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Abstract Reconfiguration of radial distribution networks is becoming a viable solu-
tion for improving the performance of distribution networks. Configurations may be
varied with manual or automatic switching operations so that all of the loads are sup-
plied and reduce power loss, increase system security, and enhance power quality.
Reconfiguration also relieves the overloading of the network components. The change
in the network configuration is performed by opening sectionalizing (normally closed)
and closing tie (normally open) switches of the network. These switchings are per-
formed in such a way that the radiality of the network is maintained and all of the
loads are energized. Several researchers have attempted to solve the power distribu-
tion network reconfiguration problem using various techniques. This paper presents a
comprehensive survey on network reconfiguration to bring out a clear idea for future
research.

Keywords Distribution systems - Network reconfiguration - Power loss
minimization - Load balancing

1 Introduction

Starting from the first reported method by Merlin and Back [1] in 1975, power dis-
tribution network reconfiguration (PDNR) methods have travelled a long path from
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the early single objective, computationally slow and mostly heuristic methods to the
present day modern, multi-objective stochastic PDNR methods equipped with super-
fast simulators and latest visualizing tools. Looking at the vast number of published
papers on this topic during the last three decades, one can always say that PDNR is
undoubtedly one of the most discussed power system optimization problems for the
researchers. The two fundamental challenges of PDNR methods for radial distribu-
tion networks (RDN5s), as pointed out by Abadei and Kavasseri [2], are the extremely
large combinatorial solution space and the requirement of a very fast loss estimation
technique for repeated and continuous evaluation of each these configurations. More-
over, the gradual emergence of smart distribution systems with growing penetration
of distributed generators (DGs) and modern FACTS devices, advance applications of
information and communication techniques (ITC) for ensuring high-quality reliable
power distribution, availability of new meta-heuristic optimization techniques and
growing stochastic environment have, in fact, made the PDNR methods more chal-
lenging. Thus, initially only meant for overall active power loss reduction and feeder
load balancing, the present day PDNR methods serve several other objectives (includ-
ing even some conflicting objectives!!) with a clear focus on improving reliability and
power quality indices in a stochastic environment.

Several review papers are available on PDNR methods in the literature. In 1994,
Sarfi et al. [3] presented a survey of the state of the art in PDNR methods, which
is quite old. Enacheanu et al. [4] presented a useful survey on encoding techniques
for network topology meant for various meta-heuristic PDNR methods. Santos et al.
[5] presented a very brief literature review of various PDNR approaches. Tsai and
Hsu [6] briefly reviewed the various multi-objectives used in PDNR analysis. In 2011,
Ferdavani et al. [7] presented a review of PDNR methods through heuristic approaches
only. In [8], a thorough comparative analysis of population-based Al techniques for
PDNR is presented. However, this population-based Al techniques include the genetic
algorithm, particle swarm optimization and ant colony optimization only. Lavarato et
al. [9] presented a brief literature review of the PDNR methods imposing radiality
constraints. Guedes et al. [10] presented a short literature review of papers with a
classification of PDNR methods as single or multi-objective. Kalambe and Agnihotri
[11] presented a bibliographic review of the loss minimization methods in power
distribution systems with PDNR as one among the various loss minimization options,
so it could not throw lights on all related aspects of PDNR methods. Some of the
patents on PDNR methods can also be seen [12-16].

In the light of above developments, this paper attempts to comprehensively review
and classify the PDNR methods by tracing the evolution of the method with gradual
automation of distribution system (DS) and the emergence of smart grid. This review
has the following distinct features.

e It traces the development of the modern multi-objective PDNR methods from the
early single objective PDNR.

o It classifies the PDNR approaches and presents a detailed chronological review.

o It reviews the PDNR results with the most commonly referred test DSs.

e [t presents current trends in research and future research directions concerning
PDNR.
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2 PDNR methods: mono objective to multi-objectives

In 1975, Merlin and Back [1] took up the PDNR problem as finding the minimum
spanning tree (MST) with least total active power loss and ever since; even today,
minimization of power loss (PL) has remained the single most important objective.
In fact, the main objective of PDNR, in normal conditions, is to minimize PL and
in emergency, following a fault or during a planned outage, is to provide services to
as many customers as possible, known as service restoration (SR). Energy loss mini-
mization (ELM) is also considered instead of loss minimization (LM) in some papers.
The early PDNR methods also considered feeder load balancing (FLB) or transformer
load balancing (TLB), prevention of transformer and feeder overload (TFO), minimiz-
ing switching cost (SWC) and number of switching (NS), maximization of voltage
stability index (VSI) as the other objectives but mostly achieved via LM.

2.1 Mono objective PDNR

Most of the papers reviewed consider the PDNR problem as a single objective of LM
subject to current, voltage and radiality constraints (SOLMCVRC) as [4]:

Npy
Min»" |I|*-Ry-Kp — Minimization of PL. (1)

b=1

Subject to constraints

Kp - |Ip| < Iihax — Current constraints 2)
Vimin < Vi < V; max — Voltage constraint 3)
g1(I, k) = 0 — Kirchoff’s current law (KCL) 4)
gv(V, k) = 0 — Kirchoff’s voltage law (KVL) 5)
¥ (k) = 0 — Radial topology constraints. (6)

In above, N, is the number of closed branches. Ry, I, and K, are resistance, the
current and topological status of the closed branch respectively. V; is the voltage of
the ith bus and V; ,;;, and V; 4y are the concerned minimum and maximum bus
voltages respectively. The constraints (such as voltage or current as explained above)
can be formulated as penalty functions in the objective function e.g Zhang et al. [17]
considered LM as the main component whereas bus voltage deviation (BVD) and
branch current limit (BCL) as the penalty functions given below:

M = PL+ pi.fv + pa2-fc- )

Here, fy and fc are the penalty functions for BVD and BCL respectively; p; and
p2 are the corresponding penalty coefficients. Gomes et al. [18] minimized the total
cost of PDNR with two components such as cost for PL and branch utilization cost.
Siti et al. [19] combined minimization of PL with phase and load balancing (PLB).
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Bahadoorsingh et al. [20] formulated an objective function for PDNR to minimize
financial losses due to voltage sags without including cost due to power loss as

Np
M:Mian.PL..Pf.c )
b=1

where f is the frequency of voltage sags at a particular site, P, is the probability of
a particular load composition at the site, Py is the probability of equipment/process
failure, C is the cost associated with the tripping of the equipment/process and Nj is
the number of buses of interest. Prasad et al. [21] proposed an objective as combination
of LM and maximization of system load balancing as:

1 & s
LBsys = .
Npy =1 Sjmax

&)

In above, §; is the maximum apparent power flowing through branch-j and ;4 is
the maximum capacity of the branch-j. Carcamo-Gallardo et al. [22] defined energy
not supplied (ENS) and set it as the PDNR objective. Cebrian and Kagan [23] con-
sidered to minimize the cost of energy loss (EL) with power quality costs like long
duration interruptions (LDI) and customer process disruptions (CPD) due to voltage
sags. Shariatkhah et al. [24] proposed a PDNR to minimize a cost function due to EL,
customer interruption (CI) and SWC. Rosetti et al. [25] combined the minimization
of EL with optimized DG allocation. Ghasemi and Moshtagh [26] combined several
objectives in terms of minimizing cost as:

M = min(LC + SWC — CIV). (10)

Here, LC, SWC and CIV represent the loss cost, switching cost and cost saved due
to voltage profile improvement respectively. In norm-2 type, several objectives are
considered as a vector and its distance between the vector containing the worst values
of corresponding objectives are maximized. In PDNR case, these worst values refer
to the values of the objective functions with the initial configuration. Niknam [27] and
Niknam [28] used this approach to minimize PL, BVD, NS and FLB as below:

Maximize J
= (PL—PL)2+(BVD—BVDy)2+(NS—NSp)2+(FLB—FLBy)? (11)

PLy, BVDy, NSy and FLB( are the values of the corresponding objective functions
before reconfiguration. Thus, various objectives in PDNR can be classified [22] as a)
minimization of PL or EL and b) minimization of restoration time c) optimization of
reliability and power quality based cost functions.
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2.2 Multi-objective PDNR methods

In literature several approaches are adopted when more than one objective are dealt
in PDNR. The major approaches are discussed here.

2.2.1 Weighted sum multi-objective (WSMO) PDNR

Roytelman et al. [29] proposed a WSMO PDNR formulation to minimize PL, worst
voltage drop (WVD), service interruption frequency (SIF), TLB and balanced service
of important customers (BSIC).

M = wy - Pross + wo - TLB 4+ w3 - WVD + wy - SIF 4+ ws - BSIC (12)

Santos et al. [5] formulated a WSMO based objective function considering PL, NS and
number of out of service loads (NOSL). Macedo Braz and DeSouza [30] proposed a
WSMO with objectives to minimize EL and NS. Zhang et al. [31] proposed reliability
oriented WSMO PDNR with the following objectives

M = wy - PL + wy - EENS + w5 - SAIFI + wa - SAIDI + ws - ASAI ~ (13)

Where, EENS— Expected Energy Not Supplied, SAIFI — System Average Inter-
ruption Frequency Index, SAIDI— System Average Interruption Duration Index and
ASAI — Average Service Availability Index.

However, in order to tackle the imprecision and ambiguity in reliability inputs,
electrical parameters, and load data interval analysis is adopted in the paper [31].
Jazebi and Vahidi [32] considered the power quality based indices such as minimizing
total harmonic distortion (THD) of the critical buses of the system and minimizing
the voltage sag (VS) for a WSMO PDNR, where the individual objectives are nor-
malized suitably. Ptfischer et al. [33] proposes analytic hierarchy analysis (AHA) for
multi-criteria decision making considering objectives like minimizing EL, expected
SAIFI (ESAIFI), expected ENS (EENS) subjected to constraints like over current
limit, minimum and maximum bus voltage magnitudes. Benardon et al. [34] proposed
a reliability-oriented WSMO as

M = w; - EL + w) - EENS + w5 - ESAIFI (14)

Recently, Duan et al. [35] proposed a WSMO for objectives like minimizing PL, and
reliability indices like SAIDI, SAIFI and EENS.

2.2.2 Fuzzy multi-objective (FMO) PDNR

When several objectives are simultaneously considered for optimization, it is preferred
to go for optimization with soft limits (rather than hard limits) in terms of fuzzy
membership values (MV), the approach popularly known as fuzzy multi-objective
(FMO). Zhou et al. [36] proposed to minimize NS for RS and FLB by defining three
fuzzy MVs. Another example as formulated by Huang [37] is
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nb nbr
MaxM:wl~/Lp+w2-ZMvi+w3~ZMn’+w4-us (15)

i=1 i=1

Where M is the objective function to be maximized and wp, py;, (i, psare the MVs
to minimize the PL; sum of MVs to minimize the BVDs; sum of MVs to minimize
the current violation and NS respectively. The corresponding weighting factors are
w1, wa, w3 and wy respectively. Hsiao [38] proposed an FMO for PL, BVD, NS and
ensuring the reliability of services (ERS) in terms of minimizing the capacity margin
of feeders and transformers. Venkatesh et al. [39] proposed an FMO PDNR for PL
and VDI. Das [40] proposed an FMO formulation of PDNR method to minimize
power loss (PL), bus voltage deviation (BVD), branch current loading (BCL) with
FLB. Bernardon et al. [41] proposed a FMO PDNR to minimize PL and number
of interrupted customers per year (NICY) subject to voltage, current and radiality
constraints. Falagi et al. [42] formulated FMO PDNR with MFs defined for EENS
and cost of sectionalizing switches (CSS) with DGs. Gupta et al. [43] proposed an
FMO by formulating MVs for PL, BVD, BCL and NS. To take care of the changing
degree of fuzzy MFs at different operating conditions, Grey Co-Relation Analysis
(GCRA) based MO optimization is used by Tsai and Hsu [6]. Hooshmand and Soltani
[44] implemented jointly PDNR and phase balancing as an FMO formulation defining
three MFs for objectives LM, minimization of feeder neutral current (FNC) and phase
balancing index (PBI). Malekpour et al. [45] proposed FMO with 4 objectives to
optimize EL, the cost of electricity generation (CEG), emissions produced (CEP) and
BVD.

2.2.3 Pareto optimal multi-objective (POMO) PDNR methods

As the DSs are continuously marching towards becoming smart grids, the reliability
and power quality based objectives are becoming prominent, which are often con-
flicting in nature. The optimization problem gets complicated with such conflicting
objectives. In such situations, when better values for all the individual objectives do
not exist, non-dominant solutions having best possible trade-off among objectives are
preferred, the set of such solutions is known as pareto front and are often preferred
to single solutions because they can be very useful when considering problems of
practical nature [46]. WSMO approach is known as convex pareto front approach, the
e-constrained MO is another approach where one of the objectives is made as the main
target for minimization which sets a limit or € for all other objectives. The € can be
decreased in a step wise manner so that various non-dominated solutions are obtained.
Chiang and Jumeau [47,48] proposed a two-stage e-constrained PDNR with LM and
FLB as the two objectives. Population-based meta heuristic optimization methods have
the inherent advantages of obtaining a direct pareto front iteratively. Some examples of
evolutionary methods capable of POMO are non-dominated sorting genetic algorithm
(NSGA), pareto archived evolution strategy (PAES), micro-genetic algorithm (uGA),
strong pareto genetic algorithm (SPGA), multi-objective particle swarm optimization
(MOPSO), multi-objective tabu search optimization (MOTO) etc. [49,50].
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Mendoza et al. [S1] considered two objectives, to minimize a cost function defined
and ENS for pareto optimization. Mendoza et al. [49] considered four objectives:
PL, SAIFI, system average interruption unavailability index (SAIUI), system average
duration interruption index (SADII) and ENS for pareto optimization. Chandramohan
et al. [46] formulated a POMO to minimize operating costs (OC) by minimizing real
and reactive power loss along with maximizing operating reliability by minimizing
total interruption cost (TIC) with usual voltage constraints as

OperatingCOSt Nb
M = Min | Ky - PLoss + Ky-QLoss + »_ ICb (16)
b=1

Here, Py 55 and Q.4 are the real and reactive power losses of the distribution system
and K and K are respective cost coefficients. /Cp, is the interruption cost of the bus-b.
Niknam et al. [52] applied fuzzy clustering approach to select the best-compromised
solution from a non-dominated set of solutions. Here, the objectives considered are
LM, minimization of BVD, the cost of energy both by grid and renewable energy
sources (CEG) and total emissions produced (CEP). Barbosa et al. [53] formulated a
POMO PDNR for minimizing PL, VDI, current loading index (CLI) and NS. Guedes
[10] proposed a pareto dominance based multi-objective heuristic PDNR to minimize
total PL. and maximum current (MC). Guptaet al. [54] formulated a POMO to minimize
PL, BVD, average interruption frequency (AIF), average interruption unavailability
(AIU) and ENS. Narimani et al. [55] proposed a POMO based PDNR with objectives
like LM, minimizing operating cost (OC) of DGs and ENS.

3 PDNR approaches

PDNR methods are broadly classified into three categories: (1) heuristics (2) meta-
heuristic and (3) mathematical optimization based approaches. Of course, a fourth
category is there which includes the hybrid methods based on the first three approaches.
Heuristic-based approaches are the most popular ones, mainly due to the reason that
these methods always give fast reconfiguration results and are based on distribution
network operational experience, hence are simple to formulate. However, these meth-
ods not necessarily always give the global optimum values whereas meta-heuristic
(the Greek prefix “meta” means “high level” [56]) PDNR methods take sufficiently
longer time and are often complicated to formulate. These reconfiguration methods are
based on genetic algorithm, simulated annealing, ant colony search, differential algo-
rithm, harmony search, tabu search, gravitational search, particle swarm optimization,
etc. Mathematical Optimization methods, otherwise, known as deterministic methods
and the examples of this approach are linear programming, quadratic programming,
nonlinear programming etc.

PDNR methods mathematically belong to the class of complex combinatorial non-
differentiable optimization problem, where maintenance of radiality of the network,
nonlinear nature of power flow constraints and necessity of exhaustive search for all
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possible configurations add to the complexity of the problem. It is for that reason; most
of the initial PDNR approaches are heuristic search based on simple network operat-
ing principles with much-reduced solution space. Chiang and Jumeau [47,48] termed
these techniques otherwise as “the class of greedy search techniques which accepts
only search movements that produce immediate improvement. As a result, these solu-
tion algorithms usually achieve local optimum solutions rather than global optimal
solutions”. Sensitivity guided heuristics and several other inference mechanism based
techniques are also included in this category.

The PDNR approaches can also be classified into two categories (a) branch
exchange (BE) method (b) sequential switch opening method (SSO). In a branch
exchange method, closure of any tie line switch must accompany with opening of
any sectionalizing switch from the loop formed whereas in the second category, one
or any number combination of the network tie line switches are closed first to form
a meshed system and then sectionalizing switches are opened successively to regain
radial configuration. Tables 1, 2 and 3 enlist a chronological order of various PDNR
methods published in various journals of repute over last three decades for heuristic,
mathematical optimization and meta heuristic-based approaches respectively. These
tables also include brief information of the corresponding PDNR objectives and the
type of load flow used. Figure 1 depicts the evolution of PDNR methods with the
gradual emergence of smart grid.

4 Test systems and results

Looking at the huge number of papers available in the literature on PDNR methods,
it is felt that there is a need for a review of the most commonly used test systems and
reported reconfiguration results. Over the years, researchers have used several test DSs
to explain their own approaches and compared it with other PDNR methods. Here,
some of the most commonly referred test DSs are considered and the reconfiguration
results of these systems as reported by the respective authors are presented. However,
the reconfiguration results refer to LM objective only. The reported results (except
for 16 bus system) include active power loss and minimum bus voltage magnitude
before reconfiguration and active power loss, minimum bus voltage magnitude, open
branches after reconfiguration. The reported results also include reported the number
of LFs required and the execution time in second for the reconfiguration process.

4.1 16 bus test system (TS-1)

Civanlar et al. [60] introduced this three feeder test system (Fig. 2). The bus and branch
numbering is kept the same as in the original case. The total active and reactive loads
are 28.7 MW and 17.3 MVAr respectively. Capacitors are connected at 7 buses (5, 6,
9,11, 12, 14 and 16) amounting a total of 11.4 MVAr. The base power and voltage are
100 MVA and 23 kV respectively. The line and load data of the system are available
in [60]. This test system is mostly used by researchers to explain the corresponding
proposed PDNR methods and for quick validation of results. There is unanimity for
the power loss (511.4 kW) in the original network (Fig. 2) with open branches 15,
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Table 1 Heuristic search based PDNR methods

S.no. Description Type and Load flow Salient features
objective(s)
1 Merlin and Back LM Meshed and Pioneer method-blend of
[1] radial load optimization and heuristics-known
flow (MRLF) as branch and bound method (BB):
all tie lines are closed first and one
line is opened at a time
2 Castro et al. [S7] SR and FLB Not reported Search based heuristic algorithm
(HA)
3 Ross et al. [58] LM and FLB Not reported A heuristic algorithm (HA) based on
branch exchange(BE)
4 Aokietal. [59] LM with FLB Not reported An approximate method based on
heuristic rules
5 Civanlar et al. LM Approx. loss A BE based heuristic method
[60] estimation
formula (LEF)
6 Baran and Wu LM via FLB Radial LF(RLF) BE based HA using approximate
[61] radial LF methods
7 Liu et al. [62] LM LEF is used 2 HAs: one for uniformly distributed
load and the other for concentrated
load
8 Shirmohammadi LM MRLF SSO method using compensation
and Hong [63] based load flow (CLF). All tie lines
are closed first and opened
successively to regain radiality
following an optimum power flow
(OPF) pattern
9 Castro and LM RLF BE HA using a approx. LEF
Watanabe [64]
10 Huddleston et LM RLF BE HA using a quadratic loss
al. [65] function and multiple switch pair
operations per iteration
11 Taylor and LM and RLF Heuristics rule based best first tree
Lubkeman prevention of searching method
[66] TFO
12 Wagner et al. LM Gauss Siedel Compares linear programming (LP)
[67] (GS)LF with the two HAs (OPF and BB)
for uniformly distributed loads
13 Chen and Cho Minimize EL 3 phase RLF BE based PDNR HA with hourly
[68] optimal switching in a day
14 Goswamiaand LM MRLF SSO method: one tie line is closed
Basu [69] first and a branch is opened from
the loop so formed with minimum
current
15 Broadwater et SOLMCVRC RLF BE HA PDNR for time varying load
al. [70]
16 Chen and Cho ELM, switching 3phase RLF Binary integer programming with BB
[71] cost technique

minimization
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Table 1 continued

S.no. Description Type and Load flow Salient features
objective(s)
17 Jung et al. [72] TLB and FLB LEM is used Expert system based on heuristic
rules
18 Augugliaro etal. LM MRLF 2 stage HA: starts with a meshed
[73] network with all switch closed and
opened sequentially, a BE method
is followed
19 Borozan et al. LM CLF SSO method using OPF
[74]
20 Peponis et al. SOLMCVRC MRLF Two HAs: BE and SSO method
[75]
21 Peponisa and LM and FLB MRLF Comparison between BE and SSO
Papadopoulos method with load model
[76]
22 Fan et al. [77] LM RLF BE HA for single loop optimization
23 Roytelmanetal. WSMO: optimizes MRLF 2 stage HA: starts with all switches
[29] PL, TLB, WVD, closed followed by BE to obtain the
SIF and SBIC as optimal configuration
per (11)
24 Sarfi et al. [78] LM RLF HA based on network partitioning
approach
25 Wang et al. [79] LM and FLB 3-Ph FBS ULF BE based PDNR method for
unbalanced distribution systems
26 Borazan et al. Cost(energy) CLF SSO method using OPF
[80] minimization
27 Taleski and ELM PS RLF HA based on BE method
Rajicic [81]
28 Zhou et al. [36] FMO to minimize ~ Not reported 2 PDNR methods: blend of heuristics
NS for RS and and optimization
FLB
29 Zhou et al. [82] Minimizing MLF Heuristic SSO method
operating cost
(0C)
30 Kashem et al. LM RLF Modified BE method based on
[83] distance centre technique
31 Lin and Chin LM Meshed LF SSO method based on switching
[84] indices of loop branches
32 Kashem et al. LM with FLB RLF Modified BE method based on
[85] distance centre technique
33 McDermott et SOLMCVRC RLF HA with a backtracking scheme to
al. [86] avoid local minima
34 Kashem et al. SOLMCVRC RLF Modified BE method based loss
[87] estimation formula
35 Kashem et al. SOLMCVRC RLF Heuristic geometric BE approach
[88]
36 Huanga and LM and FLB RLF HA-BE with fuzzy approach
Chin [89]
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Table 1 continued

S.no. Description Type and Load flow Salient features
objective(s)
37 Kashem et al. FLB RLF BE based HA on index measurement
[90]
38 Ghosh and Das LM MRLF HA: modified BE method
[91]
39 Gohokar et al. LM MRLF HA: SSO method based on network
[92] topology
40 Ke [93] FLB Not reported HA: using G-Nets inference
mechanism
41 Gomes et al. LM MRLF HA: SSO method
[94]
42 Sivanagaraju et LM and RLF HA: BE approach to maximize VSI
al. [95] maximization of
VSI
43 Chuang et al. FLB Not reported Rule knowledge Petri Net (RKPN)
[96] based PDNR
44 Das [40] FMO: PL, BVD, RLF HA: BE method
BCL and FLB
45 Das [97] FMO: PL, BVD, RLF HA: BE method
BCL and FLB
46 Gomes et al. Minimization of MRLF HA: SSO method using OPF
[18] cost of PDNR
47 Savier and Das FMO: PL, BVD, Radial PDNR HA: BE method for loss
[98] BCL and FLB allocation
48 Siti et al. [19] LM and PLB URLF 2 methods: one HA and other based
on ANN for UDS
49 Martin and Gil LM MRLF HA: BE method based on direction
[99] of power flows
50 Raju and Bijwe LM MRLF HA: SSO-2 stage approach based on
[100] loss sensitivity
51 Raju and Bijwe LM URLF HA: SSO-2 stage approach based on
[101] loss sensitivity
52 Arun and Aran-  Maximize VSI RLF HA: BE method to improve Voltage
vindhababu Stability Index(VSI)
[102]
53 Bernardon etal.  FMO of PL and FBS LF HA: BE method to optimize the
[41] NICY reliability of the system
54 Carcamo- Minimize ENS Not reported 2 HAs: greedy search algorithm
Gallardo et al. (GSA) and fast GSA
[22]
55 Singh et al. LM and RS MRLF SSO method: opening the branch
[103] with minimum power flow
56 Zhu et al. [104] SOLMCVRC PS based RLF  HA: rule based BE method
57 Subrahmanyam  SOLMCVRC URLF HA: BE method for balanced and
et al. [105] unbalanced DS
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Table 1 continued

S.no. Description Type and Load flow Salient features
objective(s)
58 Abadei and SOLMCVRC FBS radial LF  BE method: random walks based loss
Kavasseri [2] estimation technique
59 Abul’Wafa LM RLF HA: BE based method
[106]
60 Savier and Das FMO: PL, BVD, RLF PDNR HA: BE method for loss
[107] BCL and FLB allocation
61 Bouhouras and SOLMCVRC MRLF BE method with load variations by
Labidris [108] stochastic procedures
62 Gonzalez et al. Minimizes non RLF Knowledge HA for planning studies
[109] deliverable
power
63 Mena and LM NR MRLF BE based on branch active and
Garcia [110] reactive power flows
64 Zhang et al. [31]  WSMO: PL, Interval LF BE: based on neighborhood search
EENS, SAIFI, with interval technique
SAIDI, ASAI
65 Zinetal. [111] SOLMCVRC MRLF SSO based PDNR: using a circular
updating
66 Bayat [112] LM FBS RLF BE: based on uniform voltage
distribution algorithm (UVDA)
67 Guedes et al. POMO to RLF BE: Pareto dominance is used to
[10] minimize PL prune the search space
and MC
68 Pfitscher et al. Minimize EL, FBS radial LF  BE method for real time PDNR using
[33] ESAIFI and AHA
EENS
69 Rosetti et al. Minimize EL with  NR LF Combined heuristic constructive
[25] DG allocation algorithm
70 Ahmadi and LM Mesh LF SSO based HA solves PDNR
Marti [113] problem considering MST
71 Benardon et al. WSMO as per FBS radial LF~ BE method for real time PDNR with
[34] (14) DGs
72 Ding and Laparo SOLMCVRC URLF BE based HA
[114,115]
73 Ghasemi and Minimize cost as URLF Improved BE based HA
Moshtagh [26] per (8)
74 Oliveira et al. SOLMCVRC NR-MRLF BE based HA works sensitivity
[116] calculation

21 and 26 whereas the final power loss is 466.13 kW after reconfiguration with open
branches 17, 19 and 26 (Fig. 3). The overall loss reduction is 8.85 %. The minimum
voltage magnitude buses before and after reconfiguration are Via = 0.9693 pu and
V13 = 0.9716 pu respectively. Table 4 presents the number of load flows required by
some PDNR methods (as reported in the concerned paper) for obtaining the minimum
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Table 2 Mathematical optimization based PDNR methods

S.no. Description Objective Load flow Salient features
1 Aokietal. [117] SOLMCVRC MRLF PDNR based on recursive quadratic
with substation programming with uniformly
capacity as distributed load
constraint
2 Glaomocanin SOLMCVRC Radial LF PDNR formulated as a transshipment
[118] problem with quadratic costs
3 Augugliaro etal. LM MRLF SSO based PDNR adopting non
[119] linear programming
4 Wagner et LM GS-LF Compares linear programming (LP)
al.[67] with the two HAs (OPF and BB)
for uniformly distributed loads
5 Abur [120] SOLMCVRC Radial load Linear programming-simplex method
flow
6 Morton and LM LFis avoided  Brute force solution through an
Mareels [121] exhaustive search
7 Ramos et al. SOLMVRC Radial LF Mixed integer linear programming
[122] method (MILP)
8 Schmidt et al. LM Radial LF Mixed integer nonlinear
[123] programming method (MINP)
9 Khodr et al. LM and FLB Radial LF MINP method with Bendors
[124] decomposition and OPF
10 Oliveira et al. LM with capacitor MRLF SSO-MINP with primal dual interior
[125] allocation point method
11 Ramos et al. SOLMCVRC Radial LF MI quadratically constrained
[126] programming (MIQCP)
12 El Ramli et al. LM Radial LF PDNR using Ordinal Optimization
[127]
13 Borghetti [128] SOLMCVRC Radial LF MILP
14 Ibbora et al. Loss minimization Radial LF MILP
[129]
15 Jabretal. [130] LM with Radial LF Mixed integer convex programming
constraints with and MILP
DGs
16 Taylor and LM, FLB Not reported MI quadratically constrained SOCP
Hover[131] PDNR
17 Franco et al. LM in presence of ~FBS Radial LF MILP method in presence of DGs
[132] DGs
18 Dall’ Anese and WSMO: FLB, 3-phase LF Novel convex PDNR formulation
Giannakkis minimize PL,
[133] DG cost
19 Deese [134] LM NR LF Dynamic programming based

method using OPF
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Table 3 Meta heuristics based PDNR methods

S.no. Description Objective Load flow Salient features
Genetic algorithm (GA) based PDNR methods
1 Naraetal. [135] SOLMCVRC LEF is used Earliest GA based PDNR method
2 Lin et al. [136] SOLMCVRC NR-MRLF Refined GA PDNR method with OPF
and heuristic rule based Tabu
search process
3 Huang [37] FMO as given in RLF FMO enhanced GA PDNR algorithm
15)
4 Zhu [137] SOLMCVRC FBS RLF Shortened genetic strings consists of
set of tie lines only
5 Shin et al. [138]  Minimize Loss Not reported Genetic Tabu search (TS) PDNR
cost and algorithm with RS
Interruption cost
6 Hong and Ho FMO to minimize RLF refined GA with Prufer number
[139] PL and VD encoding for mesh check
7 Prasad et al. Minimization of RLF Fuzzy mutated GA PDNR
[140] PL and VDI
8 Ramos et al. SOLMVRC RLF Both MILP and GA based PDNR
[122] with path based approach
9 Mendoza et al. POMO: minimize MRLF Application of non sorting GA,
[51] construction cost NSGA and strong pareto GA,
and ENS SPGA for PDNR
10 Mendoza et al. SOLMCVRC RLF GA using “accentuated crossover”
[141] and “directed mutation”
11 Bahadoorsingh Minimization of RLF Double point cross over and adaptive
etal. [20] voltage sag cost mutation
as (8)
12 Carreno et al. SOLMCVRC RLF1 A new codification based on
[142] Chu-Beasly algorithm
13 Enacheanu et al. SOLMCVRC N R-RLF GA based on Matroid theory
[4]
14 Prasad et al. [21] Minimize PL and FBS RLF GA based BE PDNR algorithm
maximize LBgys
as (9)
15 Mendoza et al. POMO: PL, SAIFI, PSRLF Micro GA(uGA)
[49] SAIUI, SADII,
ENS
16 Queiroz and Energy loss Radial energy  Network random keys (NRK)
Lyra [143] minimization flow representation for MST followed,
BE based local search Hybrid GA
17 Cebrian and Minimize cost for RLF MI GA, Prim and Kruskal algorithm
Kagan [23] EL, LDI and to generate MST
CPD
18 Chandramohan POMO: OC and RLF NSGA method
et al. [46] TIC as per (16)
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Table 3 continued

S.no. Description Objective Load flow Salient features
19 Gupta et al. [43] FMO to minimize RLF GA adapting graph theory
PL, BVD, BCL,
NS
20 Santos et al. [S]  WSMO to FBS radial LF  Node depth encoding EA and use of
minimize PL, NS sub population table
and NOSL
21 Macedo Braz WSMO to MRLF GA with subtractive and additive
and D’Souza minimize PL and sequential encoding
[30] NS
22 Swarnkar et al. SOLMCVRC RLF GA with heuristics spark and novel
[144] codification
23 Barbosa et al. POMO: PL, CLI, FBS RLF NSGA-II based PDNR
[53] VDI and NS
24 Tomoiaga et al. SOLMCVRC FBS RLF GA based on connected graphs
[145]
25 Torres et al. SOLMCVRC Not reported GA with edge window decoder
[146] encoding technique
26 Wang and Gao SOLMCVRC Mesh LF Non Revisiting GA based PDNR
[147]
27 Barbosa et al. Minimize PL, CLI, FBS RLF Interval MO NSGA-PDNR
[148] VDI and NS
28 Guptaetal. [54] POMO: PL,BVD, RLF GA with modified crossover and
AIF, AIU and mutation
ENS
29 Maza et al. [50] POMO to RLF NSGA-II based PDNR method
minimize EL,
ENS and LBI
30 Duan et al. [35] WSMO: PL, RLF Enhanced GA which always
SAIDI, SAIFI generates radial configurations
and EENS
Simulated annealing (SA) based methods
31 Chiang and g-constrained MO:  RLF 2 stage PDNR using a modified SA
Jumeau [47] LM and FLB algorithm
32 Chiang and
Jumeau [48]
33 Chang and Kuo LM RLF Simplified line flow equations to
[149] speed up SA process
34 Jiang and SOLMCVRC FBS radial LF ~ SA for network reconfiguration with
Baldick [150] capacitor control
35 Su and Lee LM and voltage RLF PDNR mixed with optimal capacitor
[151] profile placement
improvement
36 Jeonetal. [152] LM RLF SA: polynomial time cooling

schedule based
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Table 3 continued

S.no. Description Objective Load flow Salient features
37 Jeon and Kim LM RLF Hybrid PDNR: TS is mixed with SA
[153] to improve local search
38 Chenetal. [154] SOLMCVRC RLF Simulated annealing immune
algorithm
Evolutionary programming (EP) based PDNR
39 Song et al. [155] SOLMCVRC RLF Fuzzy controlled evolutionary
programming based PDNR
40 Venkatesh and FMO: minimize RLF Fuzzy adaption of EP based BE
Ranjan [156] PL and VDI method
41 Hsiao [38] FMO: minimize RLF EP PDNR for fuzzy MO with
PL, NS, BVD reliability considerations
and ERS
42 Venkatesh et al. ~ FMO: PL and VDI  RLF Fuzzy adaption of the EP based BE
[39] method
43 Delbem et al. LM, distribution RLF EA close to EP with graph chain
[157] planning and ER representation
44 Tsai and Hsu [6] GCRA-MO: FLB, RLF GCRA based MO PDNR
LM, BVD and
NS
Differential evolution (DE) based PDNR
45 Su and Lee SOLMCVRC RLF PDNR using improved MI hybrid DE
[158]
46 Chiou et al. SOLMCVRC RLF Variable scaling hybrid DE based
[159] PDNR
47 Jazebi and WSMO: LM, THD RLF DE based PDNR with power quality
Vahidi [32] and VS improvement
minimization
ANN based PDNR
48 Kim and Hung LM LF not reqd. PDNR based on ANN mapping
[160] ability for a minimum PL
49 Kashem et al. LM LF not reqd. PDNR based on ANN mapping
[161] ability for a minimum PL
50 Salazar et al. LM LF is not Improved ANN based PDNR using
[162] reqd. clustering technique
51 Siti et al. [19] LM and PB URLF 2 methods: one HA and other based
on ANN for UDS
Tabu search (TS) based PDNR
52 Augugliaro etal. LM MRLF 3 methods based on TS, GA and SA
[163] are presented
53 Lietal. [164] SOLMCVRC RLF Tabu list is used to prevent getting
trapped in local maxima
54 Mishima et al. LM in presence of ~ RLF TS based PDNR with DGs

[165] DGs and

constraints
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Table 3 continued

S.no. Description Objective Load flow Salient features
55 Zhang et al. [17] LM with penalty RLF Improved TS method with mutation
functions as (7) operation
56 Abdelazizetal. SOLMCVRC RLF TS method with dynamic tabu list
[166] with variable size
Ant colony optimization (ACO) based PDNR
57 Suetal. [167] LM with penalty Radial LF ACO based PDNR compared with
functions (8) SA and GA based PDNR
58 Ahuja et al. POMO: LM, TLB  Not reported Hybrid ACO and AIS POMO PDNR
[168] and BVD
59 Carpaneto and LM with penalty FBS RLF Hyper Cube ACO based PDNR
Chicco [169] functions similar
to (8)
60 Chang [170] LM with penalty RLF ACO based PDNR with capacitor
functions as in placement
®
61 Falaghi et al. FMO: For EENS Not reported ACO based PDNR with DGs and
[42] and CSS reliability considerations
62 Niknam [28] MO (norm?2): PL, Not reported Hybrid PSO and ACO MO PDNR
BVD, NS and
FLB as (11)
63 Wuetal. [171] LM with FLB and Not reported ACO based PDNR with DGs
TLB
64 Saffar et al. FMO: to minimize = RLF PDNR using ACO
[172] PL and maximize
LBI
65 Swarnkar et al. SOLMCVRC RLF ACO based PDNR using graph
[173] theory and heuristics spark
66 Abdelaziz et al. SOLMCVRC FBS RLF ACO and HS based PDNR
[174]
67 Ahuja et al. SOLMCVRC Not reported ACO based PDNR with pheromone
[175] directed crossover

Artificial immune system (AIS) algorithm based PDNR

68 Ahuja et al. POMO: LM, TLB

[168] and BVD
69 Oliveira et al. Minimization of
[176] cost of EL at

various load
levels

Bacterial foraging (BF) based PDNR

70 Satish ana SOLMCVRC
Jayabharthi
[177]

71 Hooshmand and FMO: PL, FNC,
Soltani [44] PBI

Not reported

RLF

NR LF

3-Ph LF

Hybrid ACO and AIS POMO PDNR

PDNR based on clonal selection AIS
algorithm

BF based PDNR

BF combined with Nelder Mead
algorithm
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Table 3 continued

S.no. Description Objective Load flow Salient features
Honey bee mating optimization (HBMO)
72 Niknam [27] MO (norm2): PL, RLF Hybrid PSO and HBMO PDNR
BVD, NS and algorithm
FLB as (11)
73 Niknam [178] FMO: PL, BVD RLF Multiobjective HBMO algorithm
and NS for
pareto optimality
74 Niknam and FMO: PL, BVD, RLF Multiobjective HBMO algorithm
Sadeghi [179] NS for pareto
optimality
75 Niknam et al. Fuzzy clustering RLF Modified HBMO PDNR algorithm
[52] POMO: for DS with wind generators, Photo
minimize PL, voltaic cells and fuel cells
BVD CEG, CEP,
with constraints
76 Olamaei et al. MO: PL,BVDand RLF Modified HBMO PDNR algorithm
[180] NS
Particle swarm optimization (PSO) algorithm
77 Sivanagaraju et LM and FLB RLF Discrete PSO (DPSO) algorithm
al. [181]
78 Abdelazizetal. SOLMCVRC RLF Modified PSO with an inertia weight
[182] based on BE
79 Niknam [27] MO(norm?2): PL, RLF Hybrid PSO and HBMO PDNR
BVD, NS and Algorithm
FLB as (11)
80 Assadian et al. SOLMCVRC Mesh LF Guaranteed convergence PSO PDNR
[183] with graph theory
81 Niknam and SOLMCVRC RLF Hybrid PSO and modified shuffled
Farsani [184] frog leaping PDNR
82 Gupta et al. SOLMCVRC Mesh LF Adaptive PSO BE method using
[185] graph theory and heuristics
83 Niknam et al. SOLMCVRC RLF Hybrid fuzzy adaptive PSO and DE
[186] PDNR algorithm
84 Wu and Tsai SOLMCVRC RLF Enhanced integer coded EIC-PSO
[187] with a local optimal list
85 Amanulla et al. Minimize PL and RLF Binary PSO PDNR with probabilistic
[188] maximize reliability evaluation
reliability
86 Li and Xuefeng LM and FLB with  RLF PDNR based on Niche
[189] CVRC binary(NB)-PSO algorithm
87 Niknam et al. LM with various MRLF Hybrid Fuzzy Adaptive PSO and NM
[190] constraints Algorithm
88 Malekpour et al.  FMO: minimize Probabilistic Stochastic — Point estimate
[45] EL, CEG, CEP, LF using method(PEM) PDNR based on
BVD with PEM adaptive PSO for DS with wind
constraints generators and fuel cells
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Table 3 continued

S.no. Description Objective Load flow Salient features
89 Sedighizadehet FMO: LM, VD, Radial LF Hybrid Big Bang-Big Crunch PSO
al. [191] FLB algorithm
Harmony search algorithm (HSA)
90 Raoetal. [192] SOLMCVRC Radial LF HSA based PDNR method
91 Shariatkhah et Minimize cost for Not reported 2 stage PDNR: 1st stage: HSA and
al. [24] EL, CI and graph theory 2nd stage dynamic
switching programming
92 Abdelazizetal.  SOLMCVRC FBS RLF ACO and HS based PDNR
[174]
93 Rao et al. [193] SOLMCVRC RLF HSA PDNR method with sensitivity
based DG placement
Plant growth simulation (PGS)
94 Wang and SOLMCVRC RLF PGS PDNR algorithm
Cheng [194]
Gravitational search algorithm (GSA)
95 Narimani et al. POMO: minimize RLF Enhanced gravitational search
[55] PL, ENS and OC algorithm (EGSA)
of DGs
96 Shuaib et al. LM and VDI PS RLF Gravitational search algorithm
[195] subjected to VD (GSA) based PDNR
constraint
Fire works optimization (FWO)
97 Imran and Minimise PL and Topological FWO based PDNR method
Kowsalya BVD LF(TLF)
[196]
98 Imran et al. minimization of PL TLF FWO based PDNR integrated with
[197] and BVD DG placement
Teaching learning based optimization (TLBO)
99 Azad-Farsani et  Loss minimization =~ RLF hybrid Chaotic PSO-TLBO based
al. [198] PDNR
100 Kavousi-Fard et  POMO: minimize RLF Probalistic TLBO PDNR
al. [199] EL, CEG, EP,
BVD
Quantum firefly algorithm (QFA)
101 Shareef et al. Minimize SAIFI, RLF QFA based PDNR
[200] ASIFI, MATFI,
SARFI and PL
Imperialist competitive algorithm (ICA)
102 Mirhoseini et al. LM and VPI with Mesh LF SSO PDNR: adaptive ICA algorithm
[201] constraints
Shuffled frog leaping algorithm (SLFA)
103 Niknam and SOLMCVRC RLF Hybrid self adaptive PSO and

Farsani [184]

104 Niknam et al.
[202]

modified SFLA PDNR
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Table 3 continued

S.no. Description Objective Load flow Salient features

105 Kavousi-Fard POMO: PL, SAIFI, RLF Improved SFLA PDNR for reliability
and Zadeh SAIDI, AENS enhancement
[203]

Discrete artificial bee colony (DABC)

106 Aman et al. Minimize VDI and RLF Graph theory based DABC PDNR
[204] maximize

loadabilty margin
Binary group search optimization (BGSO)

107 Teimourzadeh SOLMCVRC FBS RLF BGSO based PDNR
and Zare [205]
Bat algorithm (BA)
108 Kavousi-Fard Fuzzy clustering Probabilistic Self adaptive modified BA based
and Niknam POMO: LF using PDNR with reliability objectives
[206] minimize SAIFI, PEM
AENS, PL, CEG
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e = ] = (] = =] — e

Fig. 1 Evolution of PDNR methods

loss network from the original network (TS-1), which clearly shows that heuristic
based PDNR methods are much faster than the meta-heuristic methods.

4.2 33 Bus test system (TS-2)

This test system is extremely popular among the researchers for validation of recon-
figuration methods and results. However, in literature two topologically same 33 bus
systems are referred which lead to ambiguity. In fact, there is very little difference
between the two as far as the line data are concerned. The load data and tie-line data
are exactly the same. In this paper, the original 33 bus system (popularly known as
Baran and Wu system) is named as TS-2A and the latter revised version is named
as TS-2B. Baran and Wu [61] introduced the test system TS-2A (Fig. 4). The figure
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Fig. 3 TS-1 after reconfiguration

(as reported in [61]) has been redrawn and the bus numbering is slightly changed
as followed by most of the researchers. The branches are indexed as 1 less than the
corresponding receiving end bus and tie lines are numbered as shown in the Fig. 4.
The total active and reactive loads are 3715 kW and 2300 kVAr respectively. The base
power and voltage are 10 MVA and 12.66 kV respectively. The line and load data of
the system are available in [61]. The total active power loss of the original network is
202.65 kW (by authors’ method) with open branches 33, 34, 35, 36 and 37.

On the other hand, in literature, some researchers [35,204] refer to a 33 bus test
system as Baran and Wu test system but with slightly changed line data. For this
system (named here as TS-2B), the line reactance of the line-1 (connecting bus 1
and 2 of Fig. 4) is 0.0477 Q instead of 0.0470 €2. Similarly, the line resistance and
reactance of line 7 (connecting bus 7 and 8 of Fig. 4) are 1.7114 @ and 1.2351 Q
instead of 0.7111 €2 and 0.2351 2 respectively. All other data including that of load
and tie-line data are same as TS-2A. As a result, the total active power loss of TS-2B
comes out to be 210.97 kW (by authors’ method) with open branches 33, 34, 35, 36
and 37. The various reconfiguration results for the TS-2A and TS-2B are presented in
Table 5, which clearly shown how the two systems’ results have been mixed up lead-
ing to confusion. The reconfiguration results of TS-2B are shown as bold results in
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Fig. 4 33 bus test system-TS-2 (A&B)

Table 5. The global minimum loss for TS-2A and TS-2B are reported to be 139.55 kW,
however, many researchers report lesser values marked also as bold results in Table 5.

4.3 69 bus test system-TS-3

Like TS-2, in literature researchers have also considered two topologically same 69
bus networks, referred as TS-3A and TS-3B in this paper.

4.3.1 TS-3A

Baran and Wu [207] introduced this 12.66 kV test system (Fig. 5). The initial network
has open branches 69 (11-43), 70 (13-21), 71 (15-46), 72 (50-59) and 73 (27-65).
The total active and reactive loads are 3802.19 kW and 2964.6 kVAr respectively. The
base power and voltage are 10 MVA and 12.66 kV respectively. The reconfiguration
results for this test system are presented in Table 6. Although, the global minimum
value is reported to be 99.6 kW, many researchers reported lesser values shown as
bold results in Table 6. Here, again, heuristic methods are proven to be much faster.

4.3.2 TS-3B

Chiang and Jimeau [47,48] introduced this test system (Fig. 6). The bus and branch
numbering are maintained same as in the first paper. The initial network has open
branches 69 (10-70), 70 (12-20), 71 (14-90), 72 (38-48) and 73 (26-54). The total
active and reactive loads are 1107.91 kW and 897.93 kVAr respectively. For this test
system, two sets of different reconfiguration results are reported. As pointed out by
Ramos et al. [126], this is due to the value of base voltage considered. Chiang and
Jimeau, considered the base voltage as 11/,/3 kV resulting initial power loss as 69.76
kW, whereas, in papers where the base voltage is considered as 11 kV, the initial
loss is 20.88 kW. The reported global minimum values are shown as bold results in
Table 7.
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Fig. 5 69 bus test system-TS-3A

4.4 70 Bus test system-TS-4

Two topologically same 70 bus test distribution systems are commonly considered by
researchers, known as TS-4A [40] and TS-4B [97] in this paper.

4.4.1 TS-4A

An 11 kV, 70 bus radial distribution system with 2 sub stations and 4 main feeders [40]
is shown in Fig. 7. The base values for voltage and power are 11 kV and 100 MVA
respectively. The substation buses are numbered as 1 and 70 respectively. The details
of the test system with 11 tie lines are presented in [40]. The various reconfiguration
results are presented in Table 8, where a minimum value of the loss is reported as
201.395 kW (marked bold in Table 8).

4.4.2 TS-4B

TS-4B is topologically the same as TS-4A network with same line data. However, it
has 8 tie lines as shown in Fig. 8 and the load data are also different. The details of the
test system with 8 tie lines are available in [97]. The various reconfiguration results
are presented in Table 9, where a minimum value of the loss is reported as 301.6 kW.

4.5 84-bus test system-TS-5
Su and Lee [158] introduced this 11.4 kV test system (Fig. 9), which has 11 feeders,
13 tie-lines, and 83 branches. All most all methods confirm the global minimum loss

of 469.88 kW except in [26] and [178] which report a minimum loss of 463.29 kW
shown as bold results in Table 10.

4.6 119 bus test system-TS-6

This system [17] is an 11 kV distribution system with 118 normally closed branches
and 15 tie switches as shown in Fig. 10. The total active and reactive power loads are
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Fig. 6 69 bus test system-TS-3B

22,709.7 kW and 17,041.1 kVAr. The reconfiguration results as reported in various
papers are presented in Table 11.

4.7 136 bus test system-TS-7

This is a 13.8 kV real distribution system with 136 buses and 156 branches located in
Brazil [142]. The total active and reactive power load for the system is 18,313.8 kW
and 7932.5 kVAr respectively [111]. The reconfiguration results for this test system as
reported by various researchers are presented in Table 12. Most of the authors report
a minimum reconfiguration network with total active power loss of 280.1 kW with
the exception of Swarnakar et al. [144, 173] reporting the lowest power loss of 279.75
kW marked as blue cell in Table 12. The fastest method is found to be that of Zin et
al. [111], a heuristic method, which takes only 51 load flows.

4.8 205 bus test system

The 205 bus test system is developed by [122] by triplicating the 69 bus TS-3B. The
configuration and tie-line data are as presented in [122]. The reconfiguration results
as reported in several papers are presented in Table 13.

4.9 Unbalanced test distribution systems (UTDS)

In literature, not many reconfiguration results with unbalanced radial systems have
been reported. Here, some of the results are presented in Table 14.

5 Stochastic PDNR

With more uncertainties coming in smart distribution operations, PDNR with the sto-
chastic environment has become the important current trend in research and perhaps
has emerged as the most important future direction in PDNR research. With the grow-
ing trend of increased penetration of wind turbines (WTs), solar photo voltaic cells,
fuel cells, plug-in hybrid electric vehicles(PHEVs) along with shift of focus to adopt
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Fig.7 70 bus test system-TS-4A

probabilistic reliability models have brought in uncertainties into the system. These
uncertainty effects are handled through the following methods: (1) Monte Carlo simu-
lation (MCS), which is the most popular method but requires very high computational
effort. (2) Analytical methods, which is computationally more efficient but require
some mathematical assumptions to solve the problem. (3) Approximate methods:
which overcome the shortcomings of the previous two, hence are more useful. Most
well-known approximate methods are: First order second-moment method and point
estimation method.

Ammanulla et al. [188] used probabilistic reliability evaluation models for PDNR
problem applying the minimal cutsets of components between the source and the load.
A probabilistic power flow based on 2m PEM is employed to include uncertainty
in the wind power generation output and demand concurrently[45,199], wind speed
variations, failure rate, repair rate forecast errors [206], and cost of power loss and
customer interruption cost [211,212]. In [213,214] the 2m PEM is used to capture
uncertainty associated with the load demand prediction error as well as the variation
of price rise of natural gas for proton exchange membrane fuel cell power plants
(PEM-FCPPs), tariff for buying electricity from PEM-FCPP and grid, tariff for selling
electrical energy, operation and maintenance cost, hydrogen selling price and fuel
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Fig. 8 70 bus test system-TS-4B

cost for supplying residential loads. Niknam et al. [215] considered uncertainty due
to wind power generation output and demand and adopted a scenario based two-stage
methodology. Rostami et al. [216] and Kavousi-Fard et al. [217] used MCS solving
probabilistic optimal power flow to model stochastic charging behavior of plug-in
hybrid electric vehicles (PHEVs) under different charging strategies. In [218,219], the
2m+1 PEM is used to capture the uncertainty of load and failure rate and repair rate
forecast errors. Recently, Kavousi-Fard et al. [220] developed PDNR for smart grids
with high penetration of PHEVs and wind power generation using a new stochastic
framework based on unscented transformation (UT), which is an approximate method.

6 Present trends and future directions in research
The review also identifies following research directions concerning PDNR methods.

6.1 Application of new meta-heuristic approaches to the problem

This review reveals many new meta-heuristic methods, which are being proposed aim-
ing to improve the PDNR approach such as GSA [55,195], FWO [196,197], TLBO
[198,199], QFA [200], ICA [201], DABC [204], BGSA [205], BA [206] which also
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Fig. 9 84 bus test system-TS-5

confirms the scope of applying other new meta-heuristic optimization algorithms. Para-
meters of these heuristic approaches are selected by trial and error. These parameters
can be tuned adaptively and automatically to improve the computational efficiency of
the PDNR algorithms.

6.2 Inclusion of power quality and reliability indices in the objective

The review also reveals that for PDNR as far as the objectives are concerned, the
focus has clearly shifted from traditional objectives like; minimization of PL, BVD,
BCL, NS to maximization of reliability and power quality based indices. Most
of the recently propose methods [20,26,31-35,41,49,50,54,55,188,200,203,206]
include these objectives. The review also reveals that researchers prefer meta-heuristic
approaches while dealing with reliability and power quality indices. All these research
work on PDNR has been carried out for a particular load level, or at light, medium and
high load levels or based on a load profile data of a day. However, load growth, addi-
tion or expansion of lines need to be included in the PDNR algorithms. Many utilities
use voltage regulators in the distribution networks. Therefore, it will be interesting to
investigate the network reconfiguration considering voltage regulators.

@ Springer



265

A comprehensive review on power distribution. . .

76 06 ‘68 98
[PP1] T8 10 IeyeuIRMS SEV'9e °es6'0 ‘€8 “TL “TY “SS TV 6E YE €1 L 89'89% $8C6°0 66°1€S
76 ‘06 ‘88 98
[8L1] wreuyIN Sel 60 ‘€8 “TL ‘7Y ‘SS TV 6€ YE VI ‘L 968T° €9V 8¥6°0 66°1€S
76 ‘06 ‘68 ‘98
[81] & 10 wdnn S61°C6 °Es6'0 ‘€8 “TL TY “SS TP ‘6€ b€ €1 L 88'69% ¢826°0 66'1¢S
76 ‘06 ‘68 98
[121] 1239 N u u €8 °TL “TY “SS 1Y 6E YE €1 L 90LO LY u 66°1€S
T6 06 ‘68 98
[#61] SuayD pue Suepy sgrell u ‘€8 “TL ‘7Y “SS TV 6€ VE €1 ‘L 88'69¥% u 66°1€S
76 ‘06 ‘68 98
[001] emlrg pue nfey or u ‘€8 “TL “TY “SS T 6E VE €1 ‘L LL8 69¥ 1u 66°1€S
76 ‘06 ‘68 98
[66] 11D pue unep SeLl/eel u ‘€8 “TL “TY “SS TV 6E YE €1 L 18'%¥29 u ELTIL
[0L1] Sueyd u u u 88'69¥% u 66'1¢S
S €0/Elss T6 06 68 98
[2y1] T8 10 oudLe) co/16C u ‘€8 “TL “TY “SS TW 6€ VE €1 L L8'69¥ u I
[¥6] 'Te 19 sowon 0L9q u u 88'0LYq u 66'1€Sq
76 ‘06 ‘68 98
[6S1] 'Te 32 nory) p00ST (1€$6'0) LA ‘€8 TL T SS “T¥ ‘6 YE €1 'L 88691 (S826°0) OA 66'1€S
26 ‘06 ‘68 ‘98€8
[861] 97 pue ng S¢C9¢ (1€56°0) LA TLTY “SS 1Y 6E YE €1 L 88'69¥% (5826°0) OA 66°1€S
(M (M
(nd) WA sayouelq uado [eur SSO1d [BUl] (nd) WA SSOd [eniuy
() oum uoneINSyUoII 1Y uoneIn3yuodAl A10jog
*09x9/ pbar
SYIBWIAI/POYIAN A7T3Jo 'ON S)[NSI UONBINSYUOINY

sj[nsar uoneInSyuodar G-SI, 0T 2[qeL

pringer

as



S. Mishra et al.

266

76 ‘06 ‘68 ‘98
[9t1] Te 10 sax10, £eet 1 ‘€8 TL “TY “SS ‘T ‘6€ ‘VE ‘€1 ‘L 88691 1 66'1¢S
eSL8S'IT 76 ‘06 ‘68 ‘98
LWILIOS[Y 0010F Anig wyYZpE u ‘€8 “TL TY °SS “TH ‘6€ “PE €1 L ©8L8°691 Tu 5S66°1€S
76 ‘06 ‘68 ‘98
[St1] 'Te 30 eSerowoy, S608°L Ju ‘€8 “TL TY °SS “TH ‘6€ ‘PE €1 L 8L8°69% u S66°1¢S
S6 ‘76 ‘06 ‘68
[161] 'Te 10 yopezySipas SCTel 81€56°0 ‘88 ‘98 ‘€8 “TL 79 ‘CS ‘8€ ‘€€ ‘L w9'ILY 68260 66'1¢S
76 ‘06 ‘68 ‘98
[c11] 1eheg SLLO u ‘€8 “TL TY °SS “TH ‘6€ “PE €1 °L 88691 I 66'1¢S
56 ‘06 ‘68 ‘88
,[£9] Suoy pue IpewwEYOWIIYS au Ju ‘98 ‘¥8 ‘T8 “TL ‘€9 ‘T ‘6€ ‘€€ ‘L SELILY au Ju
76 ‘06 ‘68 ‘88
[111] TR YO UIZ 8 1u ‘08 T8 “TL ‘€9 ‘SS TH ‘6€ ‘VE ‘L 68'0LY 1 a
[6] 'Te 10 oyeae] S 0€0€ I TL‘T9 ‘6€ ‘PE ‘€1 ‘L 88°69% ua aa
76 ‘06 ‘68 ‘98
[oct] Te 10 1qer S LLOT u ‘€8 “TL TY *SS “TH ‘6€ “PE €1 L 88691 u 66'1¢S
76 ‘06 ‘68 ‘98
[621] T8 30 vIOqq] ST'T °€s6'0 ‘€8 “TL TY °SS “TH ‘6€ ‘PE ‘€1 ‘L 88°69% u Ju
76 ‘06 ‘68 ‘98
[821] meysiog au T7€66'0 = LA ‘€8 “TL TY ‘SS “TH ‘6€ ‘PE €1 ‘L 8L869% au au
76 ‘06 ‘68 ‘98
[€LT] Te 10 IeyRUIRMS S 88°S6 /LSY €560 ‘€8 “TL “TY “SS ‘T ‘6€ ‘VE ‘€1 L 11€°69¥ 68260 66'1¢S
(M (M)
(nd) WA sayouelq uado [eur SSOTd U] (nd) WA SSOTd [enmuy
(s) own uoneIN3Yuooal 19y uoneIndyuodal a10jog
*09x9/ pbar
SYIRWRI/POYIA AT1J0 "ON $)[NSAI UONBINIYU0IY

penunuod ( dqe

pringer

as



267

A comprehensive review on power distribution. . .

pringer

As

[zy1] 18 10 ouarre) ut poayoday
[111] T8 30 urz ut payodey ,

[101] omfig pue nfey ur parioday ¢
[S#1] Te 10 eSerowoy, ut pauioday ,

76 ‘06 ‘68 ‘98
[9L1] Te 10 BIIOATIO 1 (S6°0) LA ‘€8 “TL ‘79 ‘SS Tk ‘6L Y€ €l ‘L 88°69¥ (€6°0) 6A 66°1€S
76 ‘06 ‘68 ‘88
[911] T8 10 BHOALO S¥ET/9T LSS6'0 VLA ‘08 ‘T8 TL “€9 “SS “Tr ‘6€ ¥E ‘L u (+2€6°0) OA u
‘76 ‘06 ‘88 ‘98
[9T] USeIYSOIN pue Twasey SIT1T °es6'0 ‘€8 “TL 7Y “SS Th 6€ YE VI ‘L 6T€9Y 8¥6°0 66°1€S
76 06 ‘68
[€11] nrey pue pewyy SYLI'O u ‘98 V8 ‘€8 “TL ‘€9 “TF ‘6€ VE ‘L 80°0LY u (439
76 ‘06 ‘68 ‘98
[Ly1] 0eD pue Suem u T€S6'0 LA ‘€8 'TL T9 'SS Tk “6€ "Y€ €T 'L 88697 u u
(M (M
(nd) WwWA sayouelq uado [eur SSOIJ [eul] (nd) WA SSOIq [entuy
(s) awn uoneIngyuodal ¥y uoneIN3Yuodoal 210Jog
*09x9/pbar
SYIRWAI/POYIRIA 47130 'ON S)[NSAI UONBINSYUOIY

penunuod ( dqel,



268 S. Mishra et al.

12 13 14 15 16 17 (120)
0 M ,
N8 19 20 21 22 23 24 25 26 27}
(22) Pt | (27) \
(10) - h \
- Tiz1) ] \
o ! 119\
= \
2NP\T s 6 7 8 Pg i o) \
(28) ) a4 ! (46)
3 - 1y 40 41 42 43 44145\ 46_47_ 48 _(22)___
) b - — S——o—9p
35 47 49) "\ 53 54
29 3\ 3N\ 32 33 34 3573649 50*51° 52 53 54755 kg
( 57 : //
-~ ! ,
(s5)\ 37 38 ~sa o (124) | /
1 e J ’
sis ©) "=~ 7w/
58 59 60 61\ 62 63 64°765
(126)4
63) \ (99)
%~"100 101 102 103 ~~_
92) 195 e
o 03 94 NN T 9899
(100) (64) N (75) o
66 67N\ 68 69 70 71 72 73 74 75 76 77,78 79 80
4
81 82\ 83 84 8586, 87 88 ____,’
- =228
89 90 91 (130
N (131) \
(101) (104) ‘(109 (113)
105 \106 107 108 109 110 111 112 113 114,915\117118
{114 (118) ,’, 116
119 120 121 122 123 (132)

Fig. 10 119 bus test system-TS-6

6.3 Pareto optimality in multi-objectives

Clearly, the trend in MO-PDNR is for finding a set of non-dominated solutions or
pareto fronts instead of going for a single optimized solution as this is best suited
for practical operating conditions. Based on the requirement referring to a particular
operating condition, a suitable solution can be selected out of the set of non-dominated
pareto optimized solutions, e.g the fuzzy clustering approach used in [52,55,203,206].

6.4 PDNR involving DGs and FACTS devices

With the growing penetration of DGs, many researchers have already proposed PDNR
methods involving DGs [25,34,45,55,114,115,128,132,171,193,195,197,199,202,
206].

Jazebi et al. [208] have proposed optimal placement of D-STATCOMs with PDNR
in DS. Hence, further research is required to investigate PDNR with simultaneous
placement of DGs, capacitors, FACTS devices and protection devices [209]. Issues

@ Springer
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such as maximizing the available delivery capability of UDSs with high penetration
of DGs using PDNR [210] can be another interesting direction of research. It will be
interesting to solve PDNR problem with the simultaneous placement of renewable
DGs and energy storage devices considering future load growth.

7 Conclusions

In this paper, more than two hundred papers on PDNR methods have been reviewed.
This review has clearly identified the various techniques adopted by researchers to
solve PDNR problem. From this review it has been observed that heuristics methods
mostly converge very fast to yield optimal configuration, however, the global optimal
value cannot be guaranteed and in some cases these methods are not independent of
initial configurations. Although, many meta heuristic methods have been proposed but
out of all meta-heuristic PDNR methods, GA based PDNR methods are most popular
and effective. Meta-heuristics methods although mostly give guaranteed global optimal
results, but take long computational time to converge and hence, in some cases are
blended with heuristics to increase the speed of convergence to make it suitable for real-
time applications. Moreover, population-based meta-heuristic methods are preferred
for POMO PDNRs and stochastic PDNRs.
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