 587.85 0.65

A-D 49 577.26 0.587 48 568.21 0.61 42 582.62 0.68 57 572.40 0.588

A-E 36 572.06 0.57 33 579.87 0.70 52 590.56 0.69 47 586.90 0.61

B-C 50 586.03 0.58 44 572.77 0.61 52 579.81 0.70 68 573.00 0.61

B-D 39 587.80 0.69 46 567.84 0.75 40 581.86 0.70 61 571.94 0.56

B-E 48 584.47 0.66 59 596.16 0.76 50 595.06 0.63 50 554.21 0.51

C-D 52 582.73 0.66 59 573.96 0.75 52 571.73 0.72 50 578.72 0.71

C-E 51 596.56 0.52 43 572.21 0.78 40 588.11 0.78 55 558.80 0.68

D-E 63 580.33 0.66 49 591.55 0.50 48 604.42 0.74 54 601.82 0.59

and in the figures a selected number of Pareto fronts are given. More precisely, we
use for evaluation measures the number of solutions (L) in the non-dominated set, the
maximum extend in each dimension (Mk), the minimization of the spread of solutions
(�) and the Coverage (C). In all the tables except those that contain the values of
the Coverage the best value for each measure from the comparison of all algorithms
is signed as bold while from the comparison of the three PMS-NSDE algorithms
the best values are underlined in the tables. In general, it is preferred the L , the Mk

and the C measures to be as larger as possible and the � value to be as smaller as
possible.

In Tables 2, 3, 4 and 5, the results of the four measures for the four algorithms in
ten combinations of instances for the multiobjective delivery route-based fuel con-
sumption problems are presented. More precisely, in Table 2 and in Table 4 the results
of the symmetric problem (OF1-OF2 for the MSDRFCVRP) (Table 2) and of the
asymmetric problem (OF1-OF2 for the MADRFCVRP) (Table 4) using the first two
objective functions for the first three evaluation measures are presented, respectively.
On the other hand, in Tables 3 and 5 the results for the last evaluation measure (C)
for the same formulations (symmetric and asymmetric), same objective functions and
same instances as in Tables 2 and 4 are presented, respectively. In Tables 6, 7, 8 and
9 the results of the four measures for the four algorithms for ten combinations of
instances for the multiobjective pick-up route-based fuel consumption problem are
presented. More precisely, in Tables 6 and 8 the results of the first three measures
in the symmetric (Table 6) and in the asymmetric (Table 8) case are given respec-
tively while in Tables 7 and 9 the results of the fourth measure in the symmetric
(Table 7) and in the asymmetric (Table 9) case are presented, respectively. In Fig. 1,
the Pareto Fronts of the symmetric delivery problem using objective functions OF1-
OF2 (first part of the figure) and of the symmetric pick-up problem using objective
functions OF1-OF3 (second part of the figure) for the instance “D-E” for all algo-
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Table 3 Results of the C measure for the four algorithms in ten instances when the symmetric delivery
problem using objective functions OF1-OF2 is solved

OF1-OF2 Multiobjective symmetric delivery route based fuel consumption VRP

A-B NSDE1 NSDE2 NSDE3 NSGA II B-D NSDE1 NSDE2 NSDE3 NSGA II

NSDE1 0 0.271 0.255 0.966 NSDE1 0 0.522 0.450 0.934

NSDE2 0.436 0 0.353 0.931 NSDE2 0.410 0 0.425 0.885

NSDE3 0.618 0.396 0 0.931 NSDE3 0.308 0.261 0 0.820

NSGA II 0.018 0.042 0 0 NSGA II 0 0.043 0.050 0

A-C NSDE1 NSDE2 NSDE3 NSGA II B-E NSDE1 NSDE2 NSDE3 NSGA II

NSDE1 0 0.255 0.277 0.836 NSDE1 0 0.390 0.500 0.720

NSDE2 0.605 0 0.468 0.855 NSDE2 0.521 0 0.260 0.740

NSDE3 0.488 0.362 0 0.855 NSDE3 0.438 0.508 0 0.820

NSGA II 0.047 0.021 0.064 0 NSGA II 0.250 0.220 0.100 0

A-D NSDE1 NSDE2 NSDE3 NSGA II C-D NSDE1 NSDE2 NSDE3 NSGA II

NSDE1 0 0.208 0.429 0.877 NSDE1 0 0.542 0.731 0.940

NSDE2 0.367 0 0.500 0.895 NSDE2 0.346 0 0.462 0.960

NSDE3 0.531 0.417 0 0.842 NSDE3 0.231 0.492 0 0.920

NSGA II 0.122 0.104 0.095 0 NSGA II 0.038 0 0.058 0

A-E NSDE1 NSDE2 NSDE3 NSGA II C-E NSDE1 NSDE2 NSDE3 NSGA II

NSDE1 0 0.394 0.462 0.936 NSDE1 0 0.465 0.275 0.800

NSDE2 0.528 0 0.385 1.000 NSDE2 0.549 0 0.475 0.927

NSDE3 0.500 0.455 0 0.979 NSDE3 0.549 0.488 0 0.818

NSGA II 0.028 0 0 0 NSGA II 0.235 0 0.075 0

B-C NSDE1 NSDE2 NSDE3 NSGA II D-E NSDE1 NSDE2 NSDE3 NSGA II

NSDE1 0 0.523 0.596 0.853 NSDE1 0 0.367 0.292 0.852

NSDE2 0.320 0 0.462 0.809 NSDE2 0.492 0 0.250 0.870

NSDE3 0.240 0.273 0 0.824 NSDE3 0.413 0.429 0 0.926

NSGA II 0.140 0.068 0.019 0 NSGA II 0.032 0.041 0.042 0

rithms are presented, respectively while in Fig. 2 the Pareto Fronts of the asymmetric
delivery problem using objective functions OF1-OF2 (first part of the figure) and
of the asymmetric pick-up problem using objective functions OF1-OF3 (second part
of the figure) for the instance “D-E-BC” for all algorithms are presented, respec-
tively. In Fig. 3, five runs of the algorithms PMS-NSDE1 and PMS-NSGA II for
the instance “A-B” of the MSDRFCVRP are presented in order to prove the stabil-
ity of the algorithms. In all the Tables that present results for the C measure the
notation of the algorithms PMS-NSDE# and PMS-NSGA II have been replaced with
the notations NSDE# and NSGA II, respectively, in order to reduce the size of the
Tables.

In Table 2, the results of the four algorithms solving the first two objective functions
symmetric delivery problem (OF1-OF2 for the MSDRFCVRP) are presented. The
PMS-NSGA II performs better than the other algorithms for the L measure (it performs
better in six out of ten instances). The PMS-NSDE1 performs better for the�measure
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Table 4 Results of the first three measures for the four algorithms in ten instances when the asymmetric
delivery problem using objective functions OF1-OF2 is solved

Multiobjective asymmetric delivery route based fuel consumption VRP

OF1-OF2 PMS-NSDE1 PMS-NSDE2 PMS-NSDE3 PMS-NSGA II

L Mk � L Mk � L Mk � L Mk �

A-B-CD 46 577.99 0.65 37 582.07 0.70 36 596.81 0.54 54 578.84 0.60

A-C-BD 45 604.90 0.71 50 609.60 0.49 50 602.51 0.70 56 591.93 0.60

A-D-BE 48 586.83 0.79 44 579.71 0.62 39 612.26 0.65 43 603.98 0.63

A-E-BD 44 585.43 0.71 51 592.32 0.63 49 602.16 0.70 58 594.59 0.70

B-C-AD 46 586.36 0.64 44 596.16 0.63 42 601.53 0.60 57 595.61 0.68

B-D-AC 54 589.29 0.616 49 574.38 0.63 63 592.42 0.64 55 608.36 0.623

B-E-AD 44 572.54 0.60 51 584.35 0.65 40 584.13 0.50 57 560.85 0.56

C-D-AE 51 570.63 0.66 48 584.78 0.54 45 590.64 0.68 52 569.04 0.64

C-E-AB 40 584.51 0.69 40 589.07 0.59 45 574.86 0.58 49 572.14 0.51

D-E-BC 43 584.14 0.72 37 597.06 0.55 43 580.91 0.54 51 568.55 0.59

(it performsbetter infive instances) and it has equal performancewith thePMS-NSDE3
for the Mk measure. If we would like to compare the results of the three versions of
the PMS-NSDE algorithms, the PMS-NSDE1 performs slightly better than the other
two algorithms according to the Mk and � measures and has equal performance with
the PMS-NSDE2 for the L measure. According to the coverage table (Table 3) the
PMS-NSDE3’s Pareto Fronts dominate the Pareto Fronts produced from the other
three algorithms.

When the asymmetric delivery problem (OF1-OF2 for theMADRFCVRP) is solved
(Tables 4, 5) the results are slightly different from the previous case. The PMS-NSGA
II performs better than the other three algorithms only for the L measure and taking into
account the Mk and the � measures the PMS-NSDE3 performs better than the other
algorithms in five and four instances, respectively. In the comparison of PMS-NSDE
variants, according to the number of Pareto solutions L the PMS-NSDE1 performs
better in five instances and the PMS-NSDE3 performs better in six instances consid-
ering the Mk measure and in five instances considering the � measure. According to
the Coverage Table (Table 5), the results are different from the previous symmetric
problem, thus, the PMS-NSDE2’s Pareto Fronts dominates the Pareto Fronts produced
from the other three algorithms.

A very interesting observation is derived when the results of the symmetric pick-up
problem (using objective functions OF1-OF3 for the MSPRFCVRP) are presented
(Tables 6, 7). The PMS-NSGA II performs better than the other three algorithms
for the number of the Pareto front solutions L (better performance in 9 instances)
and the PMS-NSDE3 performs better for the Mk measure (better performance in 6
instances), that is almost the same outcome as in the case when the symmetric and
the asymmetric delivery problems are solved. Also, PMS-NSGA II performs better
for the � measure (better performance in 7 instances). From the comparison of the
three variants of the PMS-NSDE we conclude that according to the number of Pareto
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Table 5 Results of the C measure for the four algorithms in ten instances when the asymmetric delivery
problem using objective functions OF1-OF2 is solved

OF1-OF2 Multiobjective asymmetric delivery route based fuel consumption VRP

A-B-CD NSDE1 NSDE2 NSDE3 NSGA II B-D-AC NSDE1 NSDE2 NSDE3 NSGA II

NSDE1 0 0.162 0.222 0.630 NSDE1 0 0.531 0.460 0.818

NSDE2 0.609 0 0.444 0.759 NSDE2 0.296 0 0.254 0.764

NSDE3 0.652 0.486 0 0.796 NSDE3 0.370 0.510 0 0.727

NSGA II 0.065 0.135 0.111 0 NSGA II 0.056 0.102 0.159 0

A-C-BD NSDE1 NSDE2 NSDE3 NSGA II B-E-AD NSDE1 NSDE2 NSDE3 NSGA II

NSDE1 0 0.380 0.600 0.786 NSDE1 0 0.569 0.325 0.772

NSDE2 0.533 0 0.600 0.768 NSDE2 0.273 0 0.275 0.719

NSDE3 0.400 0.280 0 0.679 NSDE3 0.523 0.588 0 0.807

NSGA II 0.067 0.160 0.120 0 NSGA II 0.091 0.098 0.175 0

A-D-BE NSDE1 NSDE2 NSDE3 NSGA II C-D-AE NSDE1 NSDE2 NSDE3 NSGA II

NSDE1 0 0.273 0.231 0.907 NSDE1 0 0.292 0.400 0.923

NSDE2 0.417 0 0.538 0.977 NSDE2 0.392 0 0.356 0.827

NSDE3 0.500 0.318 0 0.907 NSDE3 0.471 0.479 0 0.846

NSGA II 0.042 0 0.128 0 NSGA II 0.020 0.021 0.089 0

A-E-BD NSDE1 NSDE2 NSDE3 NSGA II C-E-AB NSDE1 NSDE2 NSDE3 NSGA II

NSDE1 0 0.275 0.429 0.655 NSDE1 0 0.275 0.378 0.653

NSDE2 0.659 0 0.633 0.707 NSDE2 0.350 0 0.311 0.898

NSDE3 0.295 0.216 0 0.569 NSDE3 0.350 0.500 0 0.837

NSGA II 0.182 0.118 0.122 0 NSGA II 0.100 0.075 0.089 0

B-C-AD NSDE1 NSDE2 NSDE3 NSGA II D-E-BC NSDE1 NSDE2 NSDE3 NSGA II

NSDE1 0 0.500 0.524 0.860 NSDE1 0 0.270 0.209 0.745

NSDE2 0.348 0 0.310 0.895 NSDE2 0.558 0 0.395 0.863

NSDE3 0.435 0.455 0 0.825 NSDE3 0.581 0.378 0 0.843

NSGA II 0.022 0.023 0 0 NSGA II 0.070 0.027 0.070 0

front solutions L the PMS-NSDE2 has equal performance with the PMS-NSDE3 and
they perform better than the PMS-NSDE1 in four instances, respectively. The PMS-
NSDE3 performs better for the Mk and � measures than the other two algorithms
in seven instances respectively. This outcome is very important as we can see that
the performance of the PMS-NSDE3 algorithm in these measures is equally well
whether we solve an asymmetric delivery or a symmetric pick-up problem. Also
According to the coverage table (Table 7), the results are different from the previous
symmetric problem, thus, the PMS-NSDE1’s and the PMS-NSDE2’s Pareto Fronts
dominate the Pareto Fronts produced from the other two algorithms in four instances,
respectively.

Finally, when the asymmetric pick-up problem (objective functions OF1-OF3 for
the MAPRFCVRP) is solved (Tables 8, 9) the results lead us to the following con-
clusions. The PMS-NSGA II performs better than the other three algorithms in the
number of the Pareto front solutions L (better performance in 7 instances) and for the
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Table 6 Results of the first three measures for the four algorithms in ten instances when the symmetric
pick-up problem using objective functions OF1-OF3 is solved

Multiobjective symmetric pick-up route based fuel consumption VRP

OF1-OF3 PMS-NSDE1 PMS-NSDE2 PMS-NSDE3 PMS-NSGA II

L Mk � L Mk � L Mk � L Mk �

A-B 52 601.07 0.74 43 593.49 0.73 46 608.52 0.63 55 588.31 0.68

A-C 45 589.05 0.70 37 595.05 0.75 46 601.55 0.67 60 586.84 0.62

A-D 46 592.16 0.70 40 590.56 0.68 48 596.19 0.64 60 578.07 0.58

A-E 41 575.09 0.68 44 591.40 0.64 49 598.45 0.72 53 603.91 0.57

B-C 46 581.79 0.76 52 567.17 0.63 47 589.30 0.72 63 581.16 0.55

B-D 47 572.06 0.70 54 583.13 0.70 50 562.45 0.641 51 593.40 0.636

B-E 51 589.09 0.68 53 592.54 0.66 39 604.38 0.62 59 592.66 0.66

C-D 40 583.02 0.71 41 585.14 0.70 40 589.16 0.62 50 561.90 0.61

C-E 45 597.67 0.569 41 589.82 0.568 47 590.05 0.71 48 606.36 0.60

D-E 48 605.37 0.69 45 588.50 0.69 47 604.34 0.65 76 619.66 0.58

� measure (better performance in 5 instances) that is almost the same outcome as in
the case when the symmetric pick-up problem is solved. The PMS-NSDE3 performs
better for the Mk measure (better performance in 5 instances) and the�measure (bet-
ter performance in 4 instances). This outcome is very important as we can see that the
performance of the PMS-NSDE3 algorithm in the Mk measure is equally well in every
problem and in the � measure is equally well whether we solve an asymmetric deliv-
ery or an asymmetric pick-up problem is solved. In the comparison of PMS-NSDE
variants, the outcome is almost the same as in the case when the asymmetric delivery
problem is solved. According to the number of Pareto solutions L the PMS-NSDE1
performs better in six instances and the PMS-NSDE3 performs better in five instances
considering the Mk measure and in six instances considering the � measure. Accord-
ing to the Coverage Table (Table 9) all the PMS-NSDE’s Pareto Fronts have equal
performance.

In general, based on all Tables the PMS-NSGA II algorithm produces Pareto front
with larger numbers of solutions and better distribution than the other algorithms. The
PMS-NSDE3 algorithm produces more extended Pareto fronts and the Pareto fronts
produced by PMS-NSDE2 dominate the fronts produced from the other algorithms.
From the comparisonof the threePMS-NSDEalgorithmsweconclude that considering
the L measure the PMS-NSDE1 performs slightly better than the other two algorithms
as it performs better in 42.5 % of the instances while the PMS-NSDE3 and the PMS-
NSDE2 perform better in 35 and 32.5%, respectively. Considering theMk measure the
PMS-NSDE3performs slightly better than the others as it performsbetter in 55%of the
instances while the PMS-NSDE1 and the PMS-NSDE2 perform better in 25 and 20%,
respectively. Taking into account the � measure the PMS-NSDE3 performs slightly
better than the others as it performs better in 50 % of the instances while the PMS-
NSDE1 and the PMS-NSDE2 perform better in 30 and 20 %, respectively. Finally,
considering the C measure the PMS-NSDE2 performs slightly better than the other
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Table 7 Results of the C measure for the four algorithms in ten instances when the symmetric pick-up
problem using objective functions OF1-OF3 is solved

OF1-OF3 Multiobjective Symmetric Pick-up Route based Fuel Consumption VRP

A-B NSDE1 NSDE2 NSDE3 NSGA II B-D NSDE1 NSDE2 NSDE3 NSGA II

NSDE1 0 0.442 0.500 0.836 NSDE1 0 0.519 0.580 0.902

NSDE2 0.500 0 0.478 0.945 NSDE2 0.447 0 0.480 0.843

NSDE3 0.346 0.372 0 0.873 NSDE3 0.383 0.315 0 0.804

NSGA II 0.058 0.047 0.087 0 NSGA II 0 0 0.020 0

A-C NSDE1 NSDE2 NSDE3 NSGA II B-E NSDE1 NSDE2 NSDE3 NSGA II

NSDE1 0 0.459 0.500 0.917 NSDE1 0 0.358 0.308 0.814

NSDE2 0.444 0 0.500 0.900 NSDE2 0.549 0 0.590 0.864

NSDE3 0.267 0.297 0 0.867 NSDE3 0.529 0.358 0 0.831

NSGA II 0 0.054 0.109 0 NSGA II 0.059 0.038 0.103 0

A-D NSDE1 NSDE2 NSDE3 NSGA II C-D NSDE1 NSDE2 NSDE3 NSGA II

NSDE1 0 0.350 0.375 0.833 NSDE1 0 0.610 0.550 0.900

NSDE2 0.370 0 0.396 0.833 NSDE2 0.125 0 0.300 0.880

NSDE3 0.543 0.475 0 0.933 NSDE3 0.175 0.512 0 0.820

NSGA II 0.022 0.025 0.104 0 NSGA II 0.025 0.073 0.025 0

A-E NSDE1 NSDE2 NSDE3 NSGA II C-E NSDE1 NSDE2 NSDE3 NSGA II

NSDE1 0 0.568 0.551 0.962 NSDE1 0 0.366 0.426 0.708

NSDE2 0.341 0 0.429 0.887 NSDE2 0.689 0 0.638 0.813

NSDE3 0.341 0.386 0 0.943 NSDE3 0.511 0.171 0 0.667

NSGA II 0 0 0 0 NSGA II 0.156 0.073 0.149 0

B-C NSDE1 NSDE2 NSDE3 NSGA II D-E NSDE1 NSDE2 NSDE3 NSGA II

NSDE1 0 0.462 0.489 0.952 NSDE1 0 0.289 0.404 0.908

NSDE2 0.457 0 0.319 1.000 NSDE2 0.583 0 0.617 0.921

NSDE3 0.543 0.442 0 0.905 NSDE3 0.375 0.267 0 0.908

NSGA II 0 0 0.021 0 NSGA II 0.021 0 0 0

two algorithms as it performs better in 40 % of the instances while the PMS-NSDE1
and PMS-NSDE2 follow by performing better in 37.5 and 37.5 % of the instances,
respectively. For the L andC measures the summation of the percentages is larger than
1 considering that in some instances two or more algorithms perform equal better.

A statistical analysis based on the Friedman test [26,27] for all algorithms is pre-
sented in Table 10 based on the results of Tables 2, 4, 6, 8. In each row of the Table
the rank of the algorithms based on the values of Tables 2, 4, 6, 8 in each instance
is presented. In the last row the average ranks for all algorithms are given. In the
Friedman test all the algorithms are ranked for each data set separately [18,28] as it is
shown in Table 10. Let r j

i be the rank of the j th of k algorithms on the i th of N data
sets, where in our study k is equal to 4 and N is equal to 40 (if we analyze each of
the three metrics separately) and 120 (if we analyze the three metrics together). The
Friedman test compares the average ranks of algorithms, R j = 1

N

∑
i r

j
i . Under the

null-hypothesis [18,28], which states that all the algorithms are equivalent and, thus,
their ranks R j should be equal, the Friedman statistic

123



Non-dominated sorting differential evolution algorithm. . . 803

Table 8 Results of the first three measures for the four algorithms in ten instances when the asymmetric
pick-up problem using objective functions OF1-OF3 is solved

Multiobjective asymmetric pick-up route based fuel consumption VRP

OF1-OF3 PMS-NSDE1 PMS-NSDE2 PMS-NSDE3 PMS-NSGA II

L Mk � L Mk � L Mk � L Mk �

A-B-CD 58 587.41 0.66 51 583.50 0.73 55 587.94 0.68 46 585.60 0.55

A-C-BD 50 611.46 0.73 49 565.36 0.70 50 611.52 0.59 54 601.11 0.51

A-D-BE 47 605.58 0.68 38 595.68 0.69 44 604.93 0.66 55 615.67 0.64

A-E-BD 56 590.84 0.58 48 597.71 0.67 47 606.71 0.66 53 590.10 0.74

B-C-AD 47 584.72 0.63 57 580.18 0.62 56 593.39 0.60 42 580.71 0.64

B-D-AC 42 575.56 0.56 39 585.05 0.60 41 576.58 0.46 59 579.43 0.61

B-E-AD 36 569.59 0.58 46 588.14 0.60 55 603.08 0.73 55 586.54 0.67

C-D-AE 61 618.99 0.58 48 603.31 0.69 34 617.29 0.64 55 617.19 0.56

C-E-AB 48 594.14 0.66 49 593.86 0.71 34 587.99 0.53 48 572.56 0.58

D-E-BC 51 577.45 0.77 48 578.90 0.70 53 573.07 0.59 55 568.12 0.65

χ2
F = 12N

k(k + 1)

⎡

⎣
∑

j

R2
j − k(k + 1)2

4

⎤

⎦ (19)

is distributed according to χ2
F with k − 1 degrees of freedom, when N and k are big

enough. Iman and Davenport [31] showed that Friedmans χ2
F is undesirably conserv-

ative [18] and derived a better statistic [31]

FF = (N − 1)χ2
F

N (k − 1) − χ2
F

(20)

which is distributed according to the F-distribution with k − 1 and (k − 1) × (N − 1)
degrees of freedom [18]. In our statistical analysis, both equations were used and the
values found were: χ2

F = 31.825 and FF = 14.074 for the L metric, χ2
F = 14.272

and FF = 5.264 for the Mk metric and χ2
F = 12.877 and FF = 4.688 for the �

metric, while when the results of all metrics are analyzed together we found: χ2
F =

24.93 and FF = 8.853 respectively. From the statistical Tables and for α = 0.05
the critical values are for χ2 with k − 1=3 degrees of freedom equal to 0.35. The
F(k − 1, (k − 1) × (N − 1)) = F(3, 40) is equal to 2.84 for each metric separately
and when all the metrics are analyzed together the F(3, 120) is equal to 2.68. Thus,
we reject the null hypothesis in any case. From this analysis, we can say that there are
statistical differences between the algorithms.

6 Which solution of the Pareto front to choose?

In real world problems after the production of the Pareto front solutions the decision
maker has to make the next step and to choose one solution from these solutions
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Table 9 Results of the C measure for the four algorithms in ten instances when the asymmetric pick-up
problem using objective functions OF1-OF3 is solved

OF1-OF3 Multiobjective asymmetric pick-up route based fuel consumption VRP

A-B-CD NSDE1 NSDE2 NSDE3 NSGA II B-D-AC NSDE1 NSDE2 NSDE3 NSGA II

NSDE1 0 0.588 0.545 0.913 NSDE1 0 0.590 0.220 0.881

NSDE2 0.414 0 0.600 0.761 NSDE2 0.238 0 0.146 0.729

NSDE3 0.310 0.275 0 0.696 NSDE3 0.429 0.692 0 0.915

NSGA II 0.052 0.078 0.127 0 NSGA II 0.143 0.077 0.024 0

A-C-BD NSDE1 NSDE2 NSDE3 NSGA II B-E-AD NSDE1 NSDE2 NSDE3 NSGA II

NSDE1 0 0.306 0.440 0.833 NSDE1 0 0.478 0.618 0.945

NSDE2 0.600 0 0.520 0.796 NSDE2 0.333 0 0.527 0.873

NSDE3 0.320 0.245 0 0.778 NSDE3 0.083 0.413 0 0.891

NSGA II 0.060 0.102 0.040 0 NSGA II 0.028 0.043 0.036 0

A-D-BE NSDE1 NSDE2 NSDE3 NSGA II C-D-AE NSDE1 NSDE2 NSDE3 NSGA II

NSDE1 0 0.395 0.432 0.873 NSDE1 0 0.271 0.029 0.764

NSDE2 0.362 0 0.636 0.818 NSDE2 0.672 0 0.176 0.836

NSDE3 0.489 0.368 0 0.782 NSDE3 0.820 0.563 0 0.927

NSGA II 0.021 0.026 0.068 0 NSGA II 0.066 0.042 0.059 0

A-E-BD NSDE1 NSDE2 NSDE3 NSGA II C-E-AB NSDE1 NSDE2 NSDE3 NSGA II

NSDE1 0 0.417 0.638 0.811 NSDE1 0 0.184 0.118 0.771

NSDE2 0.357 0 0.660 0.792 NSDE2 0.583 0 0.294 0.729

NSDE3 0.268 0.292 0 0.792 NSDE3 0.625 0.571 0 0.708

NSGA II 0.250 0.146 0.106 0 NSGA II 0.104 0.163 0.147 0

B-C-AD NSDE1 NSDE2 NSDE3 NSGA II D-E-BC NSDE1 NSDE2 NSDE3 NSGA II

NSDE1 0 0.316 0.554 0.667 NSDE1 0 0.229 0.321 0.691

NSDE2 0.574 0 0.625 0.595 NSDE2 0.725 0 0.491 0.727

NSDE3 0.383 0.316 0 0.500 NSDE3 0.588 0.479 0 0.800

NSGA II 0.213 0.228 0.393 0 NSGA II 0.118 0.167 0.208 0

considering his preferences. For example, suppose that the decision maker is the
president of a company that needs a fast and efficient method to help him/her to select
the most suitable solution of a Pareto front. Using the following proposed method the
most suitable solution, considering the preferences of the decision maker, could be
selected.

Initially, the decision maker is asked to evaluate a number of K Utili t y V ariables
(UV ). The number of the Utili t y V ariables is equal to the number of the objective
functions of the problem. Each one of those variables corresponds to an objective
function or criterion and it can take any value between [0,1]. The values of these
variables represent how useful for the decisionmaker is the best value of each criterion.
The closer the value of theUtili t y V ariable to zero, the less useful is the criterion for
the decision maker. On the other hand, the closer the value of the Utili t y V ariable
to one, the more useful is the criterion for the decision maker. Considering that we
conclude to the following results solving a multiobjective problem:
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Fig. 1 Pareto fronts of the four algorithms for the instance “D-E”
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Fig. 2 Pareto fronts of the four algorithms for the instance “D-E-BC”

Considering that, for the decision maker it is very important to select a solu-
tion that results to a low fuel consumption route and, also, that for the decision
maker is not so important the time needed to complete the route. Thus, the Utility
Variables could be UV(Fuel) = 0.9 for the Fuel criterion and UV(Time) = 0.1 for
the Time criterion. At the next step, we use the following equations in order to find
each one of the coordinates of the Utility Point (UP) on the Pareto Front diagram
(Fig. 4):

UP(Time) = (Max Time value − Min Time value) * (1 − UV(Time)) + Min Time
value = (100−10) * 0.9 + 10 = 91
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Fig. 4 Utility points on a Pareto front

UP(Fuel) = (Max Fuel value − Min Fuel value) * (1 −UV(Fuel)) + Min Fuel
value = (10−2) * 0.1 + 2 = 2.8

The Utility Point in that case is the point (91,2.8) (Utility Point 1). The last step
is to find based on the Euclidean distances from the real points of the Pareto Front
which solution is closer to theU P . This solution [in our example the solution (100,2)]
is the solution that the decision maker must choose. If the Utility Variables were
UV(Fuel) = 0.1 and UV(Time) = 0.9 (Utility Point 2) the solution that the deci-
sion maker must choose is the solution (10,10) while if the Utility Variables were
UV(Fuel) = 0.5 and UV(Time) = 0.5 (Utility Point 3) the best solution is the
solution (50,5).

7 Conclusions and future research

In this paper, as we could not find DE implementations for the solution of multiobjec-
tive energy vehicle routing problems in the literature (at least to our knowledge) and
we would like to see its performance in a difficult multiobjective fuel consumption
vehicle routing problem we have proposed a hybridized version of a Multiobjective
DE for the solution of this problem. The main contribution of the paper, in addition
to the proposed algorithm, is the four new multiobjective formulations of the prob-
lem using combinations of symmetric and asymmetric formulations in pick-up and
delivery problems. The formulation includes real route parameters, as the direction of
the wind and the behavior of the drivers, and, thus, very realistic formulations were
produced. In general, in the four different problems that are presented in this paper the
three versions of DE and the hybridized version of NSGA II gave equally good results.
However, the behavior of the algorithms was slightly different when a symmetric and
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an asymmetric case was solved, as it was presented and analyzed in the computational
results section. Our future research will be, mainly, focused on the application of those
algorithms in other multiobjective combinatorial optimization problems.
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