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Abstract The recognition of transmission’s interaction with other resources has
motivated the development of co-optimization methods to optimize transmission
investment while simultaneously considering tradeoffs with investments in electricity
supply, demand, and storage resources. For a given set of constraints, co-optimized
planning models provide solutions that have lower costs than solutions obtained from
decoupled optimization (transmission-only, generation-only, or iterations between
them). This paper describes co-optimization and provides an overview of approaches
to co-optimizing transmission options, supply-side resources, demand-side resources,
and natural gas pipelines. In particular, the paper provides an up-to-date assessment of
the present and potential capabilities of existing co-optimization tools, and it discusses
needs and challenges for developing advanced co-optimization models.
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1 Introduction

Optimization models have long been used by utilities to inform decisions about elec-
tricity supply and transmission investments, and by public agencies to evaluate policy
designs. While the established practice has been to plan generation resources first, and
then to plan transmission to deliver that supply, in co-optimization both are assessed
simultaneously to identify potentially attractive integrated solutions that may be over-
looked under the conventional approach.

Use of co-optimization is important for two reasons. First, generation and trans-
mission solutions are often substitutes: loads can be met either with local resources or
transmission of remote supplies. Second, siting of new generation, including renew-
able sources, is influenced by the availability of transmission, so that transmission
additions will impact future patterns and mixes of generation investment. Conse-
quently, benefits calculations for transmission expansion should consider not only
fuel savings resulting from reduced transmission congestion, as is traditionally done
in production costing studies, but also capital cost savings from more efficient gen-
eration investment. By modeling interactions between transmission and generation
economics, co-optimization models promise solutions that are less expensive in total
compared to decoupled optimization (transmission-only, generation-only, or iteration
between the two) [1–3].

This rationale for co-optimization is recognized not only by researchers (e.g., [4])
but also by regional transmission operators (RTOs)/independent system operators
(ISOs) who mandate consideration of resource interactions in transmission planning
(such as the California ISO [5]). The recognition of transmission-generation interac-
tions has motivated the development of co-optimization models and demonstration
applications to transmission planning and policy problems (such as [6–11]). In partic-
ular, to provide better decision support for planners and regulators, planning models
are needed that optimize transmission investment while simultaneously recognizing
potential bottlenecks in natural gas supplies and considering tradeoffswith investments
in electricity supply as well as demand-side/storage resources.

Recently, advances in solution techniques and computation have made it practi-
cal to formulate and solve realistically sized co-optimization models.1 In a vertically
integrated planning environment, such models can be used to expand the scope of
integrated resource planning (IRP) in order to capture the value provided by transmis-
sion as well as the diverse resources that are the traditional concern of IRP [12,13].
In an unbundled electric system, these models would instead be used by transmission
planners for what we call “anticipative planning,” in which those planners project

1 In states where the power sector is unbundled, the term “co-optimization” is a slightly misleading char-
acterization of these models, since the transmission owner would not use such models to optimize resource
investment, but instead to simulate the decision process of resource owners.
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how network enhancements change incentives for independent generators and other
resource companies to invest [14,15].

The goal of this paper is to provide a review of co-optimization models to comple-
ment existing summaries of the formulation and application of models for generation
expansion planning (GEP) (e.g., [16–19]), electricity market simulation [20], and
transmission expansion planning (TEP) (e.g., [21,22]). Given the growing recogni-
tion of the benefits of co-optimization and the expanding literature andmethods in that
area, an overview is needed of approaches to co-optimizing transmission, generation
(including distributed and variable renewable resources), loads (including demand
response (DR) and more traditional demand-side management programs), and nat-
ural gas pipelines. Our purpose is to provide an up-to-date assessment of the present
and potential capabilities of existing co-optimization models relative to alternative
transmission planning approaches.

This paper beginswith amotivating example to provide readers some concrete ideas
of the potential benefits of the co-optimization planning approach. It then reviews the
tools presently used for resource planning and co-optimization in Sect. 3. Section 4
provides a summary of implementation issues and approaches for co-optimization
model including data requirements, formulations of particular system features and
solvers. The paper closes with conclusions in Sect. 5. The work in this paper is a mod-
ified version of a small section of work that the authors presented in their whitepaper
on the “co-optimization of transmission and other supply resources” [23].

2 A motivating example

In the white paper written by the authors [23], several numerical examples (in Chapter
4 using small as well as large scale electric systems) are presented to demonstrate the
benefits of co-optimization. To make the current paper stand-alone, we provide one
of such small-scale examples in this section.

Consider a 3-node network as shown in Fig. 1 below. In the network, there are
three existing generators (G1, G2 and G4); while demand only exists at Bus 3. In
addition, a new generator can be built at Bus 3 (denoted as G3), along with the options

Fig. 1 A 3-node example
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Table 1 Generator data for the 3-node example

Unit Min capacity
(MW)

Max capacity
(MW)

Cost ($/MWh) Investment
cost ($/year)

FORa

G1 0 150 8 – 0.04

G2 0 150 12 – 0.04

G3 0 100 9 5,000,000 0.04

G4 0 100 2 – 0.04

a FOR is defined here as the probability that the generator is unavailable in the simulated hour. Outages of
different generators are assumed to be statistically independent

Table 2 Transmission line data for the 3-node example

Line From
bus

To bus Reactancea (pu) Capacity (MW) Investment cost
($/year)

FOR

L1 1 2 0.1 50 – 0.01

L2 1 3 0.1 50 – 0.01

L3 2 3 0.1 100 – 0.01

L4 1 2 0.1 50 3,000,000 0.01

L5 1 3 0.1 50 3,000,000 0.01

L6 1 3 0.1 50 3,000,000 0.01

a The reactances are used in a linearized DC load flow model; the units are in “per unit” (pu)

of building three new transmission lines (as those red dotted lines in Fig. 1.) The data
corresponding to the generators and transmission lines are summarized in Tables 1
and 2, respectively. Note that generator G4 is an existing wind plant, with an assumed
capacity factor of 30 %. Furthermore, for simplicity, we assume that the planning
horizon is only of one year, with an hourly demand at Bus 3 (D3) of 250 MW for each
of the 8760 h.

All the planningproblems (generation-only, transmission-only and co-optimization)
are solved by the GENTEP model, which is able to solve capacity expansion prob-
lems with detailed dispatch modeling and DC-approximation of transmission lines.
(See [24], for example, for more detailed account of GENTEP.) Note that although a
wind plant (G4) is in the capacity mix, the stochastic variation of energy output from
the wind plant is not simulated in this example purely for simplicity’s sake. Another
form of the uncertainty, namely, the forced outages of generators and transmission
lines, is indeed considered in all the simulated runs. As a result, there is a positive
probability that the projected load may not be met in certain time, and the metric
“expected energy not served (EENS)” is used as a measurement of reliability in all
the three different planning approaches.

The solution to the generation-only planning is straightforward in this example,
as building plant G3 at Bus 3 is the only feasible option to meet the future demand.
(The capacity of the two power plants at Bus 1 cannot be utilized due to the capacity
constraint of transmission line L2, which is a direct effect of the Kirchhoff’s current
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Table 3 Solutions of the three different planning approaches for the 3-node example

Generation-only
planning

Transmission-only
planning

Co-optimization

Investment state (0 means no investment; 1 means to invest)

G3 1 – 1

L4 – 0 0

L5 – 1 0

L6 – 1 1

Dispatch of G1 (MW) 0 70 70

Dispatch of G2 (MW) 150 150 50

Dispatch of G3 (MW) 100 – 100

Dispatch of G4 (MW) 0 30 30

Planning cost ($) 28,652,000 27,199,200 26,571,200

EENS (% of load) 3.373 3.326 1.526

and voltage laws.) For transmission-only planning, new transmission lines are built,
as expected, to alleviate the severe congestion on the line connecting Bus 1 and 3,
so that the two (cheaper) power plants at Bus 1 can be used to meet the demand at
Bus 3. For the co-optimization planning, the resulting optimization process chooses
to build both a line connecting Bus 1 and 3, and a power plant (G3) at Bus 3. Such
a solution results in 2 % lower system cost than the transmission-only solution and
7 % lower than the generation-only solution (as shown in the solution summary table
below).Moreover, system reliability (as reflected by themetricEENS) is also improved
in the co-optimized solution, since all four power plants are dispatched to meet the
demand, and the transmission congestion between Bus 1 and 3 is alleviated as well.
Consequently, the chance that the demand is not met due to an outage of any of
the assets is much reduced, as compared to the generation-only or transmission-only
approach. The solutions for the three planning methods are summarized in Table 3
below.

In addition to the above simple example, a case study performed by Sauma andOren
[1] can further motivate the need for co-optimization, in which they compare the co-
optimization planning with a sequential planning approach. The case study considers
a 30-bus, 39-transmission-line, and 6-generation-firm network, and it is demonstrated
for the particular network example that co-optimization results in an approximately
17 % total system cost savings, compared to the sequential planning of determining
generation investment first, followed by transmission investment decisions.

3 Review of existing co-optimization models for policy and planning

The example in the previous section provides a motivation to investigate further the
co-optimization planning approach. Various forms of such an approach have indeed
been proposed in the literature. In this section we begin with a historical perspective
on the concept of co-optimization in Sect. 3.1. In Sects. 3.2 and 3.3, we summa-

123



302 V. Krishnan et al.

rize existing co-optimization models, differentiating between ones used for national-
or regional-scale policy analysis, and ones used for detailed transmission planning.
These discussions provide context for our discussion of particularmodeling and imple-
mentation issues in Sect. 4.

3.1 Historical perspective

Early versions of co-optimization models were proposed as linear programs, and ver-
sions of these models were developed in the 1960s and documented by Turvey and
Anderson in their classic book on electricity economics [25]. However these early
models used transshipment (“pipes and bubbles”) formulations of load flows and thus
did not address the effect of Kirchhoff’s voltage law (KVL) on transmission (i.e.,
parallel flows).2 Therefore they implicitly assumed more ability to reroute flows to
avoid congestion than is actually possible in the absence of flexible alternating current
(AC) transmission system (FACTS) devices such as phase shifters. Consequently such
models that disregard KVL generally overstate the existing transmission capacity and
under-estimate the additional transmission capacity required to accommodate a given
transfer of power from resources to load.

Developed separately, power plant sitingmodels choose specific locations for power
plants and transmission lines, subject to assumptions concerning generation mix. A
flurry of activity in this area was the result of President Carter’s National Coal Uti-
lization Assessment, and is summarized in [26,27]. These models tended to treat
generation and transmission investment as continuous variables (where any nonnega-
tive MW value can be chosen, disregarding the fact that generators and transmission
lines come in discrete sizes), and also ignore Kirchhoff’s voltage law.

More recently, several generation-transmission co-optimization models, described
in more detail below, have been applied at two scales. One scale involves detailed rep-
resentations of AC load flows, or linearized DC load flow approximations, of actual
high voltage transmission facilities as they interact with potential generation facili-
ties within a single utility service area or other (relatively) small regions. The other
scale encompasses large regions (e.g., the Western Electricity Coordinating Council
(WECC), Eastern Interconnection, or the European Union) and uses linearized DC
load flow approximations of aggregations of transmission facilities, as well as sim-
plified representations of generation options as classes of technologies rather than
individual generating units with unique operating characteristics. The latter scale can
be viewed either as a simplification of planning methods that are applied to larger
regions, or, alternatively, as an improvement upon regional siting models and other

2 Kirchhoff’s Laws include the current and voltage laws. The former says that there is a current balance
at any node (bus) in a network, with inflows equaling outflows. The latter says that the net voltage drop
around any loop in a network must be zero. In a linearized DC load flow model, the analogies to these laws
are, respectively, that the net inflow of power to any bus is zero and that the sum of the products of power
times reactance around any loop is also zero. One result of these laws is that power travels in parallel paths
between sources and sinks, and another result is that given a set of sources and sinks, the flow over any
given line is completely determined and cannot be controlled. More generally, however, phase shifters and
other FACTS devices can be introduced into a network, which allows for partial control of flows.
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long-used tools (such as ICF’s integrated planning model (IPM) [27]) in terms of
replacing transshipment representations of transmission with more realistic linearized
DC load flows.

There are three key differences between fine-scaled expansion planning models
and national/regional policy tools. First is the level of spatial aggregation. National
planning tools have low spatial resolution. For example, in some global versions of
MARKAL, Europe is represented as a single node, while in US Environmental Pro-
tection Agency’s (USEPA) MARKAL 9 regions are specified for the US. However,
regional planning tools normally contain much more detail. For example, PLEXOS
can operate at 3 types of geographical units: regional, zonal, or nodal. The second key
difference is the user. National planning tools are mainly used by regulatory bodies
and governments, while regional planning tools are widely used among utilities, ISOs,
and consulting firms. It is to be noted that some of these tools have the capability of
performing both national and regional scale planning studies, being flexible in their
spatial resolution. The third key difference is that national tools often explicitly con-
sider price formation in fuel markets, such as the coal and natural gas supply curves
considered in IPM. In contrast, regional tools assume fuel prices as fixed inputs, and
instead treat the electric power system itself in much more detail.

3.2 Co-optimization models for national/regional policy analysis

Co-optimization tools that are employed by governments and regulatory bodies usu-
ally address the power system on an inter-regional, interconnection, or even national
level. For instance, the USEPA and US Department of Energy (USDOE) use national
modelswith simplified representations of interregional transmission constraints. Some
of these models are used to assess the potential profitability of generation investments
in different sub-regions considering the reaction of the rest of the market. Table 4
summarizes several national policy tools and their characteristics. Several additional
models that can be used for co-optimization at the national or large region level are
summarized later in Sect. 3.3; models in that section tend to have more detail on power
system transmission and generation, and less on other energy forms than some of the
comprehensive models shown in Table 4 (especially MARKAL and NEMS).

3.3 Co-optimization models for detailed transmission planning

The transmission expansion planning problem is typically regarded as a nonlinear and
highly complicated problem, which justifies application of advanced optimization
models and algorithms such as mixed-integer programming, Benders decomposition,
and heuristics (e.g., genetic algorithms). Co-optimizationmodels that attempt to tackle
the computationally difficult aspects of transmissionplanningdate back to1970swhere
linear mixed-integer programming models were proposed [28]. Nearly all of these
were research efforts and have not been implemented as commercial software. Later,
decomposition approacheswere used to breakdown theproblem intomoremanageable
pieces. For instance, a Benders decomposition-based approach was used in [29] to
separate and coordinate the investment problem and operating sub-problems [29].
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Other models moved beyond investment and operations cost minimization to include
customer interruption penalties [30], allowing consideration of tradeoffs between costs
and reliability. However, earlier models were highly simplified and thus insufficient
for actual generation and transmission expansion planning.

Over the last two decades, additional research efforts have been made to address
the co-optimization problem in electricity markets, while considering more operation
details. Table 5 summarizes several existing co-optimization methods for planning,
including what they model (such as which energy sectors are included, and how trans-
mission is represented, etc.), their treatment of time (which is crucial for long-lived
investments), and finally what types of optimization problems are solved. Next, we
discuss some particular areas of application of co-optimization for planning.

A common approach to accommodate more operation detail is to formulate co-
optimization as a bi-level optimization problem for generation and transmission,
sometimes using iterative approaches to coordinate the two planning problems [31–
34]. Baringo and Conejo [35] presented a bi-level stochastic co-optimization model
but instead of iterating, they transform it into a single-level mathematical program
with equilibrium constraints. They showed that transmission expansion decisions sig-
nificantly impact wind power capacity expansion even though investment costs in
transmission expansion are much lower than those in wind power capacity.

As other examples of issues addressed in co-optimization models for planning, a
recent study in [36] used co-optimization to show that distributed generation could
mitigate congestion and defer transmission investments. Follow-up studies accounted
for incentives offered to independent power producers [37] and for the possibility of
buildingmicrogrids [24]. The latter analysis showed that consideringmicrogrid invest-
ments in co-optimization could provide significant reliability and economic benefits.
Head et al. [38] introduced a multi-area co-optimization model and demonstrated
that the proposed model could offer considerable economic benefits in power pools.
Finally, [8] proposed a capacity payment mechanism in a co-optimization model for
transmission and generation facilities.

4 Modeling approaches for co-optimization

This section lays out basic choices associated with designing a co-optimization
model and also summarizes advantages and disadvantages of each choice. Section
4.1 presents the choices associated with transmission network representation in terms
of modeling fidelity, while Sect. 4.2 discusses network representation in terms of mod-
eling coverage. The sections also review the associated data requirements, investment
decision options and features of model optimizers for each modeling choice. Section
4.3 discusses a few important modeling issues such as end effects, optimization time
periods, and uncertainties.

4.1 Network representation in co-optimization: choice of model fidelity

In this section, we summarize the pros and cons of the choices in representing trans-
mission networks used in a co-optimization model. In the order of decreasing fidelity,
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these include the alternating current (AC) model (Sect. 4.1.1), the direct current (DC)
model (Sect. 4.1.2), and the transshipment model (“pipes-and-bubbles” or network
flow) (Sect. 4.1.3). However, with enhanced fidelity comes increased computational
challenges in the resulting optimization problem. Hybrid models (Sect. 4.1.4) attempt
to combine fidelity advantages of some types of network models with computational
advantages of others. For each type of the network model, we summarize its formula-
tion, solution, investment alternatives, and data requirements

4.1.1 AC power flow model

Formulation An AC model consists of a complete representation of real and reac-
tive power flows in the transmission network governed by electrical laws, which are
expressed in terms of a non-linear function of network states, namely bus voltages and
angles, and network parameters (impedances). The AC optimal power flow (ACOPF)
problem is formulated as an economic generation dispatch problem with network
flow constraints. The comprehensive formulation enables simultaneous management
of real power (P) demand with voltage (V) and reactive power (Q) requirements.
Along with the non-linear power flow relations in the ACOPF, the use of integer trans-
mission expansion variables make the co-optimization a Mixed Integer Non-Linear
Programming (MINLP) problem, a very challenging optimization problem to solve.

A complete mathematical formulation of an ACOPF-based generation and trans-
mission planning model (ACOPF-GTEP) is presented as Eqs. (1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12) in Sect. A.1 of the appendix. The integer variables and non-linear
constraints that render the problem a MINLP are shown in Eqs. (2, 3, 4, 5, 8). If a
strategy for dividing the problem into investment and operating (OPF) subproblems
is pursued, then the OPF is a continuous nonlinear optimization problems (NLPs).
The OPF can be solved by iterative methods involving basic line-search steps [39],
where an initial solution x0 at k = 0 is chosen, and then a search direction dkand
an appropriate step size sk are selected to update the solution vector xk ; this search
is repeated until the convergence criterion is met. There are numerous methods to
implement each of these steps, which thereby differentiate the many available solvers
or algorithms. When integer variables are included in the NLP, the problems are ren-
dered even more difficult; attempts to solve a combined investment-OPF problem use
variations of branch and bound and cutting plane methods in combination with NLP
methods for continuous problems. Commercially available solvers for MINLP and
NLP problems are summarized elsewhere [40].

In the context of contemporary solvers and proven computational techniques, the
convergence and computational challenges in solving ACOPF-GTEP problem make
it impractical to apply for real world applications [39]. However though challenging,
such models are not unsolvable and studies are being carried out to develop techniques
that relax the MINLP formulation to solve the optimization model in time-efficient
manner, thereby preserving the higher fidelity suchmodel offers and convincingly doc-
ument the added value of considering voltage and reactive power flows along with real
power flows for better resource and transmission investment decisions. One commonly
known way to simplify the model is by using a decoupled power flow formulation or
removing the reactive power flow parts altogether (corresponds to Eqs. (5), (10) in
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the Appendix), while still capturing the interactions between bus voltage magnitude
and real power transfers. Another simplifying technique is to use binary variables
instead of integer decision variables, thereby changing the decision from how many
transmission lines are to be built to the simpler problem of whether or not a candidate
transmission project is to be built. This replaces the integer variable with multiple
stages to a variable with two states (0 or 1), thereby reducing the problem complexity.
A relaxation of the full ACOPF-GTEPmodel using binary decision variables is shown
using Eqs. (13, 14, 15, 16, 17, 18) in Appendix Sect. A.1. A further relaxation of the
model uses continuous decision variables for transmission investment, as shown by
Eq. (19) in Sect. A.1 of the Appendix. Likewise, there are several other ways to relax
the MINLP formulation [41–44], and it still remains a challenging research issue to
understand the various pros. and cons. of each in terms of their degree of computa-
tional efficiency and ability to preserve model fidelity, when applied to practical real
world systems.

Investment options The investment options in a multi-period ACOPF-GTEP model
are:

1. Generation: where, when and how much of different technologies to be invested,
usually represented as continuous (MW) decision variables.

2. Transmission: where, when, how many transmission lines to be invested (if inte-
ger), should there be investment in a particular line (if binary).

3. AC transmission technologies: the ability to choose between different voltage
levels for AC transmission can also be embedded in the model by designing candi-
date arcs with appropriate arc operational and investment characteristics (i.e., cost,
losses, capacity) for respective kV levels, and each will its own binary decision
variable.

4. Shunt compensation: investments in shunt compensation can be considered in
ACOPF formulation, as shown by Eq. (20) in Appendix Sect. A.1. These devices
help provide the required reactive power and regulate the system voltage within
specified security limits. Long distance real power transmission over AC lines
involves a commensurately high reactive power transfer, which causes a signifi-
cant decrease in bus voltage at the receiving end (load centers). A drop in voltage
inhibits the power transfer capability and causes voltage stability issues. There-
fore considering shunt compensation within the formulation considers tradeoffs
between investing in more transmission or reinforcing the existing transmission
using these devices at the load side [44,45].

Data requirements The data required to run a co-optimization model basically
includes data pertaining to system topology, historical and forecasted system con-
ditions, operational and physical characteristics of existing and planned electric
infrastructures, and finally the scenario descriptions. These are presented in Table
6. With an AC formulation, additional data required will pertain to reactive power and
voltage, which include generator capability curves, reactive power limits, and volt-
age set points; transmission line apparent power rating and complex impedances; bus
voltage limits; and costs and characteristics of FACTS devices.

Table 6 gives a synopsis of the kind of data required to run a co-optimization model,
for both the AC and DC network representations.
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Table 6 Synopsis of data and information needed to run AC- and DC-based co-optimization models

Categories Required data Comments

Historical conditions Hourly load and variable generation
data, fuel prices, hydro conditions,
bilateral transactions, generation
forced and scheduled outage rates,
transmission maintenance histories,
inflation and discount rates,
reserves for system adequacy,
contingencies and flexibility, and
imports and exports

Data for previous 5 years or
more, load and variable
generation data should be
correlated with weather
conditions or be weather
normalized

Existing and planned
infrastructure

AC network topology, AC circuit
data, DC line data, fossil and
renewable generation data, storage
and demand response, and existing
long-term bilateral contracts,
contingencies (N-1 and N-1-1)

Operational characteristics,
impacts of line length on its
capacity if using DC model

Resource options Generation, storage, demand
response, and their maturation rate

Investment and operational
characteristics of each
option, geographical
dependence of data

Transmission options AC line, DC line, transformer, circuit
breaker and voltage control
equipment

Investment and operational
characteristics of each
option, candidate
transmission investments

Future conditions Forecasted system conditions,
bilateral contracts, global scenario
descriptions (policy, technology,
economic, or load related)

Depends on planning horizon
(with suitable end effects
calculation)

4.1.2 DC power flow model

FormulationTheDCOPF problem is a linearized approximation of the power injection
formulations of the ACOPF problem; it has been heavily used in industry operating
and planning applications. The DC model basically consists of two relations, real
power flow that is directly proportional to angle difference (in radians) and reactive
power flow that is directly proportional to bus voltage difference (shown by Eqs. (21,
22) in Appendix Sect. A.2). Typically, because the goal of power system design is to
minimize costs associated with real power production, and because circuit flows for
heavily loaded circuits are dominated by their real power component, only equations
pertaining to real power flows (also known as the B-theta model) are used in practical
market and planning applications.

Though the DCOPF model in itself is a LP (an optimization realm that is advanced
in terms of solution techniques and available stable solvers [40]), the DCOPF-based
generation and transmission expansion problem (DCOPF-GTEP) is actually aMINLP,
a non-linear and non-convex problem. This is because of its use of transmission invest-
ment integer variables in the formulation, and that voltage angles are divided by line
reactances, both of which are decision variables. The constraints of this problem are
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shown using Eqs. (23, 24, 25, 26, 27, 28, 29) in Appendix Sect. A.2, along with which
Eqs. (7, 9, and 12) in Appendix Sect. A.1 related to voltage angle and generation
capacity should also be included. Fortunately, with the use of binary decision vari-
ables for transmission investments and a disjunctive formulation, the MINLP model
can be transformed to a MILP. This disjunctive formulation based on the big “M”
method [41] is shown in Appendix Sect. A.2 using Eqs. (30, 31, 32). Still, problems
of larger size, though solvable, are computationally intensive.

The disadvantage of the DC approximation of non-linear AC relations is loss of
model fidelity, since it does not incorporate voltage variables. For normal operating
conditions, the inaccuracy is usually small for circuit flows. However, violations of
bus voltage criteria cannot be detected. The corresponding need for reactive support
can be partially captured by accounting for the effect of line-length on voltage drop
and thus on line capacity for EHV-AC transmission, which was done in [46] using St.
Clair curves [47]. Therefore, though the resulting expansion solution may be a good
starting point, it should be subsequently studied with an AC power flow to ensure that
real and reactive power flows are within limits and address any voltage violations.

An important extension of the DCOPF-GTEP is to add so-called security con-
straints for contingencies, resulting in the security-constrained problem. This can be
done for circuit overloads via use of linear sensitivities (called generation shift factors
and line outage distribution factors). Related constraint equations can be incorporated
directly within the optimization, but at a computational price. Alternatively, the opti-
mization problem may be decomposed to a master problem and contingency-related
sub-problems. When violations of security constraints are encountered in the sub-
problems, the master is rerun with added constraints, and the process repeats until no
further violations are found in the sub-problems. In this approach, one can account for
voltage violations by using a AC representation in the sub-problems, but at increased
computational expense.

Investment options The investment options in multi-period DCOPF-GTEP model
are:

1. Generation: same as AC model.
2. Transmission: same as ACmodel, except simplified based on the DC linearization.
3. Transmission technologies: the ability to choose between different kV levels of

AC transmission can be embedded by designing separate candidate arcs for each
voltage with appropriate arc operational and investment characteristics. Options
for different HVDC technologies may also be provided.

Data requirements A DCOPF-GTEP model has fewer data requirements than an
ACOPF-GTEP model. Of the complete set of typical network data required for an
AC model, data for network resistances, bus voltage limits, generator reactive power
limits and voltage set points, transmission line reactive power limits and FACTS data
(in most cases) are not required for a DC model.

4.1.3 Transshipment model

Formulation In this model, the transmission network is represented similarly to trans-
portation pipelines, which move a commodity between nodes in a network subject
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Fig. 2 Power system represented using network flow model

to an efficiency parameter representing transportation losses. As noted earlier, such a
model respects the nodal balance constraint at every node and transmission flow limits,
but not Kirchhoff’s voltage law. The general transshipment model is the basis of early
regional siting models summarized in Sect. 3.1, and there are several variants of such
models. Figure 2 shows a particular type of transshipment model called a generalized
network flow representation [48] using a one-line diagram for two connected periods
t and t + 1. It is to be noted that generation (modeled by arc EG_EL and EW_EL),
transmission (modeled by arc EL_EL) and demand (modeled by arc EL_L) are all
represented as arcs, with appropriate values for its operational and investment cost,
bounds, and efficiency properties. The two nodes of the generation arc depict typical
fuel input to the generation on one side and the generation output on the other side.
Cost of power flows across all arcs are subject to efficiencies and capacity bounds, and
the required arc capacity expansions are minimized by the network flow optimization.

The network flow-based model’s formulation as a linear programming cost min-
imization problem is shown in Eqs. (33, 34, 35, 36) of Appendix Sect. A.3, which
minimizes the operating and investment costs. Since, both generation and transmis-
sion arcs are considered as transportation pipelines (with different properties), the only
physical relation that governs this model is the nodal power flow balance Eq. (34).
We highlight the network-flow-based version because of its potential to be solved
very efficiently by specialized algorithms. There is tremendous scope to speed up the
solution of such problems using decomposition and parallelization methods [49], and
advancements are being made in solving larger sized linear network flow problems
using high performance computing [50].

The downside of the transshipment approximation is increased loss of model
fidelity, in that it does not incorporate voltage variables and the relationship of real
power transfers with the bus angle difference and line impedance. The solution may
see inaccuracies in transmission flows relative towhat could actually take place. There-
fore, the resulting expansion solution has to be checked using DC or, preferably, full
AC models in order to assess its feasibility with respect to Kirchhoff’s voltage law
and network security constraints. If there are flow or voltage magnitude violations,
then the expansion problem could be iteratively solved with proxy constraints for
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enforcing security as discussed in Sect. 4.1.2, until the expansion solution results in
no violations.

Investment options The investment options in multi-period network flow based
GTEP model are:

1. Generation: as in the AC and DC models.
2. Transmission: where, when, and howmuch transmission is to be built (continuous

variable).
3. Transmission technologies: the ability to choose between different transmission

technologies can be embedded by designing separate candidate arcs for each.How-
ever the differentiation can bemade onlywith respect to operational and investment
characteristics, and not based on equations governed by realistic electrical laws,
as can be done using AC and to some extent with DC power flow models.

Data requirements A network flow model has even fewer data requirements than a
DCOPF-GTEPmodel. It will not require network impedances, bus voltage magnitude
and angle limits, generator reactive power limits and voltage set points, transmission
line reactive power limits and FACTS data.

4.1.4 Hybrid models

A hybrid model is one that represents transmission lines with mixture of the above
three described models. An example hybrid representation includes consideration of
both AC and DC transmission technologies in the model [51]. In this case, DC lines
are modeled as real power injections (positive and negative, as shown in Eq. (37) of
the Appendix) at both the ends of the lines, which effectively translates to modeling
it as a transportation pipeline. Therefore the resulting model will be either a hybrid
of AC power and network flow models or a hybrid of DC power and network flow
models.

Situations in which a hybrid model of transmission lines can be used are:

1. Study area emphasis If a particular area alone is of interestwithin an interconnected
power system, the transmission lines within that area may be modeled with high
fidelity, while the lines external to the areamay be approximated as a transshipment
model with power injections into and out of the area.

2. Modeling interconnections if a larger geographic region is analyzed, where inter-
connections across regions with different frequencies are assessed together, then a
transportationmodel may be used to assess the DC interties connecting these inter-
connections, while the transmission within each interconnection may be modeled
using DC or AC power flows.

All the discussions pertaining to formulation, investment options and data require-
ments can apply to the hybridmodel based on themodeling choices made. A high level
summary of the advantages and disadvantages of different network representations is
presented in Table 7. Depending on the choices, a hybrid model can possess any of
these advantages and disadvantages.
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Table 7 Pros and cons of
network representation: model
fidelity

Choices Pros Cons

AC model High real and reactive
power model fidelity

Requires MINLP
solver; high
computation and
data preparation
requirements

DC model Good real power
fidelity under most
system conditions,
can use linear solver
if lossless

No reactive
power-voltage
information (may
need feasibility
check using full AC
model)

Network flow Highest
computational
efficiency, reduced
data preparation

No impedance effects,
poor fidelity

4.2 Coverage of the model

There are at least three kinds of choices concerning the scope of a model’s network
and resources:

1. Sector and resource coverage Whether to represent fuel (gas and coal) networks,
storage, and demand side resources

2. Geographical coverage How much of the electric network to represent (e.g., a
subregion or the entire interconnection)

3. Voltage level How much of the lower voltage network to represent (e.g., some
studies may represent only 765, 500, 345, and 230 kV equipment whereas others
may also include sub-transmission equipment at 161, 138, 115, and 69 kV as well).

The benefit of increased model coverage is the ability to account for more opera-
tional and investment options, which can result in better estimates of costs as well as
lower-cost plans. The drawback of the added detail is increased data preparation and
computational burdens.

4.2.1 Sector/resource coverage

In this subsection, we describe some important modeling choices concerning the range
of operational and investment alternatives represented within generation/transmission
co-optimization planning, including fuel network (coal and gas), demand response and
storage. In Table 8, we summarize the advantages and disadvantages of expanding a
co-optimization model’s scope to include these features and alternatives.

Fuel network Fuel networks are an integral part of the energy sector. If one considers
electric power networks as the end-users in the energy sector, then fuel networks could
be considered as the source. Figure 2 of reference [2] shows a high level schematic dia-
gram of an energy supply chain, where three different yet interconnected subsystems
are represented: coal, natural gas, and electricity sub-systems.
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Table 8 Pros and cons of expanding model coverage

Choices Pros Cons

Fuel network (coal, gas) Investigate sector interactions
(gas-electric)

Increased computation and data
preparation

Integrated investment options NLP necessary if pipelines
modeled using non-linear
equations

Storage/demand response Add flexibility, wider range of
alternatives to integrate
renewables

Increased computation and data
preparation, Inter-temporal
constraint for storage increases
model complexity

Allows investigation of
generation/transmission
investment deferrals

To capture arbitrage/ancillary,
may require optimization at
hourly (sub-hourly) time steps

Fig. 3 Tradeoff between pipeline and transmission investments

In addition to generation and transmission investment options, such a model may
include decision variables for where, when and how much to invest in gas pipelines,
gas storage, and coal and oil transportation. Including all sectors and options captures
important interactions, such as the effect of increased natural gas-fueled generation
capacity upon the need for gas pipelines, and the resulting delivered cost of gas. For
instance, Fig. 3 shows a case where expansion options are available for generation,
pipelines, and transmission lines. Solution could include siting natural gas generation
close to the load with the associated expansion in pipeline, or alternatively siting it
far away from the load center, thus requiring more power transmission capacity, or a
combination of both (such as the 70/30 split shown in the figure). Investments in trans-
mission and natural gas units may also provide the flexibility needed to economically
integrate intermittent renewables. Therefore, a co-optimization tool that considers all
these inter-related options may findmore efficient and sustainable expansion solutions
compared to a piece-meal approach.

Like transmission networks, fuel networks may be represented at different levels of
fidelity. For example, one may represent gas pipelines using a transshipment model,
or one may represent compressors together with pipeline flow-pressure relationships.
In the latter case, there are various modeling choices, including Panhandle A and B,
White, and Weymouth equations [52].

A model with fuel sectors can be formulated either as an economic equilibrium
model or as a linear programming-based cost-minimization model.
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An economic equilibriummodel is one that represents eachmarket party’s decisions
and their interactions [53,54]. Usually, each market party is assumed to maximize
their profit or net benefits, and the equilibrium problem concatenates the first-order
conditions for each of those maximization problems with a market clearing condition
(supply = demand). In essence, demand functions from end-users interact with supply
functions from sources (which reflect production and transport technologies alongwith
input costs) to determine equilibriumprices and quantities.Depending on themodeling
of demand, production functions, and market bids, the model may be linear or non-
linear. Typically such models are solved for hourly market operating conditions, and
investments are made in yearly time steps. In such models, market signals, including
marginal prices of a particular commodity and network congestion costs, together
with input costs and investment criteria, such as required payback periods, determine
whether the investments are made.

Linear programming-based fuel models instead integrate the different sub-systems
of the energy sector (namely electric, coal, gas and petroleum) using a network flow
model, and has an objective of minimizing the overall cost of meeting energy require-
ments in each sector. This is equivalent to a competitive equilibrium under certain
restrictive conditions, such as zero price elasticity and perfect competition [54]. Usu-
ally for such multi-commodity models, each sector’s operations may be optimized at
different time steps, typically dictated by the degree of variability in the respective
commodity’s value. By having infrastructure investments as decision variables, such
optimization models provide perspectives on what investments are needed to achieve
particular policy goals in an efficient manner. If energy transport media such as natural
gas pipelines and transmission lines are modeled using non-linear equations or integer
variables for higher fidelity, then the optimization problem becomes a NLP, MILP, or
MINLP.

In either case, multi-sector modeling will increase computational effort. This effort
can be decreased through some degree of component/spatial aggregation (regions)
within each sector and reduced temporal granularity for optimization. Linear program-
ming models are easier to solve than equilibrium models, which require specialized
complementarity or other algorithms [54].

Including fuel networks will increase the burden of data preparation. In addition
to electric network data, information will be needed on fuel network topology along
with geographical characterizations of investment cost, fuel cost and capacities. For
instance,

1. The availability and quality of coal differs geographically, and so the availability,
cost and transportation links for several varieties of coal may be required.

2. The gas imports/exports, pipeline and storage capacities need to be spatially spec-
ified.

Similar to having additional sectors on the source side (fuel network as discussed
above), one could develop models that consider multiple sectors on the end-user side.
One example of such a an integrated infrastructure systemmodel is modeling electric-
ity sector together with transportation [55,56] and heating sectors [57,58]. This will
allow modeling and studying the interdependencies between these end-use sectors,
and allow the co-optimization model to choose investments in those technologies that
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would allow meeting the energy demand across all the sectors in a sustainable and
cost-effective manner.

Storage technologies and demand response Storage technologies can be modeled
by representing the three operations of a typical unit, namely, charging, discharg-
ing, and reservoir dynamics. Conceptually a storage technology’s discharge operation
is similar to a generator operation, and charge operation is tantamount to loading
the system. The reservoir dynamics of storage must update the stored energy status
periodically based on the current period’s injections and withdrawal, subject to the
charging/discharging (or round-trip) efficiencies and energy stored from the previous
period. Also, charging and discharging costs need to be considered, including perhaps
the effects of depth of charging cycle on device life. The grid services provided by
storage differ on the type of storage technology (based on their storage capacity), i.e.,
bulk storage (such as compressed air energy storage, pumped hydro, and large bat-
teries) or short-term storage (including flywheels, superconducting magnetic energy
storage, and batteries). Bulk storage technology is able to provide a wide range of grid
services, such as day-night arbitrage, peak shaving, regulation, and spinning and non-
spinning reserves. Short-term storage technologies are generally used for providing
shorter term regulation services to accommodate load and renewable variations on a
time scale of seconds to 15 min [59]. Therefore, depending upon the grid services that
are required in a system, a co-optimization model should be able to appropriately site
and size the storage technologies in strategic locations for grid’s as well as storage
owner’s benefit [60].

Demand response competes against generation and transmission projects for
addressing peak system needs, and also is capable of providing ancillary services.
The modeling of demand response can be thought of as modeling a dispatchable load
(or a dispatchable generator with negative generation), in some cases with storage-like
characteristics (for instance, deferrable or schedule-able loads). Demand-side services
can be provided from loads that are price sensitive or emergency interruptible, and
from certain kind of storage systems such as ice-storage.

Demand response and storage can provide energy services to the grid, for instance
displacing peaking units at the top of the generation stack. The competitive ramping
rates of storage may obviate the need to invest in fast ramping combustion turbine
units under increasing renewable penetration. Bulk storage may also act as a virtual
transmission access, when optimally sited close to demand along the congested trans-
mission path [61]. Both storage and demand response can provide very significant
benefits in terms of flexible response to changing operating conditions as well as fuel
and capacity cost savings, in part because they can help defer or replace any gener-
ation or transmission expansion plans. Hence their consideration within the overall
co-optimization tool provides a wider set of potential solutions to the long-term plan-
ning problem, and thus has potential to significantly lower costs.

The specific optimization model formulation used to accommodate storage and
demand response depends on the type of storage and demand response (DR) technol-
ogy being integrated and the goal of the study. In general, a planning tool that models
operational reserve requirements and quantifies the expense to generation owners
of cycling conventional fossil-fuel fired units will increase the value of storage and
demand response among the available resource options [62].
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Two important modeling considerations in including storage are inter-temporal
coupling and time steps, described below:

1. Inter-temporal constraints and simultaneous multi-period optimization A storage
technology’s reservoir modeling introduces constraints that couple multiple time
periods, thus requiring simultaneous operation over a multi-interval time horizon
[63] in order to economicallymanage reservoir statuswhile providing grid services
through charge/discharge operations. The basic storage relation needed is that the
stored energy at period t must comprise of energy stored up until period t-1 less
any leakage, plus (less) the energy to be charged (discharged) at period t. Including
multiple periods increases the problem size, which can be controlled by assuming a
reasonable operating cycle (2-day or weekly) for storage with boundary conditions
on reservoir energy status at the start and end of the period.

2. Time steps The appropriate optimization time step depends on the technologies
considered and the purpose of the study. If the purpose of the planning study is to
assess the economic benefits of bulk storage, then the tool should be able to model
the ability of storage to profit from inter-temporal energy arbitrage opportunities
[64,65]. In this case, an hourly (or even a sub-hourly) time step for optimizing
the operations will be ideal to capture the strategic dispatch of storage to take
advantage of price differences. However, if economic assessment of storage is
not the main focus of a study, then a simpler model that captures the basic storage
relationmentioned above for a few samples of hourly system conditions (including
peaks) may suffice. This will enable co-optimizing storage along with generation
and transmission resources, while also avoiding making the model too large.

If instead the emphasis is on short-term storage technology with very limited energy
capacity and ability to make very fast transitions, an assessment at smaller time scales
(sub-hourly, say multi-second or 5-min dispatches) is needed to assess their participa-
tion and profitability for providing regulation services. Though the problem remains
an LP, it increases the problem size and may not be practical to include in a long-term
generation-transmission co-optimization model. However, if an off-line assessment of
the required MW capacity for ancillary services is estimated and represented in the
long-term investment planning tool [66], then by assuming a pre-specified capacity
factor, such devices’ capacity [67] could be considered as decision variables in the
overall portfolio planning problem.

The above discussion of time steps is also applicable to DR modeling. An hourly
time step usually sufficeswhen theDR is dispatched based on systemprices or capacity
shortage conditions. It is also necessary to represent constraints on the number of times
that DR can be called (e.g., 5 times per month).

Integrating storage and demand side options will increase data requirements. Data
related to technology investment cost, life, and other operational attributes such as
variable cost, capacities, efficiency, ramp rate, grid services and unit commitment
related data (if needed) need to be prepared. For short-term storage, a good estimation
of their long-term average utilization is necessary. Data for bulk storage unit’s cycling
and costs are also useful [62]. The pros and cons of modeling these additional sector
and resources have been provided in Table 8.
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Table 9 Pros and cons of network coverage: geography

Choices Pros Cons

Detailed plant-level System level studies might be
more easily implemented

Excessive computation and data
preparation for large models

Decisions on generator starts,
retirements and maintenance,
transmission line switching

Aggregated regional model Studies on regional policies and
planning trajectories

Distortions due to data
aggregation, regional boundary
definitions

Study interconnected
systems/sectors

Difficulties in plan
implementation and benefit
identification (cost allocation
among multiple parties)

4.2.2 Spatial granularity and geographical coverage

The spatial granularity (i.e., whether nodes are defined at the plant level, substation
level, or regionally) and geographical extent (i.e., sub-region, inter-regional, national)
that need to be included in amodel depends on the infrastructure-related problems to be
investigated. Table 9 summarizes the advantages and disadvantages of detailed (plant-
level) network representations vs broad geographical models, which much necessarily
be more aggregate.

There is a tradeoff between granularity and extent. When optimized at a plant-
level granularity, the geographical scope may be limited by the model size, required
data and the associated computational complexities. However, detailed spatial gran-
ularity allows some operational strategies to be considered that otherwise cannot be
represented (e.g., such as finding the individual unit retirements from an aggregated
model’s capacity retirement output) or requires additional computation (e.g., optimal
transmission switching [68] for mitigating operational violations—a complex MILP
optimization problem providing operational solutions that might help defer the invest-
ments in generation and transmission).

On the other hand, the advantage of a larger geographic scope is that a larger variety
of solution options can be included because of geographical variations in resource
availability and economics. For instance, because of wind and load diversity over
space, interregional transmission additions can be an effective way to provide system
flexibility. However, to reduce the model size and computational burden involved in
investigating infrastructure planning at a national or interconnection-wide scale, some
aggregation of system components is necessary.

4.3 Additional modeling choices

In this section, three additional modeling choices are described which are significant
to any planning study: end effects modeling, optimization time intervals and handling
uncertainties.
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Table 10 Pros and cons of the
various approaches to mitigate
end effects

Choices Pros Cons

Extended simulation Simple, flexible High computation
costs

Salvage value Light
computation,
relatively simple

Use of accounting
book value as
salvage value
may not capture
later operational
value of assets

Primal equilibrium Suited when
resources are
unrestricted

Possible
computation and
convergence
issues

Dual equilibrium Light
computation,
practical appeal,
relatively
flexible

Implementation
requires some
knowledge of
optimization

4.3.1 End effects

It is best if a planning problem have a very long simulation time. The infrastruc-
ture assets typically have long lifetimes, and hence in making an assessment among
alternative choices, one must consider the operational value of assets over their entire
lifespan, as well as their overnight investment cost. However, in addition to being
computationally intensive, model decisions in the later years are untrustworthy and
impractical due to future uncertainties; they also are of less concern because of the
time value of money. Hence optimization of long-term planning problems is truncated
at some future year, such as year 20 or 30. This can cause distortions inmodel solutions
which are termed “end effects.” A major effect of truncation is that near the end of the
simulation time, there will be a bias against investment in assets with higher capital
costs and longer lives because the cost savings they would provide in later years are
not considered in a truncated objective function.

There are at least four well-known approaches to mitigate this issue [69,70], for
which pros and cons are summarized in Table 10:

1. Extended simulation The most straight-forward, but computationally expensive
way to avoid end effects is to simulate for a longer duration, but report the results
only for the desired, shorter time horizon. The additional evaluation period is
usually known as extension period. Many applications typically choose about
30–40 years for the extension periods [71]. This results a larger, perhaps more
difficult to solve model. To simplify the evaluation, applications assume stationary
conditions during these years, i.e., no increase in load andno additional investments
or retirements.

2. Salvage value The method truncates the optimization to the desired planning
horizon, but places a proxy value on all assets whose lifetimes extend beyond that
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horizon. One common estimate is the undepreciated (or book) value of the asset
at the final year of the simulation, for which present worth is then subtracted from
the cost objective of the optimization problem.

3. Primal equilibrium This method imposes an equilibrium condition on primal
variables (x) after the desired planning horizon. It assumes, for an infinite horizon
problem, there will be a finite horizon T beyond which the decision variables attain
equilibrium, i.e., they increase at the rate of growth in demand (λ), so that x(T+t)
= λ x(T+t-1), where t=1…∞. The planning horizon ends at T , while additional
constraints impose that the implied present worth cost for years following T are
added to the objective function. This kind of model is most suited for problems for
which resource availability would not limit system expansion in the foreseeable
future.

4. Dual equilibrium Thismethod imposes an equilibrium condition on dual variables
(μ) after the desired end period. It assumes that the dual variables of the T stage
problem increase in proportion to the assumed discount factor (α), i.e.,μ(T + t) =
α μ(T + t − 1), t = 1 . . . ∞. The Lagrangian of the primal optimization reveals
that all the constraints from T+1 until ∞ can be combined into a single term with
a common multiplier μ(T ). This type of model is advantageous when resource
availability is limited (which is the case in most of the expansion problems in
reality) and prices are expected to rise over time at an inflation rate.

4.4 Time interval definitions

The problem of planning capital-intensive infrastructure that operates for multiple
decades generally must consider long-term impacts on economics, the environment,
and resilience. At the same time, the impacts on short-term operation must also be
considered, because many of the benefits of infrastructure arise from more efficient
operations, which progressively lead towards the long-term cost and environmental
benefits. Three kinds of time intervals are associated with long-term planning models
(going from shortest interval to longest):

1. Operational time steps This is the time interval at which operations within the
power sector are modeled, i.e., hourly (like a day-ahead market) or monthly or
yearly time steps. Inter-temporal operational relationships are modeled by relat-
ing successive time steps. For power systems, this may be hourly for chronological
models or dozens to hundreds of hours if a multi-block load duration curve rep-
resentation is used. Table 11 summarizes the advantages of different levels of
aggregation of operational time steps.

A model representing multiple sectors or sub-systems can have different operational
time steps to represent the operations of different sectors. For instance, for natural
gas, prices are often differentiated seasonally, so a few multi-month operational time
step might be considered. For some studies, intraday price variations may not need to
be considered, because of the large amount of storage as well as line pack that can
absorb intraday variations. The operations in a coal network with reasonably stable
prices may be optimized at yearly intervals. However, in such models it is necessary
to define constraints among the decision variables so that these various time intervals
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Table 11 Pros and cons of operational time step choices

Choices Pros Cons

Chronological hourly Models generator startup costs,
load-wind correlation and
variability, inter-temporal
constraints and flexibility, assesses
day-night arbitrage value of storage

Computationally intensive for
long-term problems

Non-chronologic
sample of hours

Captures hourly/seasonal information
about load and renewable joint
distributions, reduces computation

Possibility of missing chronologic
constraints related to phenomena
such as ramping and arbitrage

Multi-block load
duration curve
approximation

Efficient computation, so can be
suited for long-term, inter-regional
integrated sector planning

Data aggregation means that
load-renewable correlations over
space and time are lost, and
chronological phenomena not
captured

are appropriately coordinated. For instance, the sum of gas consumed by power plants
in all operating hours in a season should equal the seasonal amount of gas provided
by the gas network.

2. Optimization period This is the time period over which the operations are optimized,
and investment decisions are made. As mentioned previously, for a multi-commodity
model (e.g., fuel and electricity), within one optimization period the operations for
each sector may be modeled at different time steps, typically dictated by the degree
of variability in each respective commodity’s value.

3. Planning horizon This is the period over which the planning program is executed to
identify the overall long-term infrastructure investments. A planning horizonmay have
one or multiple optimization periods over which network investments are optimized.

Figure 4 shows these three kinds of intervals using the arrows at the bottom, and
three kinds of planning frameworks using rectangular boxes. While each framework
has a particular operational time step, the differences are in optimization periods and
planning horizons. The simplest planning model, depicted by framework 1, provides
that the operational time step, the optimization period, and the planning horizon are all
a single period of the same duration. Here, the decision of howmuch, where, and what
to invest are made once for the entire planning horizon. Such a model is considered
to be static because the solution provides no temporal information of when to invest.
Alternatively, over a multi-decadal time horizon, there can be multiple optimization
periods at yearly intervals or, in order to shrink the model size, every 2–5 years. Plan-
ning frameworks 2 and 3 adopt this strategy, with the difference being in the manner in
which the multiple optimization periods are solved over the planning horizon. Frame-
work 2 performs optimization over the entire planning horizon by considering all the
optimization periods simultaneously, wherein the inter-optimization period relation-
ships are built-in (denoted by solid lines between successive optimization periods)
making it one large multi-period optimization problem. Although such modeling can
illuminate very attractive strategies, it does so assuming information characterizing all
optimization periods is known apriori; and it is also computationally expensive. As a
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Framework 3 – Multi-period rolling optimization

Framework 2 – Multi-period simultaneous optimization

Planning horizon

Optimization period

Framework 1 – Static optimization

Operational time step

Fig. 4 Optimization time intervals and planning frameworks

result, the multiple optimization periods are often solved sequentially in a rollingman-
ner, i.e., sequentially feeding the results of one to its successor optimization problem.
For example, a 30-year planning horizon may be divided into ten 3-year optimization
periods. This strategy is depicted using framework 3 which adopts a recursive solution
procedure inwhich investments are evaluated for one optimization period, and then the
model rolls forward to the next optimization period sequentially, taking the previous
investments as a boundary condition (denoted by the dashed arrow feeding optimiza-
tion period t solution to optimization period t + 1). Framework 3 is also known as
dynamic or rolling planning, since it offers the possibility of accommodating dynamic
changes in futures and parameter inputs between rolling optimization periods.

4.4.1 Short- and long-run uncertainties

Power system operational and investment planning problems typically face many
uncertainties. Some are long run, such as economic growth, technology advancements,
and regulatory developments. Others aremore relevant to an operating time scale, such
as wind and load variability or component outages. At the operational time frame,
planning against uncertainty is done through generation scheduling and commitment
processes that ensure enough supply and/or demand side reserves to cover possible
short run conditions that are not predicted by day- or hour-ahead forecasts. Because
different types of investments have different effects on system flexibility, a long-
term planning problem must also account for such operational reserve allocations
when evaluating those investments [9,66,72]. Stochastic programming was applied in
[73,74] to simulate random outages of system components.

The problem of how to make investment decisions under long-term uncertainty has
been a focus of much recent research in co-optimization. Longer-term uncertainties
may be classified as local and global uncertainties [75]. Local uncertainties can be
parameterized by probability distributions or uncertainty sets around a point defined by
a scenario. Examples of local uncertainties include shifts in load growth and investment
costs or fluctuations of fuel prices. In contrast, global uncertainties are those that cause
a significant impact on the evolution of the system. Examples of global uncertainties
are the implementation of emissions policies, emerging new technologies, dramatic
shifts in demand, or public rejection of a certain type of resource. A specific set
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of realizations on global uncertainties is referred to as a future scenario. In long-
term planning, it desirable to define a number of economic, technology, and policy
scenarios and then develop plans which are robust and perform acceptably in most or
all scenarios.

Stochastic programming is one approach that has been used to for this purpose
[10]. In those applications, investments made in the first decade are assumed to be
made in ignorance of which of the several scenarios might occur; then in the second
decade, recourse investments are made to modify the system with the knowledge of
which scenario has occurred. Each scenario is weighted by a probability so that the
near-term investments are chosen to minimize probability-weighted costs over the full
range of scenarios, accounting for how those investments restricted or expanded the
flexibility of the system to adapt later.

Another aspect of planning under uncertainties is to plan for flexibility. Existing
planning methods cannot quantify the economic value of flexibility and adaptability
of future plans. As an example, some transmission investments might leave more
options open than other investments for resource interconnection in the future because
the regions they access might have a larger variety of resources. The option value
associated with such flexibility can be important in transmission planning, but is not
considered by present planning models, whether co-optimized or not. It is useful for
co-optimization model formulations to explicitly consider multiple future scenarios,
and how future decisions might anticipate or adapt to them.

4.4.2 Anticipatory planning

One of themain results from a co-optimizationmodel, particularly when used by a ver-
tically integrated utility, is the identification of joint transmission-generation expansion
plans that are lower in cost than expansion plans when transmission and generation
plans were developed separately. However, when the co-optimization model is used
by utilities that are unbundled and where planning for transmission infrastructure is
performed by one entity while planning for generation investments is performed by
another set of competing entities; such scenarios may impose some pragmatic cross-
organizational constraints that preclude simultaneous optimization andwill necessitate
a different co-optimization paradigm called “transmission planning accounting for
market response” or “anticipatory transmission planning.” Algorithmically as shown
in Fig. 5, this paradigm requires iteratively running generation and transmission expan-
sion models, unlike a simultaneous optimization model. While an iterative approach
to co-optimize may reduce computational burden compared to a simultaneous opti-
mization model, it may not converge to a global optimal solution (Figs. 4–41 in [23]).

Pozo et al. [15,76] demonstrated the anticipatory transmission planning using a
three-level MILP model that integrated transmission planning (level 1), generation
investment (level 2), and market operation decisions (level 3). In the first iteration, one
can obtain the transmission expansion plans that anticipate both generation invest-
ment and dispatch decisions. Subsequently in the next iteration, equilibrium among
generation side competitors will be achieved in response to the changes in transmis-
sion capacity, access, and congestion. Such a co-optimization paradigm for unbundled
market structure will capture how anticipated decisions in transmission could incent
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Fig. 5 Co-optimization paradigms: a simultaneous optimization (left); b iterative anticipatory optimization
(right)

changes in generation mix and siting decisions (and consequently the generation dis-
patch, grid congestion and emissions), and subsequently how transmission planners
can account for such anticipated reactions from generation planners in their deci-
sion making. Such models will also benefit from anticipating the reactions from other
market participants, including distribution or behind-the-meter consumers and their
adoption of distributed resources such as solar PV or hybrid electric vehicles [77,78].

5 Conclusion

This paper has defined the concept of co-optimization of transmission options, supply-
side resources, demand-side resources, and fuel supply networks, and contrasted it to
more traditional planning methods, which tended to either address generation or trans-
mission planning, but not both. The co-optimization approach promises economic,
environmental, and resource utilization related benefits compared to a traditional
decoupled approach to resource optimization. A review is provided of several exist-
ing and emerging co-optimization models, outlining alternative general approaches to
joint optimization of generation and transmission, including their optimizers,modeling
fidelity, and data and computational requirements. Building co-optimization models
is also a data-intensive task requiring significant effort to collect, maintain and share
data with the multiple parties who participate in regional planning processes while
maintaining necessary information security and confidentiality.

In conclusion, although various research-grade co-optimization tools already exist,
none have all of the features necessary to satisfy the long-term needs of the power
system, which have been discussed in detail in this paper. Demonstrations of more
advanced co-optimization methods that have been proposed by researchers should be
undertaken, using detailed regional data to quantify the benefits of co-optimization
in a realistic setting. Such demonstrations will provide more precise estimates of the
potential economic benefits of co-optimization, as well as insights on the effort and
practical challenges involved in applying co-optimization.
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Appendix A.1: Full ACOPF-GTEP model

This appendix provides a detailed description of a general ACOPF based multiyear
Generation-Transmission Expansion Problem (ACOPF-GTEP), which is a minimiza-
tion problem defined by the following Eqs. (1)–(12). The objective function is the
present worth of operation and annualized investment costs over several years t . The
investment variables are the number of new lines that are built in each corridor (inte-
ger variables) and new generation capacity (modelled as being continuous). More
detailed formulations can include unit commitment costs, maintenance expenses, and
environmental damages in the objective; pollution limits, ramping limits, and other
operational constraints in the constraint set; and integer variables for generation invest-
ments and start-ups. Constraints (2)–(3) model the nodal real and reactive power
balances, which are affected by integer transmission expansion variables of candidate
corridors. Constraints (4) – (5)model non-linearACpower flow relations across line i j .
Constraints (6)–(8) model the network security limits for voltage magnitude, voltage
angle and apparent line power flow, the latter bounds being a function of line expan-
sion decisions. Constraints (9)–(10) model generation power bounds, which depend
on generation expansion variables. Constraints (11) and (12) model the bounds on the
number of investments in transmission lines and generation size respectively within a
given investment time period.

Minimize Tt
∑

t

∑

(i, j)

Ci (t)Pgi (t) +
∑

t

∑

i

Ii (t)P Igi (t) +
∑

t

∑

(i, j)

I(i, j)(t)z(i, j)(t)

(1)

subject to Pgi (t)−Pdi (t)=
∑

j

P(i, j)(V, θ, t)

(
z(i, j)(0)+

t∑

τ=start
z(i, j)(τ )

)
,∀i (2)

Qgi (t)−Qdi (t)=
∑

j

Q(i, j)(V, θ, t)

(
z(i, j)(0)+

t∑

τ=start

z(i, j)(τ )

)
, ∀i

(3)

P(i, j)(V, θ, t) = V 2
i (t)G(i,i) +

N∑

j=1, j �=1

|Vi (t)|
∣∣Vj (t)

∣∣(G(i, j)cosθi j

+B(i, j)sinθi j ) (4)

Q(i, j)(V, θ, t) = −V 2
i (t) B(i,i) +

N∑

j=1, j �=i

|Vi (t)|
∣∣Vj (t)

∣∣ (G(i, j)sinθi j

−B(i, j)cosθi j ) (5)

Vmin
i ≤ Vi (t) ≤ Vmax

i (6)

−π ≤ θi (t) ≤ +π (7)

0 ≤ P2
(i, j)(t) + Q2

(i, j)(t) ≤ S2(i, j)
max

(
z(i, j)(0) +

t∑

τ=start

z(i, j)(τ )

)

(8)
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Pmin
gi ≤ Pgi (t) ≤ Pmax

gi +
t∑

τ=start

P Igi (τ ) (9)

Qmin
gi ≤ Qgi (t) ≤ Qmax

gi + β

t∑

τ=start

P Igi (τ ) (10)

0 ≤ z(i, j)(t) ≤ nmax
(i, j) (11)

0 ≤ P Igi (t) ≤ P Imax
gi (12)

In this model, t and τ are time periods, start is the first year in which investments
can be made, Tt is the number of hours in an individual operating time interval, Ci is
the operational cost of generation in $/MWh, Ii is the investment cost of generation
in $/MW, I(i, j) is the investment cost of transmission line in $/MW, Pgi is the real
power generation in MW (decision variable), Qgi is the reactive power generation in
MVar (decision variable), Pmin

gi and Pmax
gi are the minimum and maximum real power

generation in MW, Qmin
gi and Qmax

gi are the minimum and maximum reactive power
generation in MVar, P Igi is the generation capacity investment (continuous decision
variable), P Imax

gi is the maximum allowable generation capacity investment, z(i, j)(0)
is number of existing transmission lines in a corridor (i, j),z(i, j) is the transmission
investment (integer decision variable), nmax

(i, j) is the maximum allowable transmission
lines across a corridor, P(i, j) is the real power flow across line ij (decision variable),
Q(i, j) is the reactive power flow across line ij (decision variable), Smax

(i, j) is themaximum
allowed apparent power flow across line ij, Pdi is the real power demand, Qdi is the
reactive power demand, Vi is the bus voltage magnitude (decision variable), Vmax

i is
the maximum limit on bus voltage magnitude, θi is the bus voltage angle (decision
variable), θi j is the bus voltage angle difference, G(i, j) is the line conductance (Y-bus
element), B(i, j) is the line susceptance (Y-bus element), and β is the maximum real
to reactive power conversion constant at rated voltage based on generator capability
curve.

Relaxed ACOPF-GTEP model using binary variables

Instead of the integer decision variable in (11) for optimizing the total number of lines
to be built across a transmission corridor, a binary decision variable can be used to
decide if a certain candidate line across a corridor should be built at any time (sb(t))
or not? This replaces the integer variable with multi-stage to a variable with two
stages (0 or 1), thereby reducing the problem complexity. In such a case, the existing
arc (by Eq. (15)) and a candidate arc (by Eq. (16)) are represented individually in the
network, and Eqs. (13–18) are used in the model instead of Eqs. (2–11). The presented
formulation can be further improvised by giving it the ability to consider investments
in multiple lines across a corridor. This can be modeled by designing many candidate
arcs across that corridor, each having its own binary decision variable. Though this
MINLP formulation will have a larger number of constraints and variables due to the
inclusion of many candidate arcs, it will have reduced problem solving complexity
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due to the removal of multi-stage integer variables.

Pgi (t) − Pdi (t) =
∑

j

P(i, j)(V, θ, t) z(i, j)(0) + P(i, j)(V, θ, t) sb(i, j) (t) (13)

Qgi (t) − Qdi (t) =
∑

j

Q(i, j) (V, θ, t) z(i, j)(0) + Q(i, j) (V, θ, t) sb(i, j)(t) (14)

0 ≤ P2
(i, j)(t) + Q2

(i, j)(t) ≤ z(i, j)(0)S
2
(i, j)

max (15)

0 ≤ P2
(i, j)(t) + Q2

(i, j)(t) ≤ sb(i, j)(t)S
2
(i, j)

max (16)

0 ≤ z(i, j)(t) ≤ 1 (17)

0 ≤ sb(i, j) (t) =
t∑

τ=start

z(i, j)(τ ) ≤ 1 (18)

where, sb(i, j)(t) is a binary decision variable used to decide if a certain candidate line
across the corridor (i, j) should be built at any timeor not. In the abovemodel, Eqs. (13)
and (14), which have binary variables multiplying non-linear power flow equations,
can be further relaxed by considering a disjunctive formulation of MINLP problem
using the big “M” method [41]. The MINLP or MILP formulation can be further
relaxed to NLP or LP problem by assuming the transmission investment variable as
continuous, instead of binary. The continuous variable can be constrained close to
discrete 0 or 1 value by using a binding constraint relaxed using ε, as shown in (19).

z(i, j)(t)(1 − z(i, j)(t)) ≤ ε (19)

The AC formulation also allows shunt devices such as MSCs (Mechanically switched
capacitors) andSVCs (StaticVarCompensators) as investment options. Their influence
can be accounted within Eq. (5), which has bus shunt susceptance bi (t) as shown in
(20).

B(i,i)(t) =
∑

j

b(i, j)(t) + bi (t) (20)

where b(i, j) is the line susceptance and bi is the bus shunt susceptance.

Appendix A.2: DC optimal power flow based generation-transmission
expansion planning model

The DCOPF formulation is based on the following simplifications to ACOPF model:

1. R<<<X: The resistance of transmission circuits is significantly less than the
reactance.

2. Voltage angle differences very small: For typical operating conditions, the differ-
ence in voltage angles for two buses is very low (at the max, 10◦–15◦). For smaller
angle differences, the cosine function approaches 1.0 and the sine function is the
angle difference itself (expressed in radians).
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3. Voltage magnitudes are assumed to be 1.0 in the per-unit system.3

The resulting power flowmodel has two equations, a real power flowEq. (21) which
is directly proportional to angle difference (in radians) and reactive power flow Eq.
(22) which is directly proportional to bus voltage difference.

P(i, j)(θ, t) = B(i, j)(θi (t) − θ j (t)) (21)

Q(i, j)(V, t) = −bi +
N∑

j=1, j �=1

∣∣b(i, j)
∣∣ (|Vi (t)| − ∣∣Vj (t)

∣∣) (22)

The DCOPF-GTEP problem has the following constraints as shown in Eqs. (23–
29) and Eqs. (7, 9, and 12) in Appendix Sect. A.1. It should be noted that in the
formulation of (23–29), the transmission investment decision variable is binary, and
hence the network expansion problem is formulated using arcs representing existing
(by Eqs. (24) and (25)) and candidate lines (by Eqs. (26) and (27)) individually, so if
z(i, j)(t) =1, this indicates that a certain candidate line across a corridor is to be built
at time t .

∑

i

Pgi (t) =
∑

i

Pdi (t) (23)

P(i, j)(t) = B(i, j)(θi (t) − θ j (t))z(i, j)(0) (24)

−z(i, j)(0)P
max
(i, j) ≤ P(i, j)(t) ≤ Pmax

(i, j) z(i, j)(0) (25)

P(i, j)(t) = B(i, j)(θi (t) − θ j (t))sb(i, j) (t) (26)

−sb(i, j) (t)P
max
(i, j) ≤ P(i, j)(t) ≤ P(i, j)

maxsb(i, j) (t) (27)

0 ≤ z(i, j)(t) ≤ 1 (28)

0 ≤ sb(i, j) (t) =
t∑

τ=start

z(i, j)(τ ) ≤ 1 (29)

The above MINLP model can be relaxed to a MILP using a disjunctive formulation,
sometimes referred to as the big “M” method, for candidate branches as shown in
(30–32), instead of (26).

P(i, j)(t) = B(i, j)(θi (t) − θ j (t)) + (sb(t) − 1)M +Ub(t) (30)

Ub(t) ≤ 2(1 − sb(t))M (31)

Ub(t) > 0 (32)

3 A typical power system with multiple transformers utilizes different voltage levels. The per-unit (p.u.)
system simplifies the analysis of power systems by choosing a set of voltage and power base values, and
then computing a set of current and impedance base values; these four base values are used in normalizing
all system impedances, powers, voltages, and currents so that standard electric circuit relations continue to
hold among the normalized quantities.
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Appendix A.3: network flow based generation-transmission expansion
planning model

The network flow model-based linear programming cost minimization formulation is
shown in Eqs. (33–36), where the operational arc flows and investments are minimized
in (33). Since, both generation and transmission are represented as arcs (refer Fig.
2), i.e., as transportation pipelines (with different properties), the only equation that
governs this model is (34), the nodal power flow balance equation. The efficiency
term η(i, j) in Eq. (34) for a generation arc represents its capacity factor and for a
transmission arc its losses. Equation (35) represents the capacity constraint for both
generation and transmission arcs.

Minimize
∑

t

∑

(i, j)

C(i, j)(t)P(i, j)(t) +
∑

i

∑

(i, j)

I(i, j)(t)P I(i, j)(t) (33)

Subject to
∑

i

η(i, j)(t)P(i, j)(t) −
∑

k

P( j,k)(t) = d j (t) (34)

Pmin
(i, j) ≤ P(i, j)(t) ≤ Pmax

(i, j) +
t∑

τ=start

P I(i, j)(τ ) (35)

0 ≤ P I(i, j)(t) ≤ P Imax
(i, j) (36)

DC lines aremodeled as real power injections (positive and negative) at both the ends of
the lines, which effectively translate to modeling it as a transportation pipeline. Equa-
tion (37) shows the inclusion of power injection from a DC line into nodal real power
balance equation. To consider DC lines among the transmission investment options,
candidate arcs for DC lines are created separately from AC lines with appropriate
cost and operational characteristics. The cost may also include the power electronics
component costs at both the terminals.

Pgi (t) − Pdi (t) = P(i, j)(V, θ, t) z(i, j)(0) + P(i, j)(V, θ, t) sb(i, j) (t) + PHV DC
(i, j) (t)

(37)
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