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Abstract The aim of this paper is to solve the multiobjective optimal power flow
(MOPF) problem using a new metaheuristic that is the grenade explosion method.
The MOPF problem is formulated by assuming that the decision maker may have a
fuzzy goal for each of the objective functions. Six objectives are considered which
are: the minimization of generation fuel cost, the improvement of voltage profile, the
enhancement of voltage stability, the reduction of emission and the minimization of
active and reactive transmission losses. The proposed approach has been tested on the
IEEE 30-bus test system. The obtained results show the effectiveness of the proposed
method.

Keywords Multiobjective optimal power flow · Power system optimization ·Grenade
explosion method · Fuzzy logic

1 Introduction

Over the past half-century, optimal power flow (OPF) has been one of the foremost
research works for the power system community. It has become the heart of econom-
ically efficient and reliable independent system operator power markets [1].
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The conventional power flowproblem can be stated by specifying loads at PQbuses,
generated powers and voltage magnitudes at PV buses in addition to a complete topo-
logical description of the network. The objective of such problem is to determine
voltages and then to compute all the other quantities like currents, line flows and
losses [2]. However, in the OPF problem, the generated powers have to be adjusted
according to some criteria, for instance the minimum generating cost and under some
constraints like power flow constraints. Therefore, the main purpose of the OPF prob-
lem is to give the optimal settings of a power system (generated powers, voltages at PV
buses,…) by optimizing an objective function (minimum cost, minimum losses,…)
while satisfying some equality and inequality constraints (power flow, operating limits
of system components, security constraints…) [3].

Even 50 years after the problem was first formulated, researchers worldwide still
have thirst for solving the OPF problem. Because it is complex economically, elec-
trically and computationally [1]. The first methods that have been used to solve the
OPF problem are deterministic or traditional ones. A detailed survey of such meth-
ods is given in [4]. It is reported in that paper that at present, the most powerful
deterministic methods for OPF are: active-set sequential linear programming (SLP),
sequential quadratic programming (SQP) methods and variants of primal-dual interior
point methods (PDIPMs) [4]. Furthermore, some other approaches are tested. Some
researchers try to reformulate the classical OPF to a semidefinite programming (SDP)
model, in order to take advantage of the SDP technique as in [5]. Other researchers
have proposed Branched and Bound method combining with SDP as in [6]. However,
traditional methods have shown some limitations as reported in the literature [4,7,8].

Even tough, many works are still conducted in the fled of traditional methods, pro-
gressively metaheuristics are becoming a serious and a reliable alternative for solving
the OPF problem. Some examples of metaheuristics used to solve the OPF problem
are: evolutionary programming (EP) [9], genetic algorithm (GA) [10], particle swarm
optimization (PSO) [11], tabu search (TS) [12], simulated annealing (SA) [13], differ-
ential evolution (DE) [14], biogeography-based optimization (BBO) [15], imperialist
competitive algorithm (ICA) [16], league championship algorithm (LCA) [17], black-
hole-based optimization (BHBO) [18], teaching-learning-based optimization (TLBO)
[19], differential search algorithm (DSA) [20], colliding bodies optimization (CBO)
[21], electromagnetism-like mechanism (EM) [22] and backtracking search optimiza-
tion (BSA) [23]. A review of many metaheuristics applied to solve the OPF problem
is given in [7,8].

However, due to the varied formulations and objectives of the OPF problem, no
algorithm is the best in solving all OPF problems. Therefore, there is always a need for
a new algorithm which can solve some of the OPF problems efficiently. Furthermore,
in recent years, the field of metaheuristics has witnessed a true tsunami of novel
methods [24]. These new metaheuristics are very efficient since they are tested on
hard benchmarks and compared with many other methods. Therefore, this paper aims
to apply a new metaheuristic, which has not received yet much attention in the power
systems community that is the grenade explosion method (GEM) in order to solve the
OPF problem.
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The GEM is new metaheuristic based on the mechanism of grenade explosion
[25,26]. Ahrari et al., demonstrate in [25,26] the superiority of the GEM method
compared with other popular metaheuristics.

In this paper, the OPF problem is formulated as a multiobjective optimization
problem. Six objectives are investigated that are: the minimization of generation fuel
cost, the improvement of voltage profile, the enhancement of voltage stability, the
reduction of emission and the minimization of active and reactive transmission losses.
The objective functions are replaced with membership functions using fuzzification.

The remainder of this paper is organized as follows. First, the problem formulation
is presented in Sect. 2. Then, the GEMmethod is presented in Sect. 3. Next, the results
after solving different cases of OPF (single objective and multiobjective cases) using
GEM are discussed in Sect. 4. Finally, the conclusions are drawn in the last section of
this paper.

2 Problem formulation

The OPF is a power flow problem which gives the optimal settings of the control
variables for a given settings of load by minimizing a predefined objective function
such as the cost of active power generation. The OPF considers the operating limits of
the system and it can be formulated as a nonlinear constrained optimization problem
as follows:

Minimize f(x,u)
Subject to g(x, u) = 0
and h(x, u) ≤ 0

(1)

where u is the vector of independent variables or control variables, x is the vector of
dependent variables or state variables, f(x, u) is the objective function, g(x, u) is the
set of equality constraints, and h(x, u) is the set of inequality constraints.

In the multiobjective optimal power flow (MOPF) problem, instead of only one
objective function a vector of objective functions is optimized. Therefore, the MOPF
can be formulated as follows:

Minimize F(x,u) = [f1(x,u),f2(x,u), . . . , fk(x,u)]
T

Subject to g(x,u) = 0
and h(x,u) ≤ 0

(2)

where F(x, u) is the vector of objective functions and k is the number of objective
functions.

2.1 Design variables

2.1.1 Control variables

These are the set of variables which can be modified to satisfy the load flow equations.
The set of control variables in the OPF problem formulation are:
PG: active power generation at PV buses except the slack bus.

123



702 H. R. E. H. Bouchekara et al.

VG: voltage magnitudes at PV buses.
T: tap settings of transformers.
QC: shunt VAR compensation.

Hence, u can be expressed as:

uT = [
PG2 . . . PGNG ,VG1 . . .VGNG ,QC1 . . .QCNC ,T1 . . .TNT

]
(3)

where NG, NT and NC are the number of generators, the number of regulating trans-
formers and the number of VAR compensators, respectively.

2.1.2 State variables

These are the set of variables which describe any unique state of the system. The set
of state variables for the OPF problem formulation are:
PG1: active power generation at slack bus.
VL: voltage magnitudes at PQ buses or load buses.
QG: reactive power output of all generator units.
Sl : transmission line loadings (or line flow).

Hence, x can be expressed as:

xT = [
PG1 ,VL1 . . .VLNL ,QG1 . . .QGNG ,Sl1 . . . Slnl

]
(4)

where NL, and nl are the number of load buses, and the number of transmission lines,
respectively.

2.2 Objective functions

Many objective functions can be found in the literature for the OPF problem. In
this paper, six objective functions are studied. These objectives are discussed in the
following sections.

2.2.1 Objective function # 1: generation fuel cost

The generation fuel cost is usually expressed by a quadratic function as follows:

C =
NG∑

i=1

ai + bi PGi + ci PG2
i

(5)

It is worth to mention here that the cost function given by (3) is convex. However, in
some cases the cost function can be non-convex for instance when multi-fuels options
are used as in [19,21].
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2.2.2 Objective function # 2: voltage deviation

Bus voltage is one of the most important and significant indication of safety and
service quality. The voltage profile can be improved by minimizing the load bus
voltage deviations (VD) from 1.0 p.u, which is given by:

VD =
NL∑

i=1

∣∣VLi − 1.0
∣∣ (6)

2.2.3 Objective function # 3: voltage stability index

Prediction of voltage instability is an issue of paramount importance. In [27] Kessel
and Glavitch have developed a voltage stability index referred to as Lmax which is
defined based on local indicators Lj and it is given by:

Lmax = max(Lj) j = 1, 2, . . . ,NL (7)

where Lj is the local indicator of bus j and it is represented as follows:

Lj =
∣
∣∣∣∣
1 −

NG∑

i=1

HLGji

Vi

Vj

∣
∣∣∣∣

j = 1, 2, . . . ,NL (8)

where Hmatrix is generated by the partial inversion of Ybus . More details can be found
in [27].

The Lmax varies between 0 and 1 and the lower this indicator is themore the system
is stable. Hence, in order to enhance the voltage stability, Lmax has to be minimized.

2.2.4 Objective function # 4: emission

There is an increasing worldwide emphasizes on environmental pollution reduction
and control [28]. Therefore, it is desirable to adjust the OPF to account for emission
which will drastically affects the whole system operation [28,29].

The total ton/h emission (E) of the atmospheric pollutants such as sulfur oxides
SOx and nitrogen oxides NOx caused by fossil-fueled thermal units can be expressed
by [29,30]:

E =
NG∑

i=1

10−2(αi + βi PGi + γi P
2
Gi

) + (ωi e
(μi PGi )) (9)

where αi, βi, γi,ωi andμi are coefficients of the ith generator emission characteristics.
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2.2.5 Objective function # 5: active power transmission losses

The active power losses can be expressed by:

PL =
N B∑

i=1

Pi =
N B∑

i=1

PGi −
N B∑

i=1

PDi (10)

where NB is the number of busses and PD is the active load demand.

2.2.6 Objective function # 6: reactive power transmission losses

The reactive power losses can be expressed by:

QL =
N B∑

i=1

Qi =
N B∑

i=1

QGi −
N B∑

i=1

QDi (11)

where QD is the reactive load demand.

2.3 Constraints

OPF constraints can be classified into equality and inequality constraints, as detailed
in the following sections.

2.3.1 Equality constraints

(a) Real power constraints:

PGi − PDi − Vi

N B∑

j=i

V j
[
Gi j cos(θi j ) + Bi j sin(θi j )

] = 0 (12)

(b) Reactive power constraints:

QGi − QDi − Vi

N B∑

j=i

V j
[
Gi j sin(θi j ) − Bi j cos(θi j )

] = 0 (13)

where θi j = θi − θ j , Gij and Bij are the elements of the admittance matrix
(Yi j = Gi j + j Bi j ) representing the conductance and susceptance between bus i and
bus j , respectively.
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2.3.2 Inequality constraints

(a) Generator constraints

Vmin
Gi

≤ VGi ≤ Vmax
Gi

, i = 1, . . . , NG (14)

Pmin
Gi

≤ PGi ≤ Pmax
Gi

, i = 1, . . . , NG (15)

Qmin
Gi

≤ QGi ≤ Qmax
Gi

, i = 1, . . . , NG (16)

(b) Transformer constraints

Tmin
i ≤ Ti ≤ Tmax

i , i = 1, . . . , NT (17)

(c) Shunt VAR compensator constraints

Qmin
Ci

≤ QCi ≤ Qmax
Ci

, i = 1, . . . , NC (18)

(d) Security constraints

Vmin
Li

≤ VLi ≤ Vmax
Li

, i = 1, . . . , NL (19)

Sli ≤ Slmax
i

, i = 1, . . . , nl (20)

2.3.3 Constraints handling

It is worth mentioning that control variables are self-constrained. The inequality con-
straints of dependent variables which contain load bus voltage magnitude; real power
generation output at slack bus, reactive power generation output and line loading can
be included into the objective function as quadratic penalty terms. In these terms, a
penalty factor multiplied with the square of the disregard value of dependent variable
is added to the objective function [19,20].

It is worth mentioning that, Eqs. (3)–(20) present the complete formulation of the
OPF problem adopted in this work. It is worth mentioning that other formulations
exist which involve only quadratic and bilinear terms [31].

3 Grenade explosion method (GEM)

3.1 Overview

The GEM is a novel metaheuristic for optimizing real-valued bounded black-box
optimization problems inspired by the mechanism of grenade exposition [25,26]. In
the GEM, once the grenades explode, the resulting shrapnel hit objects that are located
within a neighborhood radius called Le. The damages caused by shrapnel on objects
are calculated. The damage-per-shrapnel value indicates the value of objects in that
area. In order to cause more damage, the next grenade is thrown in the location of
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the greatest damage that has been caused. The overall damage caused by the hit is
considered as the fitness of the solution at the object’s location.

Furthermore, theGEMhas a unique feature, which is the concept of agent’s territory
radius (Rt) [25,26]. Each agent (a grenade here), does not allow other agents to come
closer than a certain distance that is Rt. Therefore, when several grenades expose in the
search space, a high value of Rt guarantees that grenades are spared quit uniformly in
the search space while a small value of Rt allows the grenades to search local regions
together [25,26].

3.2 Algorithm

The pseudo code of the GEM is given in Algorithm 1. The GEM starts by scaling all
independent variables within the interval [−1,1]. Then, the problem parameters like
the number of grenades (Ng) and the maximum number of iterations (Max_iterations)
are selected and Le and Rt are initialized. After that, Ng grenades, distant by Rt from
each other, are randomly generated in the n-dimensional scaled space. These grenades
are ranked in a descending order based on their fitness. For each grenade Nq pieces
of shrapnel are generated using the following expression:

X
′
j = {

Xm + sign(rm) × |rm |p × Le
}
, j = 1, 2, . . . . . . Nq (21)

where Xm is the location of the grenade, rm is a uniformly distributed random number
in [−1,1] and p is a constant used to tune the intensity of the exploration. The value
of p is updated using the probability of territory search (Tw) as follows:

p = max

{

1, n × log( Rt
Le )

log(Tw)

}

(22)

While generating the Nq pieces of shrapnel, some produced shrapnel may collide to
objects outside the scaled feasible space and they have to be transported to the [−1,1]n

interval.
Then, the damage caused by every piece of shrapnel around a grenade is computed.

If the fitness of the best generated point is better than the fitness of the current location
of the grenade, the position of the grenade is updated and the grenade moves to the
location of the best point.

To increase the global search ability, Le and Rt are adjusted during the iterations.
High values of these parameters are necessary to cover the whole search space in initial
iterations, however, they have to be reduced over iterations with taking fitness value
into account. The territory radius is updated as follows:

Rt = Rt−ini tial

(Rrd)(i teration Number/Max_i terations)
(23)

where Rrd represents the ratio of the value of Rt in the first iteration to its value in the
last iteration and it has to be set before the algorithm starts.
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Likewise, Le is decreased over iterations as follows:

Le = (Le−ini tial)
m(Rt )

1−m, 0 ≤ m ≤ 1 (24)

where m is calculated using the following expression:

m = mmax −
(
I teration_number

Max − i terations

)
(mmax − mmin) (25)

In order to save global search ability, the rate of decrease of Le during the iterations
is slower than the one of Rt [25,26]. Once Le and Rt are adjusted the value of p has
to be updated accordingly. Finally, the termination criterion used in the GEM is the
number of iterations i.e., if the number of iterations exceeds the maximum value the
algorithm stops.
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4 The proposed multiobjective optimization approach

A complete optimal solution that simultaneously optimizes all the objective functions
of a Multiobjective Optimization (MOO) problem usually does not exist especially
when the objective functions present a conflicting behavior like in MOPF. Therefore,
the task is to find a Pareto optimal solution. A point x0 ∈X is said to be a Pareto optimal
solution to an optimization problem P if there is no x∈X such that F(x)≤ F(x0) [32].

For the MOPF problem, considering the vague or fuzzy nature of human judgment,
it is quite logic to assume that the decision maker (DM) may have a fuzzy goal for
each of the objective functions. Therefore, objective functions can be replaced by
fuzzy membership functions.

The following steps describe the proposed MOPF approach in this paper:

Step 1: Minimization and maximization of each objective function separately in
order to calculate the individual minimum and maximum values of each objective
function under constraints.
Step 2: Computation of the membership functions μ1, μ2, . . . μk by taking into
account the calculated individualmaximumandmaximumvalues of each objective
function in step 1.
Step 3: Computation of the aggregation function μD(μ1, μ2, . . . μk).
Step 4: Maximization of μD using the GEM method.
Step 5: If the DM is satisfied with the current results i.e., the values of the mem-
bership functions, go to step 6. Otherwise, modify the aggregation function then
go to step 4.
Step 6: Stop and print optimal results.

The first step of the of the proposed approach consists of minimizing then max-
imizing each objective function separately in order to compute the maximum and
minimum values of each objective function. These two values correspond to the best
andworst values that can each objective function reach, respectively. Then, using these
values, fuzzy membership functions are calculated. The membership function of the
i th objective is defined by [32]:

μi =

⎧
⎪⎨

⎪⎩

1 fi ≤ fmin
i

fmax
i −fi

fmax
i −fmin

i

fmin
i < fi < fmax

i

0 fi ≥ fmax
i

(26)

where: fmax
i and fmin

i are the maximum and minimum values of the i th objective
function, respectively. Therefore, a membership function of a given objective is equal
to 1 if this objective is fully satisfied (Fig. 1).

Once the membership functions are calculated, they are aggregated in one objective
function as shown in Fig. 2. The aggregation function can be seen as the satisfaction
degree of the objective defined by the user [33].

There are many aggregation methods that can be used. In this paper four methods
are investigated.
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Fig. 1 Linear fuzzy
membership function for fuzzy
goal

Fig. 2 Flow chart of fuzzy aggregation for the six objective functions

Theweighted summethod:Thefirst aggregation function investigated in this paper is
themost evident one that is the weighted summethodwhere themembership functions
are multiplied by weights then summed to give an aggregation function as follows:

μd =
k∑

i=1

ωiμi (27)

where ω1,ω1, ω2, . . . ωk are weighting factors or weights. Usually, the weights are
greater than or equal to 0 and their sum equals 1.

The exponential weighted method: The second aggregation function considered in
this study is the exponential weighted method. This method has been proposed due to
the inability of the weighted sum method to capture points on non-convex portions of
the Pareto optimal surface [34]. Therefore, μD can be expressed by:

μd =
k∑

i=1

(epωi − 1)epμi (28)

where p = 1 in this study.
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The minimum operator: For the third aggregation function, we consider the well-
known fuzzy decision of Belmann and Zadeh or the minimum operator as follows
[33]:

μd = min(μ1, μ2, . . . μk) (29)

The ε-constraintmethod: Inmany cases, all objective functions do not have the same
importance, for instance reducing the generation fuel cost is usually more important
than reducing losses or emission. In fact, the fuel cost minimization is the most impor-
tant objective to achieve. However, at the same time the remaining objectives have to
be taken into consideration in a way or another. In this case using a method like the
ε-constraint method is very interesting. This method (also called the e-constraint or
trade-off method) optimizes one of the objective functions while imposing constraints
on the remaining objective functions. In other words, it minimizes one objective func-
tion (themost important one) and at the same time it maintains acceptable levels for the
remaining objective functions [35]. Thus, the aggregation function can be expressed
by:

μd =
μ1

μ2 ≤ ε2
...

μk ≤ εk

(30)

where {ε2, ε3, . . . , εk} are the vector of constraints to be chosen by the DM or some-
times it can be imposed by some regulations.

In order to circumvent the numerical problem posed by the constraints they are
augmented in into μd using the following expression:

μd = μdAugmented = μ1 −
∑

j

λ j (μ j − ε j )
2 (31)

where λ j are penalty factors and j takes the value of all the violated constraints.

5 Application and results

The proposed GEM method has been applied to the IEEE 30-bus test system. This
test system has a total generation capacity of 435 MW and its main characteristics are
given in Table 1. Detailed data about these test systems can be derived from [36]. Cost
and emission coefficients used in this paper are given in Table 2.

It is worth to mention that, the developed software program is written in the com-
mercial MATLAB computing environment and applied on a 2.20 GHz i7 personal
computer with 8.00 GB-RAM using parallel processing to run the 30 different runs.

This paper investigates 12 cases. The first six cases are single objective OPF cases
whilst the remaining cases are MOPF cases.

The control parameters of the GEM method are given Table 3. These parameters
have been selected after several tests.
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Table 1 The main characteristics of the IEEE 30-bus test system

System characteristics Value Details

Buses 30 –

Branches 41 –

Generators 6 Buses: 1, 2, 5, 8, 11 and 13

Shunts 9 Buses: 10, 12, 15, 17, 20, 21, 23, 24 and 29

Transformers 4 Branches: 11, 12, 15 and 36

Control variables 24 –

Table 2 Cost and emission coefficients for the IEEE 30-bus test system

Bus a b c d β γ ω μ

1 0 2 0.00375 18 −5.554 6.49 2.00E−04 2.857

2 0 1.75 0.0175 16 −6.047 5.638 5.00E−04 3.333

5 0 1 0.0625 14 −5.094 4.586 1.00E−06 8

8 0 3.25 0.00834 12 −3.55 3.38 2.00E−03 2

11 0 3 0.025 13 −5.094 4.586 1.00E−06 8

13 0 3 0.025 13.5 −5.555 5.151 1.00E−05 6.667

Table 3 Control parameters of the GEM method

Name Description Value

Le Neighborhood radius 10

Max_iterations Maximum no. of iterations 150

Mmin Exploitation ratio 0.3

Ng No. of grenades 4

Nq No. of shrapnel 50

Psin Weight of optimal search direction 0.1

Rrd Reduction of territory radius 100

Rt Territory radius 5

5.1 Single objective OPF

The single objective OPF cases are:

CASE 1: minimization of generation fuel cost.
CASE 2: improvement of voltage profile by theminimization of voltage deviation.
CASE 3: enhancement of the voltage stability by the minimization of voltage
stability index.
CASE 4: reduction of emission.
CASE 5: minimization of active losses.
CASE 6: minimization of reactive losses.
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Table 4 Optimal settings of control variables for single objective OPF cases using GEM.

Name CASE 1 CASE 2 CASE 3 CASE 4 CASE 5 CASE 6

PG1 177.1995 176.6211 139.7908 63.9687 51.4565 52.1519

PG2 48.6683 23.0226 45.5509 67.4512 79.8979 79.9897

PG5 21.3889 41.6352 23.3529 49.9982 49.9960 49.8542

PG8 20.8814 24.4240 34.9950 34.9986 34.9991 34.9443

PG11 11.8876 13.9965 29.9416 29.9997 29.9973 29.5857

PG13 12.0001 12.0107 16.0002 39.9996 39.9395 39.8252

VG1 1.1000 1.0464 1.0992 1.0919 1.0895 1.1000

VG2 1.0803 1.0276 1.0810 1.0834 1.0828 1.0922

VG5 1.0542 1.0162 1.0670 1.0661 1.0640 1.0824

VG8 1.0636 1.0022 1.0717 1.0743 1.0718 1.0909

VG11 1.1000 1.0140 1.0932 1.0993 1.0987 1.0986

VG13 1.0998 1.0207 1.0924 1.0993 1.0996 1.0999

T11(6−9) 1.0296 1.0172 0.9985 0.9699 1.0179 0.9943

T12(6−10) 0.9006 0.9003 0.9011 0.9758 0.9095 0.9922

T15(4−12) 0.9731 0.9867 1.0056 0.9766 0.9715 0.9903

T36(28−27) 0.9557 0.9682 0.9583 0.9678 0.9619 0.9888

QC10 4.9963 0.9632 3.1034 3.0313 3.4362 4.2438

QC12 4.9931 0.0116 0.5164 4.0171 4.7518 1.1823

QC15 4.9931 2.3100 4.9002 3.7516 3.5556 3.2978

QC17 4.9977 0.0579 3.0580 4.9944 4.9976 4.2262

QC20 4.3337 4.9897 0.0565 3.7166 3.7225 4.8981

QC21 4.9997 4.9920 1.6048 4.9989 4.8917 0.6604

QC23 2.6505 4.9956 3.4331 2.6582 3.2080 4.7053

QC24 4.9865 4.9859 4.9470 4.9530 4.9583 4.8848

QC29 2.2507 2.5850 4.7145 3.0087 2.1188 3.4300

C ($/h) 799.0463 840.6457 816.9095 943.6358 966.7473 965.1707

VD 1.9312 0.1163 1.8320 1.9504 1.9755 1.9143

Lmax 0.1264 0.1487 0.1257 0.1269 0.1265 0.1278

E (ton/h) 0.3665 0.3629 0.2802 0.2048 0.2072 0.2075

PL (MW) 8.6257 8.3101 6.2313 3.0160 2.8863 2.9511

QL (MVar) −1.1038 1.3925 −10.061 −23.396 −21.798 −24.4826

The proposed GEM has been applied to solve CASE 1 through CASE 6 and the
obtained optimal settings are given in Table 4.

In order to assess the effectiveness of the proposed method we have compared it
to some other well-known methods. The results of this comparison are displayed in
Table 5. For more comparison, and since CASE 1 has been widely investigated in the
literature, the results found for this case are compared to those found in the literature
in Table 6. It appears that the GEM outperforms many other optimization methods.
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Table 5 Comparisons of GEM with other well-known methods using our codes

Method GEM GA PSO ABC BBO

C ($/h) 799.0463 800.3108 799.9409 799.0563 799.0860

VD 0.1163 0.1580 0.1451 0.1073 0.1085

Lmax 0.1257 0.1261 0.1262 0.1256 0.1252

E (ton/h) 0.2048 0.2052 0.2050 0.2047 0.2048

PL (MW) 2.8863 3.1493 3.1437 2.8496 2.8732

QL (MVar) −24.4826 −21.6345 −23.6355 −24.7876 −24.7480

Table 6 Comparison of simulation results for CASE 1 with those found in the literature

Method Cost Method description References

GEM 799.0463 Grenade explosion method

BBO 799.1116 Biogeography-based optimization [15]

LCA 799.1974 League championship algorithm [17]

DE 799.2891 Differential evolution [14]

SA 799.45 Simulated annealing [13]

BHBO 799.9217 Black-hole-based optimization [18]

EADHDE 800.1579 Genetic evolving ant direction HDE [37]

EADDE 800.2041 Evolving ant direction differential evolution [38]

PSO 800.41 Particle swarm optimization [11]

FPSO 800.72 Fuzzy particle swarm optimization [39]

IGA 800.805 Improved genetic algorithms [40]

PSO 800.96 Particle swarm optimization [39]

GAF 801.21 Fuzzy genetic algorithm [39]

ICA 801.843 Imperialist competitive algorithm [16]

EGA 802.06 Enhanced genetic algorithm [41]

TS 802.2900 Tabu search [12]

MDE 802.376 Modified differential evolution algorithm [42]

IEP 802.465 Improved evolutionary programming [43]

EP 802.62 Evolutionary programming [9]

RGA 804.02 Refined genetic algorithm [10]

GM 804.853 Gradient method [44]

GA 805.94 Genetic algorithm [10]

Figure 3 shows the evolution of cost and penalty term versus iterations for CASE
1. In Fig. 4 the evolution of the voltage deviation versus iterations for CASE 2 is
shown. Furthermore, the voltage profile obtained for CASE 2 is sketched in Fig.
5. The evolution of voltage stability index versus iterations for CASE 3 is given in
Fig. 6.
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Fig. 3 Evolution of the objective function versus iterations for CASE 1

Fig. 4 Evolution of VD versus iterations for CASE 2

Before starting solving the MOPF cases, let us start by analyzing the results found
when only one objective is considered at the time. In Table 7, the fuzzy membership
functions of all objectives are calculated. We can see from this table that, when an
objective function is optimized its membership function equals to 1 i.e., the objective
is fully achieved. However, the remaining membership functions lie between 0 and
1. For instance, when the cost is minimized μE = 0.3061 and μQL = 0.4605 while
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Fig. 6 Evolution of Lmax versus iterations for CASE 3

Table 7 Membership functions for the six objectives

C VD Lmax E PL QL

C 1 0.0376 0.9790 0.3061 0.4494 0.4451

VD 0.7617 1 0.3028 0.3215 0.4797 0.3859

Lmax 0.8977 0.0901 1 0.6762 0.6791 0.6577

E 0.1719 0.0273 0.9639 1 0.9876 0.9742

PL 0.0395 0.0141 0.9762 0.9895 1 0.9363

QL 0.0485 0.0465 0.9362 0.9883 0.9938 1.0000

μLmax = 0.9790. These values indicate the nature and intensity of the conflict between
these objective functions. The same analysis can be made on the remaining objectives.

Furthermore, a statistical analysis has beenmade in order to compute the correlation
coefficients between the six objectives (Table 8).Note that the correlation coefficient (r)
is a dimensionless measure of the degree of linear association or dependence between
two sets of data X and Y that varies between [−1,1] where: r= 0 indicates that there is
no linear dependence between X and Y, r= 1 indicates that there is a total dependence
with X and Y varying in the same direction and r = −1 indicates that there is a total
dependence with X and Y varying in the opposite direction [45]. Therefore, the closer
the coefficient is to either−1 or 1, the stronger the correlation between the sets of data.
The correlation coefficients can be arranged, into a symmetrical correlation matrix,
where each element is the correlation coefficient of the respective column and row
variables. Since the matrix is symmetrical, we show only the upper triangular part
of this matrix. From Table 8, it appears for example that there is a strong correlation
between cost and emission in opposite directions (r = −0.8948). the coefficient of
correlation computed between emission and active losses (r = 0.9938) shows that
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Table 8 The matrix of correlation coefficients

C VD Lmax E PL QL

C 1 0.3587 −0.2619 −0.8948 −0.9383 −0.9058

VD 1 −0.9914 −0.6056 −0.5681 −0.6359

Lmax 1 0.5517 0.5021 0.5772

E 1 0.9938 0.9906

PL 1 0.9908

L 1

there is a strong correlation in the same direction between these two objectives. The
same analysis can be made on the remaining results.

5.2 Multiobjective OPF

The six MOPF cases investigated in this paper are summarized below:

CASE 7: the weighted sum method is used as an aggregation function with ω1 =
ω2 = ω3 = ω4 = ω5 = ω6 = ω = 1

6 .
CASE 8: in this case, the minimum operator is used to generate the aggregation
function.
CASE 9: exponential weighted method is used here to generate the aggregation
function with ω1 = ω2 = ω3 = ω4 = ω5 = ω6 = ω = 1.
CASE 10: the ε-constraint method is explored where the objective to be optimized
is the cost and ε2 = 0.75, ε3 = 0.75, ε4 = 0.75, ε5 = 0.75 and ε6 = 0.75 are the
constraints that are imposed on the remaining objectives.
CASE 11: the ε-constraint method is used where the objective to be optimized
is the cost and ε2 = 0.75, ε3 = 0.75, ε4 = 0.5, ε5 = 0.5 and ε6 = 0.5 are the
constraints that are imposed on the remaining objectives.
CASE 12: the ε-constraint method is tested where the objective to be optimized
is the cost and ε2 = 0.5, ε3 = 0.5, ε4 = 0.5, ε5 = 0.5and ε6 = 0.5 are the
constraints that are imposed on the remaining objectives.

In order to compare the relative efficiencies of the differentMOO techniques applied
to solveMOPFproblems,weuse theEuclidean distance N , which is defined as follows:

N =
{

k∑

i=1

[μi − 1]2
} 1

2

(32)

N gives an indication on how much a solution is close to the utopia point. Therefore,
the lower the value of N the better the MOO is [46].

The GEM has been applied to solve the above mentioned MOPF cases and the
optimal results are given in Table 9. The N index is given in the last row of Table 9.

From Table 9, we can make the following comments:
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Table 9 Optimal settings of control variables for MOPF cases using GEM.

Name CASE 7 CASE 8 CASE 9 CASE 10 CASE 11 CASE 12

PG1 96.7143 116.5585 193.6970 159.9338 155.5580 159.9338

PG2 58.9434 61.2016 21.9052 51.2471 54.7509 51.2471

PG5 37.5882 41.1760 32.7805 20.3517 24.6556 20.3517

PG8 34.9061 28.8258 10.5019 23.2239 28.2992 23.2239

PG11 29.9594 19.4952 10.0000 16.3598 10.0952 16.3598

PG13 30.1076 21.7421 24.3501 20.0865 18.1389 20.0865

VG1 1.0925 1.0807 1.0839 1.0984 1.0877 1.0984

VG2 1.0817 1.0675 1.0605 1.0796 1.0691 1.0796

VG5 1.0553 1.0382 1.0503 1.0456 1.0353 1.0456

VG8 1.0573 1.0283 1.0461 1.0547 1.0309 1.0547

VG11 1.0275 1.0240 1.0957 1.0463 1.0510 1.0463

VG13 1.0118 1.0385 1.0997 1.0799 1.0256 1.0799

T11(6−9) 1.0476 1.0266 0.9007 1.0220 1.0216 1.0220

T12(6−10) 1.0241 0.9843 0.9991 0.9129 1.0229 0.9129

T15(4−12) 1.0467 1.0106 1.0156 1.0231 0.9994 1.0231

T36(28−27) 0.9199 0.9231 1.0994 0.9856 0.9236 0.9856

QC10 4.2395 4.9840 4.9120 1.6421 2.4062 1.6421

QC12 1.4495 2.1116 0.5579 1.6167 2.6837 1.6167

QC15 3.2112 2.5207 4.9640 2.8157 0.5640 2.8157

QC17 3.7457 4.9803 4.9847 1.5851 0.9694 1.5851

QC20 4.3249 4.9990 4.9779 2.2872 2.3416 2.2872

QC21 0.7353 3.1349 0.9259 4.2197 4.8982 4.2197

QC23 3.4977 4.9984 3.6500 4.0903 4.4645 4.0903

QC24 4.7835 4.4227 2.2163 2.7915 2.1013 2.7915

QC29 2.9589 0.6670 3.3934 3.4645 4.4144 3.4645

C ($/h) 867.2577 849.5033 830.1851 803.7616 806.9091 803.7616

VD 0.6913 0.6612 1.2445 1.0590 0.5877 1.0590

Lmax 0.1312 0.1352 0.1529 0.1364 0.1340 0.1364

E (ton/h) 0.2237 0.2482 0.4154 0.3213 0.3140 0.3213

PL (MW) 4.8190 5.5993 9.8348 7.8029 8.0978 7.8029

QL (MVar) −15.8415 −12.3067 3.0400 −4.0942 −3.6115 −4.0942

N 0.5966 0.6605 1.6597 1.0307 0.9177 1.0307

Theweighted summethod gives excellent results as shown inCASE7. Furthermore,
it is probably the simplest way to solve the MOPF problem. However, the weights
associated with each objective functions have to be carefully selected, which is a
cumbersome task for the DM.

The minimum operator method applied in CASE 8 achieves good results (N =
0.6605). However, there is no control on the objectives. In other words, this method
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treats all objectives as they have the same importance which not the case in MOPF
problems.

The exponential weighted method used in CASE 9 gives bad results as shown by
the higher value of the Euclidian distance (N = 1.66).

The ε-constraint method used in CASE 10, CASE 11 and CASE 12 is very interest-
ing in solving MOPF problems for many reasons. As previously mentioned, in power
system planning, minimizing the generating fuel cost is for sure the most important
objective however; other issues and/or objectives have to be taken into consideration
as additional constraints rather than to be included as objectives. This is more true in
complex systems where the DM does not know exactly the values of objective func-
tions and then he cannot tune or select weights like in weighted methods. However, he
can impose constraints as percentages of the objective functions evenwithout knowing
their values.

6 Conclusion

In this paper, a recently developed metaheuristic, which is the grenade explosion
method, is used to solve multiobjective optimal power flow problems. Six objec-
tive functions are considered namely: the minimization of generation fuel cost, the
improvement of voltage profile, the enhancement of voltage stability, the reduction of
emission and the minimization of active and reactive transmission losses. The fuzzy
decision making approach is utilized to handle the multiobjective OPF problem. The
correlation between different objectives is identified. Manymultiobjective approaches
are investigatedwhich are theweighted summethod, the exponentialweightedmethod,
the minimum operator and the ε-constraint method. The obtained results show the effi-
ciency of the GEM method when solving the OPF problem for single objective and
multiobjective cases.

Acknowledgments Dr. M. A. Abido would like to acknowledge the support provided by King Abdulaziz
City for Science and Technology (KACST) through the Science and Technology Unit at King Fahd Uni-
versity of Petroleum and Minerals (KFUPM) for funding this work through Project # 14-ENE265-04 as a
part of the National Science, Technology and Innovation Plan (NSTIP).

References

1. Cain, M., O’neill, R., Castillo, A.: History of optimal power flow and formulations, FERC Staff Tech.
Pap., pp. 1–36 (2012)

2. Glavitsch, H., Bacher, R.: Optimal power flow algorithms. In: Anal. Control Syst. Tech. Electr. Power
Syst, vol. 41. Acad. Press Inc (1991)

3. Sivasubramani, S., Swarup, K.S.: Multiagent based differential evolution approach to optimal power
flow. Appl. Soft Comput. J. 12, 735–740 (2012). doi:10.1016/j.asoc.2011.09.016

4. Frank, S., Steponavice, I., Rebennack, S.: Optimal power flow: a bibliographic survey I formulations
and deterministic methods. Energy Syst. 3, 221–258 (2012). doi:10.1007/s12667-012-0056-y

5. Bai, X., Wei, H., Fujisawa, K., Wang, Y.: Semidefinite programming for optimal power flow problems.
Int. J. Electr. Power Energy Syst. 30, 383–392 (2008). doi:10.1016/j.ijepes.2007.12.003

6. Gopalakrishnan, A., Raghunathan, A.U., Nikovski, D., Biegler, L.T., Global optimization of optimal
power flow using a branch & bound algorithm. In: Commun. Control. Comput. (Allerton), 2012 50th
Annu. Allert. Conf., pp. 609–616 (2012)

123

http://dx.doi.org/10.1016/j.asoc.2011.09.016
http://dx.doi.org/10.1007/s12667-012-0056-y
http://dx.doi.org/10.1016/j.ijepes.2007.12.003


720 H. R. E. H. Bouchekara et al.

7. AlRashidi, M., El-Hawary, M.: Applications of computational intelligence techniques for solving the
revived optimal power flow problem. Electr. Power Syst. Res. 79, 694–702 (2009). doi:10.1016/j.epsr.
2008.10.004

8. Frank, S., Steponavice, I.: Optimal power flow: a bibliographic survey II non-deterministic and hybrid
methods. Energy Syst. (2012) 259–289. doi:10.1007/s12667-012-0057-x

9. Yuryevich, J.: Evolutionary programming based optimal power flow algorithm. IEEE Trans. Power
Syst. 14, 1245–1250 (1999). doi:10.1109/59.801880

10. Paranjothi, S.R., Anburaja, K.: Optimal power flow using refined genetic algorithm. Electr. Power
Compon. Syst. 30, 1055–1063 (2002). doi:10.1080/15325000290085343

11. Abido, M.A.: Optimal power flow using particle swarm optimization. Int. J. Electr. Power Energy Syst.
24, 563–571 (2002). doi:10.1016/S0142-0615(01)00067-9

12. Abido, M.A.: Optimal power flow using tabu search algorithm. Electr. Power Compon. Syst. pp. 469–
483 (2002). doi:10.1080/15325000252888425

13. Roa-Sepulveda, C.A., Pavez-Lazo, B.J.: A solution to the optimal power flow using simulated anneal-
ing. Int. J. Electr. Power Energy Syst. 25, 47–57 (2003). doi:10.1016/S0142-0615(02)00020-0

14. Optimal power flow using differential evolution algorithm: Abou El Ela, A.A., Abido, M.A., Spea,
S.R. Electr. Power Syst. Res. 80, 878–885 (2010). doi:10.1016/j.epsr.2009.12.018

15. Chattopadhyay, A.B.P.K.: Application of biogeography-based optimisation to solve different optimal
power flow problems 5, 70–80 (2011). doi:10.1049/iet-gtd.2010.0237

16. Ghanizadeh, A.J., Mokhtari, G., Abedi, M., Gharehpetian, G.B.: Optimal power flow based on impe-
rialist competitive algorithm. Int. Rev. Electr. Eng. 6, 1847–1852 (2011)

17. Bouchekara, H.R.E.H., Abido, M.A., Chaib, A.E., Mehasni, R.: Optimal power flow using the league
championship algorithm: a case study of the Algerian power system. Energy Convers. Manag. 87,
58–70 (2014). doi:10.1016/j.enconman.2014.06.088

18. Bouchekara, H.R.E.H.: Optimal power flow using black-hole-based optimization approach. Appl. Soft
Comput. (2014). doi:10.1016/j.asoc.2014.08.056

19. Bouchekara, H.R.E.H., Abido, M.A., Boucherma, M.: Optimal power flow using teaching-learning-
based optimization technique. Electr. Power Syst. Res. 114, 49–59 (2014). doi:10.1016/j.epsr.2014.
03.032

20. Bouchekara, H.R.E.-H., Abido, M.A.: Optimal power flow using differential search algorithm. Electr.
Power Compon. Syst. 42, 1683–1699 (2014). doi:10.1080/15325008.2014.949912

21. Bouchekara, H.R.E.H., Chaib, A.E., Abido, M.A., El-Sehiemy, R.A.: Optimal power flow using an
improved colliding bodies optimization algorithm. Appl. Soft Comput. 42, 119–131 (2016). doi:10.
1016/j.asoc.2016.01.041

22. Bouchekara, H.R.E.-H., Abido, M.A., Chaib, A.E.: Optimal power flow using an improved
electromagnetism-like mechanism method. Electr. Power Compon. Syst. 44, 434–449 (2016). doi:10.
1080/15325008.2015.1115919

23. Chaib, A.E., Bouchekara, H.R.E.H., Mehasni, R., Abido, M.A.: Optimal power flow with emission
and non-smooth cost functions using backtracking search optimization algorithm. Int. J. Electr. Power
Energy Syst. 81, 64–77 (2016). doi:10.1016/j.ijepes.2016.02.004

24. Sorensen, K.: Metaheuristics-the metaphor exposed. Int. Trans. Oper. Res. 22, 3–18 (2015). doi:10.
1111/itor.12001

25. Ahrari, A., Atai, A.A.: Grenade explosion method–a novel tool for optimization of multimodal func-
tions. Appl. Soft. Comput. J. 10, 1132–1140 (2010). doi:10.1016/j.asoc.2009.11.032

26. Ahrari, A., Shariat-Panahi, M., Atai, A.A.: GEM: a novel evolutionary optimization method with
improved neighborhood search. Appl. Math. Comput. 210, 376–386 (2009). doi:10.1016/j.amc.2009.
01.009

27. Kessel, P., Glavitsch, H.: Estimating the voltage stability of a power system. IEEE Trans. Power Deliv.
1, 346–354 (1986). doi:10.1109/TPWRD.1986.4308013

28. Behrangrad, M., Sugihara, H., Funaki, T.: Effect of optimal spinning reserve requirement on system
pollution emission considering reserve supplying demand response in the electricity market. Appl.
Energy. 88, 2548–2558 (2011). doi:10.1016/j.apenergy.2011.01.034

29. Abido, M.A.: Environmental/economic power dispatch using multiobjective evolutionary algorithms.
IEEE Trans. Power Syst. 18, 1529–1537 (2003). doi:10.1109/TPWRS.2003.818693

30. Jubril, A.M., Olaniyan, O.A., Komolafe, O.A., Ogunbona, P.O.: Economic-emission dispatch problem:
a semi-definite programming approach. Appl. Energy 134, 446–455 (2014). doi:10.1016/j.apenergy.
2014.08.024

123

http://dx.doi.org/10.1016/j.epsr.2008.10.004
http://dx.doi.org/10.1016/j.epsr.2008.10.004
http://dx.doi.org/10.1007/s12667-012-0057-x
http://dx.doi.org/10.1109/59.801880
http://dx.doi.org/10.1080/15325000290085343
http://dx.doi.org/10.1016/S0142-0615(01)00067-9
http://dx.doi.org/10.1080/15325000252888425
http://dx.doi.org/10.1016/S0142-0615(02)00020-0
http://dx.doi.org/10.1016/j.epsr.2009.12.018
http://dx.doi.org/10.1049/iet-gtd.2010.0237
http://dx.doi.org/10.1016/j.enconman.2014.06.088
http://dx.doi.org/10.1016/j.asoc.2014.08.056
http://dx.doi.org/10.1016/j.epsr.2014.03.032
http://dx.doi.org/10.1016/j.epsr.2014.03.032
http://dx.doi.org/10.1080/15325008.2014.949912
http://dx.doi.org/10.1016/j.asoc.2016.01.041
http://dx.doi.org/10.1016/j.asoc.2016.01.041
http://dx.doi.org/10.1080/15325008.2015.1115919
http://dx.doi.org/10.1080/15325008.2015.1115919
http://dx.doi.org/10.1016/j.ijepes.2016.02.004
http://dx.doi.org/10.1111/itor.12001
http://dx.doi.org/10.1111/itor.12001
http://dx.doi.org/10.1016/j.asoc.2009.11.032
http://dx.doi.org/10.1016/j.amc.2009.01.009
http://dx.doi.org/10.1016/j.amc.2009.01.009
http://dx.doi.org/10.1109/TPWRD.1986.4308013
http://dx.doi.org/10.1016/j.apenergy.2011.01.034
http://dx.doi.org/10.1109/TPWRS.2003.818693
http://dx.doi.org/10.1016/j.apenergy.2014.08.024
http://dx.doi.org/10.1016/j.apenergy.2014.08.024


Multiobjective optimal power flow. . . 721

31. Frank, S., Rebennack, S.: A primer on optimal power flow: theory, formulation, and practical examples.
Colorado School of Mines, Tech. Rep (2012)

32. Collette, Y., Siarry, P.: Optimisation multiobjectif. ÉDITIONS EYROLLES, Paris (2002)
33. Sakawa, M.: Genetic Algorithms And Fuzzy Multiobjective Optimization. Kluwer Academic Publish-

ers Norwell, MA, USA (2001)
34. Marler, R.T., Arora, J.S.: Survey of multi-objective optimization methods for engineering. Struct.

Multidiscip. Optim. 26, 369–395 (2004). doi:10.1007/s00158-003-0368-6
35. Engin, T.J., Sci, E.: A comparative study of multiobjective optimization methods in ok Objektifli

Optimizasyon Tekniklerinin Mukayeseli Bir. Chem. Eng. 25, 69–78 (2001)
36. C.E.M.-S.& D. (David) G. Ray D. Zimmerman, MATPOWER, http://www.pserc.cornell.edu/

matpower
37. Vaisakh, K., Srinivas, L.R., Meah, K.: A genetic evolving ant direction DE for OPF with non-smooth

cost functions and statistical analysis. Energy, pp. 3155–3171 (2010). doi:10.1007/s00202-012-0251-9
38. Vaisakh, K., Srinivas, L.R.: Evolving ant direction differential evolution for OPF with non-smooth cost

functions. Eng. Appl. Artif. Intell. 24, 426–436 (2011). doi:10.1016/j.engappai.2010.10.019
39. Liang, R.-H., Tsai, S.-R., Chen, Y.-T., Tseng, W.-T.: Optimal power flow by a fuzzy based hybrid

particle swarm optimization approach. Electr. Power Syst. Res. 81, 1466–1474 (2011). doi:10.1016/j.
epsr.2011.02.011

40. Lai, M.Z.L.L., Ma, J.T., Yokoyama, R.: Improved genetic algorithms for optimal power flow under
both normal and contingent operation states. Electr. Power Energy Syst. 19, 287–292 (1997)

41. Bakirtzis, A.G., Biskas, P.N., Zoumas, C.E., Petridis, V.: Optimal power flow by enhanced genetic
algorithm. IEEE Trans. Power Syst. 17, 229–236 (2002). doi:10.1109/TPWRS.2002.1007886

42. Sayah, S., Zehar, K.:Modified differential evolution algorithm for optimal power flowwith non-smooth
cost functions. 49, 3036–3042 (2008). doi:10.1016/j.enconman.2008.06.014

43. Ongsakul, W., Tantimaporn, T.: Optimal power flow by improved evolutionary programming. Electr.
Power Components Syst. 34, 79–95 (2006). doi:10.1080/15325000691001458

44. Lee, K.Y., Park, Y.M., Ortiz, J.L.: A united approach to optimal real and reactive power dispatch. IEEE
Trans. Power Appar. Syst. PAS-104, 1147–1153 (1985). doi:10.1109/TPAS.1985.323466

45. Marques De Sá, J.P.: Applied statistics using SPSS, STATISTICA. MATLAB and R (2007). doi:10.
1007/978-3-540-71972-4

46. Bouchekara, H.R.E.H., Kedous-Lebouc, A., Yonnet, J.P., Chillet, C.: Multiobjective optimization of
AMR systems. Int. J. Refrig. 37, 63–71 (2014). doi:10.1016/j.ijrefrig.2013.09.009

123

http://dx.doi.org/10.1007/s00158-003-0368-6
http://www.pserc.cornell.edu/matpower
http://www.pserc.cornell.edu/matpower
http://dx.doi.org/10.1007/s00202-012-0251-9
http://dx.doi.org/10.1016/j.engappai.2010.10.019
http://dx.doi.org/10.1016/j.epsr.2011.02.011
http://dx.doi.org/10.1016/j.epsr.2011.02.011
http://dx.doi.org/10.1109/TPWRS.2002.1007886
http://dx.doi.org/10.1016/j.enconman.2008.06.014
http://dx.doi.org/10.1080/15325000691001458
http://dx.doi.org/10.1109/TPAS.1985.323466
http://dx.doi.org/10.1007/978-3-540-71972-4
http://dx.doi.org/10.1007/978-3-540-71972-4
http://dx.doi.org/10.1016/j.ijrefrig.2013.09.009

	Multiobjective optimal power flow using a fuzzy based grenade explosion method
	Abstract
	1 Introduction
	2 Problem formulation
	2.1 Design variables
	2.1.1 Control variables
	2.1.2 State variables

	2.2 Objective functions
	2.2.1 Objective function # 1: generation fuel cost
	2.2.2 Objective function # 2: voltage deviation
	2.2.3 Objective function # 3: voltage stability index
	2.2.4 Objective function # 4: emission
	2.2.5 Objective function # 5: active power transmission losses
	2.2.6 Objective function # 6: reactive power transmission losses

	2.3 Constraints
	2.3.1 Equality constraints
	2.3.2 Inequality constraints
	2.3.3 Constraints handling


	3 Grenade explosion method (GEM)
	3.1 Overview
	3.2 Algorithm

	4 The proposed multiobjective optimization approach
	5 Application and results
	5.1 Single objective OPF
	5.2 Multiobjective OPF

	6 Conclusion
	Acknowledgments
	References




