
Energy Syst (2015) 6:417–438
DOI 10.1007/s12667-015-0148-6

ORIGINAL PAPER

Toward scalable stochastic unit commitment
Part 2: solver configuration and performance assessment

Kwok Cheung1 · Dinakar Gade2 · César Silva-Monroy3 ·
Sarah M. Ryan4 · Jean-Paul Watson5 · Roger J.-B. Wets6 ·
David L. Woodruff7

Received: 3 May 2014 / Accepted: 26 March 2015 / Published online: 29 April 2015
© Springer-Verlag Berlin Heidelberg 2015

Abstract In this second portion of a two-part analysis of a scalable computational
approach to stochastic unit commitment (SUC), we focus on solving stochastic mixed-
integer programs in tractable run-times.Our solution technique is based onRockafellar
andWets’ progressive hedging algorithm, a scenario-based decomposition strategy for

B Jean-Paul Watson
jwatson@sandia.gov

Kwok Cheung
kwok.cheung@alstom.com

Dinakar Gade
dinakar.gade@gmail.com

César Silva-Monroy
casilv@sandia.gov

Sarah M. Ryan
smryan@iastate.edu

Roger J.-B. Wets
rjbwets@ucdavis.edu

David L. Woodruff
dlwoodruff@ucdavis.edu

1 Alstom Grid, Redmond, WA, USA

2 Sabre Holdings, Southlake, TX, USA

3 Electric Power Systems Research Department, Sandia National Laboratories, Albuquerque, NM,
USA

4 Department of Industrial and Manufacturing Systems Engineering, Iowa State University, Ames,
IA, USA

5 Analytics Department, Sandia National Laboratories, Albuquerque, NM, USA

6 Department of Mathematics, University of California Davis, Davis, CA, USA

7 Graduate School of Management, University of California Davis, Davis, CA, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s12667-015-0148-6&domain=pdf

418 K. Cheung et al.

solving stochastic programs. To achieve high-quality solutions in tractable run-times,
we describe critical, novel customizations of the progressive hedging algorithm for
SUC. Using a variant of the WECC-240 test case with 85 thermal generation units,
we demonstrate the ability of our approach to solve realistic, moderate-scale SUC
problems with reasonable numbers of scenarios in no more than 15 min of wall clock
time on commodity compute platforms. Further, we demonstrate that the resulting
solutions are high-quality, with costs typically within 1–2.5 % of optimal. For larger
test cases with 170 and 340 thermal generators, we are able to obtain solutions of
similar quality in no more than 25 min of wall clock time. A major component of our
contribution is the public release of the optimization model, associated test cases, and
algorithm results, in order to establish a rigorous baseline for both solution quality
and run times of SUC solvers.

1 Introduction

While there is a significant body of research on stochastic unit commitment (SUC) in
the power systems literature (see [15,18,21,23,26] for a representative sample), these
efforts have not yet been successfully transferred to real-world industrial contexts. This
is due in large part to the well-known computational difficulty of SUC, where even
small cases with a handful of scenarios can take hours to solve [19]. A survey of prior
algorithmic approaches to SUC is provided in [14]. An analysis of this survey indicates
that the current state-of-the-art for SUC can tackle approximately 50 scenarios on
instances with approximately a hundred thermal generation units, achieving solutions
in several hours of run time. Further, many of those studies consider short (24-h) time
horizons (there are exceptions; e.g., [3] considers an entire week for a multi-stage
model to be used for bidding), or use simplified models of industrial unit commitment
problems.

The primary purpose of this paper is to detail a research effort dedicated to devel-
oping a SUC solver ultimately capable of achieving solutions in tractable (e.g.,
<30 min) run-times, given realistic numbers of time periods (e.g., 48) on realistic
and industrial-scale power systems. In this context, a “solution” refers to a feasible
non-anticipative commitment schedule, with associated expected cost and optimality
bound. We demonstrate significant progress toward this goal, considering a variant
of the well-known deterministic WECC-240 test case [16]. We leverage modest-scale
parallelism to achieve the goal run-times, employing commodity computing capabil-
ities that an ISO/utility either presently possesses or is likely to acquire in the near
future. Fundamentally, our primary goal is to demonstrate the viability of SUC in a
real-world applications context.

Our computational experiments proceed in the context of load scenarios gener-
ated via the approximation procedure described in the companion paper [6]. Accurate
assessment of SUC solvers requires accurate load scenarios, as the latter can poten-
tially impact algorithm performance.We limit the investigations of solver performance
to given, pre-specified sets of load scenarios. Issues relating to scenario reduction and
sampling, out-of-sample solution validation, and quantification of cost savings are
beyond the scope of the present contribution. Rather, we focus on the goal of demon-

123

Toward scalable stochastic unit commitment… 419

strating that operational run-times can be achieved for SUC instances with reasonable
numbers of realistic load scenarios—a key step toward ultimate commercial adoption
of both the underlying uncertainty model and solver.

Secondary goals of this paper are (1) to construct a realistic, validated, industrial-
scale, and publicly available SUC model along with sets of corresponding instances
and (2) to establish performance baselines for these instances, in terms of both solution
quality (i.e., lower and upper bounds) and run time. The availability of such instances
and corresponding performance baselines—particularly with high-accuracy scenario
sets—is critical to driving SUC solver research, in order to quickly identify and focus
on the most promising algorithmic alternatives. To date, SUC research has not been
performed in such a context, i.e., direct and accurate comparisons of solver run-times
are absent in the literature.

The remainder of this paper is organized as follows.We describe the core determin-
istic and stochastic optimization models used in our analysis in Sect. 2. Our solution
approach is detailed in Sect. 3. Our case study data, based on the deterministicWECC-
240 test case, is described in Sect. 4. We describe computational experiments and
associated results in Sect. 5. We then conclude with a summary in Sect. 6.

2 Unit commitment models

We now introduce the core optimization models used in the analysis. We begin by
introducing the deterministic unit commitment (UC) optimization model in Sect. 2.1.
We then discuss the extension of this coremodel to a two-stage stochastic programming
context in Sect. 2.2.

2.1 Core deterministic UC model

Various deterministic models for UC have been proposed in the literature, e.g., see
[10,13]. As a basis for our SUC model, we adopt the deterministic UC model intro-
duced by Carrion and Arroyo (CA) [2]. We defer to [2] for details of the core UC
decisionvariables and constraints.Wehave extensively validatedourUCmodel against
Alstom’s e-terramarket [5] commercial UC model, to ensure correctness, inclusion
of industrially relevant constraints, and validity for practice. We note that specific
variable and constraint encodings used by Alstom were not available to us. Rather,
we ensured that the solutions resulting from the two models were identical, within
numerical tolerances. We have implemented our version of the CA deterministic UC
model in the open-source Pyomo algebraic modeling language [9].

Our computational experiments focus on reliability unit commitment (RUC). Inte-
gration of uncertainty into the day-ahead market (DAM) UC requires modification
of core market structure, which is beyond the scope of the present paper. However,
in the interest of verifying that SUC could be solved in a DAM context, we treat all
generators as available for commitment. No modification of market structures would
be needed to use stochastic UC in the RUC, i.e., the process executed by an ISO
following the close of the DAM and prior to next day operations. In practice, a large
proportion of the UC decision variables are fixed as a result of the DAM UC, such

123

420 K. Cheung et al.

that the number of “free” commitment variables in the RUC is significantly reduced
(e.g., typically half or more generators are committed in the DAM UC). As a result,
our computational time results should be treated as very conservative for purposes of
the RUC.

The choice of the CA deterministic UC model over alternatives reported in the
literature was based on preliminary computational experiments on an internal set of
test cases. However, our specific choice is not critical to the scalability results reported
subsequently in this paper. Other researchers have reported that alternatives to the CA
model can yield faster solution times [10,13]. Ultimately, if those reductions hold
for our UC test cases, then the run times reported subsequently for our PH solution
algorithm would be further improved. In other words, the run times reported in Sect. 5
should be treated as upper bounds relative to the full range of possibilities that exist
in the deterministic UC literature.

2.2 Two-stage stochastic UC model

Following [23] and others, we extend a basic deterministic UCmodel into a two-stage
stochastic UC model. To construct the stochastic UC model, the variables in the core
deterministic UC model are partitioned into two stages, mirroring the structure of the
corresponding real-world decision process. The first-stage variables consist of the ther-
mal generator on/off state indicator variables, one for each hour in the planning horizon
(in the CA UC formulation, startup and shutdown variables are implicit—this is not
the case in other deterministic UCmodels). All remaining variables, including thermal
generator dispatch levels, reserve allocations, and cost computations, are classified as
second-stage variables. First-stage variables are required to be non-anticipative in a
two-stage stochastic program, such that their value does not depend on the scenario that
is ultimately realized. Given a set S of scenarios and their attached probabilities, in our
case obtained using the procedures described in the companion paper [6], a two-stage
stochastic UC model can be constructed by creating an instance of a deterministic UC
model for each scenario s ∈ S. To enforce non-anticipativity across the first-stage vari-
ables, we then impose equality constraints among the instances of the corresponding
variables in all scenarios. The resulting model is known as an explicit extensive form
of the corresponding two-stage stochastic program, in which the first-stage decision
variables (for reasons that are discussed in Sect. 3) are replicated for each scenario
instance. We take minimization of the sum of first stage cost (e.g., startup, no-load,
and shutdown costs) plus expected second stage cost (e.g., production cost) as the opti-
mization objective. However, we note that our SUCmodel and solver extends trivially
to risk-oriented optimization metrics such as conditional value-at-risk. For further
details regarding the structure and properties of two-stage stochastic programs, we
refer to [20].

To present our solution algorithm for stochastic UC described in Sect. 3, we make
use of an abstract formulation of a two-stage stochastic program. In this abstract
formulation, x and y represent vectors of first stage (e.g., unit commitment) and second
stage decisions, respectively. The functions f (x) and gs(x, y) respectively compute
the first stage (e.g., startup and shutdown) and second stage costs for a scenario s. If

123

Toward scalable stochastic unit commitment… 421

the future were known with certainty, there would be only one scenario, s, and the
resulting optimization problem could be written as:

min f (x) + gs(x, y)|(x, y) ∈ Qs . (1)

The notation (x, y) ∈ Qs abstractly captures the requirement that any combination
of feasible first stage and second stage decision vectors must satisfy all constraints
imposed by the laws of physics and system operating policies under scenario s. In
the case of SUC, each scenario corresponds to the deterministic RUC that is presently
solved in ISO and utility daily operations.

Of course, the future cannot be known with certainty, so one must determine a non-
anticipative x and corresponding scenario-specific ys such that (1) the sum of first
stage costs plus the expected second stage costs is minimized and (2) (x, ys) ∈ Qs

for all s ∈ S. This formulation is given as follows:

min
∑

s∈S
ps [f (xs) + gs(xs, ys)] s.t. (2)

(xs, ys) ∈ Qs, ∀s ∈ S (3)

xs =
∑

i∈S
pi xi , ∀s ∈ S (4)

The objective function given by (2) represents the expected cost and the constraints (3)
summarize logical and physical system requirements. Constraints (4) enforce the
requirement that all scenarios have an identical, non-anticipative x vector. There are
other ways to implement the non-anticipativity requirement, but this method is appro-
priate in the context of the PH solution algorithm, as discussed in Sect. 3.

Buildingon thePyomo implementation of the core deterministicUCmodel,wehave
implemented our two-stage stochastic UC model in the open-source PySP package
for stochastic programming [25]. Both Pyomo and PySP are distributed as part of the
Pyomo optimization software package (https://software.sandia.gov/trac/pyomo).

3 Solution approach based on progressive hedging

Following a brief survey of prior efforts involving the solution of stochastic UCmodels
in Sect. 3.1, we describe the basic progressive hedging solution algorithm in Sect. 3.2.
We then discuss specializations of the core progressive hedging algorithm to two-stage
stochastic UC in Sect. 3.3. Issues related to the deployment and parallelization of the
algorithm are detailed in Sect. 3.4. Computation of lower bounds on solution quality
is briefly discussed in Sect. 3.5.

3.1 Background

The extensive form of the two-stage SUC is practically insoluble via direct methods
such as commercially available MIP solvers, as we report in Sect. 5.3. Similar find-

123

https://software.sandia.gov/trac/pyomo

422 K. Cheung et al.

ings are reported throughout the SUC literature, e.g., see [14]. To achieve tractable
run-times for two-stage SUC, decomposition techniquesmust be leveraged. Two dom-
inant classes of decomposition techniques for general two-stage stochastic programs
are time stage-based and scenario-based. The exemplar stage-based technique is the
L-shapedmethod (Benders decomposition) [22]. Exemplars of scenario-based decom-
position include progressive hedging (PH) [17] and dual decomposition [1].

One advantage of scenario-based decomposition techniques over their stage-based
counterparts is a more uniform distribution of work load in parallel computing envi-
ronments. In particular, the computational difficulty of the master problem in the
L-shaped method can grow significantly as the number of iterations increases, while
the sub-problems are typically comparatively easy. Another advantage is that they are
easily implemented in situations where software for solving the deterministic version
of the problem already exists, and may have been highly customized for efficient
solution—as is the case for unit commitment.

As discussed in [14, p. 17], most prior analyses of SUC consider direct solution of
the extensive form. Even those studies that use decomposition schemes are limited in
the sizes of the test cases considered—typically no more than 100 generators, with
24 time periods, and fewer than 50 scenarios. Further, the reported run-times for the
largest of these cases exceeds 30 min, and more typically an hour. Scalability to larger
numbers of scenarios and time periods is thus a major and open concern, prior to
serious consideration by industry of stochastic UC models and algorithms. Recent
algorithmic advances in SUC are reported in [11,12].

3.2 Progressive hedging

PH decomposes the extensive form of a stochastic program by scenario, initially
relaxing the non-anticipativity constraints. Non-anticipativity is then restored via an
iterative multiplier update scheme. The basic PH algorithm operates as follows:

1: Initialization: ν ← 0 and wν
s ← 0,∀s ∈ S

2: Iteration 0: ∀s ∈ S,
xν
s = argminx,y f (x) + gs(x, y) | (x, y) ∈ Qs

3: Aggregation: xν = ∑
s∈S psxν

s
4: Iteration Update: ν ← ν + 1
5: Multiplier Update: wν

s ← wν−1
s + ρ(xν−1

s − xν−1), ∀s ∈ S
6: Iteration ν: ∀s ∈ S,

xν
s = argminx,y

[
f (x) + gs(x, y) + wν

s x + ρ
2 ||x − xν−1||2 | (x, y) ∈ Qs

]

7: Convergence Check: If all solutions xν
s are identical, halt. Otherwise, go to Step 3.

In the PH pseudocode above, we superscript the multipliers w, the first-stage sce-
nario solutions x , and the first-stage variable averages x by the iteration counter ν; the
w and x are additionally subscripted by the scenario s ∈ S. Following initialization,
PH solves the scenario sub-problems, in order to form an initial “best guess” at a
solution that is non-anticipative. PH then updates the estimates of the multipliers wν

s

123

Toward scalable stochastic unit commitment… 423

required to enforce non-anticipativity, using a penalty parameter ρ. We observe that
while ρ is a scalar in the pseudocode shown above, in general it can have a differ-
ent value for each variable. Following the multiplier update, PH solves variants of
the scenario sub-problems that are augmented with a linear term in x proportional
to the multiplier wν

s and a quadratic proximal term penalizing deviation of xν
s from

xν−1. These additional terms, in conjunction with the multiplier updates, are designed
to gradually reduce any differences in xs as PH progresses, eventually yielding a
non-anticipative solution x . PH can be trivially accelerated by executing the indepen-
dent sub-problem solves in Steps 2 and 6 in parallel, with a barrier synchronization
immediately following each step. While the pseudocode provided above is specific
to two-stage stochastic programs, the algorithm generalizes to multi-stage contexts.
Finally, we note that in PH iterations ν ≥ 1, individual scenario sub-problem solves
can be warm-started using the solution for the corresponding scenario from the previ-
ous PH iteration. Since only the objective function is altered between PH iterations,
feasibility is guaranteed. Hence, the solution from the previous iteration can be given
to the sub-problem solver to establish a good upper bound and to provide a starting
point for branching. Such warm-starting has significant practical impact when solving
mixed-integer stochastic programs.

The progressive hedging algorithm [17] relies, at least implicitly, on a version of
a (projected) augmented Lagrangian method and, consequently, convergence is guar-
anteed when the given problem is convex but also when the augmentation can be
selected to induce local convexity in the modified problem; this has been possible
in a significant number of applications. However, this later possibility is out of the
question when the “non-convexity” arises from constraints requiring that some of the
non-anticipative variables be integer or discrete. In particular, the presence of inte-
ger decision variables can induce cycling behavior. However, effective techniques for
detecting and breaking cycles have been recently introduced [24]. Further, accelera-
tors are typically necessary to improve PH convergence, in order to achieve practical
run-times. These include variable fixing (freezing the values of variables that have
converged for the past k PH iterations) and slamming (forcing early convergence of
specific variables that have minimal impact on the objective). Both of these techniques
are described fully in [24].

3.3 Specialization to stochastic UC

PH was first applied to the SUC problem by Takriti et al. [23], who examined a
variant of PH designed to address the possibility of non-convergence in the mixed-
integer case. Goez et al. [8] also examine PH for SUC, and compare it with alternative
heuristics. While both research groups report promising results, the test cases used
are not fully described nor publicly available. Further, in the case of Takriti et al., the
experiments were performed on now-dated hardware. Lacking the ability to examine
test cases in detail, it is difficult to assess the specific set of features employed in
the core deterministic UC models (e.g., the presence of ramping constraints that are
binding and the use of complex, realistic representations of startup costs), which in turn
have a major impact on computational difficulty. Takriti et al. report experiments on

123

424 K. Cheung et al.

instanceswith approximately 100 thermal units and 20 scenarios,with a 168 h planning
horizon; they report typical runs took 6 h of CPU time and 100 PH iterations. Goez
et al. consider a test case with 32 thermal units, 72 time periods, and approximately
30 scenarios; no run time statistics are reported. In both studies, no configuration or
tuning experiments are reported.

PH performance is known to be critically dependent upon the value of the ρ para-
meter. Poor choices can lead to non-convergence, or extremely slow convergence. In
our PH configurations, we use variable-specific ρ values for generation unit commit-
ment on/off variables. For a given thermal generator g, we compute the production
cost pg associated with the average power output level. We then introduce a global
scaling factor α, and compute generator-specific values ρg = α pg . This strategy for
setting ρ falls in a broad class known as “cost-proportional” ρ, shown to be an effective
technique for PH parameterization [24,25].

Another technique we use to improve the performance of PH for stochastic UC
is the use of approximate sub-problem solutions in early algorithm iterations. The
cost of obtaining optimal solutions to scenario sub-problems is prohibitive in early
iterations, and is further not needed—precise estimates of the penalty termswν

s are not
necessary. Consequently, for PH iterations 0 and 1, we set the optimality tolerance (i.e.,
the “mipgap”) for scenario sub-problem solves to a value γ01. For PH iterations ≥2,
we then linearly scale the mipgap as a function of the current value of PH convergence
metric δ between γ01 and a final value equal to the default mipgap tolerance of the
sub-problem solver employed, e.g., 1e−5 in the case of CPLEX. This technique is
fully documented in [24].

We observe that a lower mipgap is less costly in later PH iterations due to the
use of variable fixing strategies, which we now describe. Specifically, our PH imple-
mentation for SUC fixes generator commitment variables that have converged to a
consistent value for the past μ PH iterations. We use the word “fix” here to mean that
we constrain the variable to take the fixed value. The intuition here is that if a partic-
ular variable has converged for a number of PH iterations, it is likely to remain fixed
in subsequent iterations. The technique, while heuristic, has the benefit of reducing
the size of the scenario sub-problems, in turn reducing solve times. Finally, we note
that non-anticipativity is enforced only for the generator commitment variables, and
not for auxiliary first stage variables (e.g., startup costs) that are fully determined by
the commitments. Since the only variables subject to non-anticipativity constraints
are binary, expansion of the square in the proximal term results in a quadratic that is
simply the product of two binaries, which is linear. Hence, the sub-problem solves are
linear MIPs.

A basic implementation of PH is provided by the PySP stochastic programming
library [25].

3.4 Parallelization and deployment

As indicated above, parallelization of PH is conceptually straightforward—the sub-
problem solves at Steps 2 and 6 are independent, and can execute on distinct processing
elements. In a parallel PH environment, a client process is responsible for initiating
the request for sub-problem solves, computing the solution averages xν , and updating

123

Toward scalable stochastic unit commitment… 425

the multipliers wν
s . Relative to the (mixed-integer) sub-problem solves, these actions

consume a small fraction of the overall run time. Rather, parallel efficiency is limited
by the difference between the average andmaximum sub-problem solve time, which in
practice can be significant. Because the primary performancemetric is wall clock time,
as opposed to sustained usage of all processors, we ignore issues relating to parallel
efficiency in our experiments. Ideally, asynchronous extensions could be employed
to further reduce PH run times. Finally, we use the parallel PH execution capabilities
available in the PySP stochastic programming library [25], which are in turn built on
the Python Remote Objects library (http://pypi.python.org/pypi/Pyro). Pyro provides
for parallel execution on distributed memory clusters and multi-core workstations.

3.5 Computation of lower bounds

Mirroring the case for deterministic unit commitment, a goal of SUC solvers is to pro-
vide both an implementable solution and some quantification of its quality. Recently,
we showed in [7] that a valid lower bound in the stochastic mixed-integer case can be
obtained in any iteration ν of PH, simply by solving the optimization problems of the
form

min f (x) + gs(x, y) + wνxs, ∀s ∈ S (5)

and computing the probability-weighted average of the resulting costs.We report these
bounds in our computational experiments, considering only the bound associated with
the final PH iteration. Although not analyzed in this paper, there exists a strong rela-
tionship between ρ and the quality of both lower and upper PH bounds, as documented
in [7].

Mirroring the case of the basic PH algorithm, the lower bound computation is
straightforward to parallelize. The PH bound can be computed even when (as is the
case for the experiments reported below) the scenario sub-problems are not solved to
optimality, specifically by subtracting the absolute gaps from the resulting costs. As is
the case with standard PH primal iterations, we warm-start lower bound scenario sub-
problemsolveswith the correspondingprimal scenario solution from the associatedPH
iteration—although the effectiveness of the warm-start is diminished in this context.
Finally, we note that all fixed variablesmust be (temporarily) freedwhen solving lower
bound scenario sub-problems.

4 WECC-240 case study

As a basis for a test case, we choose theWECC-240 instance introduced in [16], which
provides a simplified description of the western US interconnection grid. This instance
consists of 85 thermal generators. Because itwas originally introduced to assessmarket
design alternatives, we have modified this instance to capture characteristics more
relevant to RUC, which were absent or incomplete in the original data. These include
startup, shutdown, and nominal ramping limits, startup cost curve data, and minimum
generator up and down times.A full description of themodifications, and the case itself,
can be obtained by contacting the authors or visiting https://prescient.sandia.gov. The
choice of WECC-240 as a baseline test case was driven by the desire to develop a

123

http://pypi.python.org/pypi/Pyro
https://prescient.sandia.gov

426 K. Cheung et al.

publicly releasable test case. At present, our ISO New England (ISO-NE) test case
(corresponding to the load scenario generation process described in the companion
paper [6]) contains proprietary data.

We consider three primary SUC test instances in our experiments, which we
construct by scaling ISO-NE load scenarios to matchWECC-240 system load charac-
teristics. Additional cases, one for each day in 2011, are available at https://prescient.
sandia.gov. Scenarios in the base case, denotedWECC-240-r1, are generated by ran-
domly perturbing load from the originalWECC-240 case (for a chosen day) by±10%.
The base case is used for tuning PH parameters. Out-of-sample testing is then per-
formed on two cases based on scenarios constructed via the process described in the
companion paper [6]. These cases are denotedWECC-240-r2 andWECC-240-r3, and
respectively represent low-variance and high-variance load scenario sets for ISO-NE
(corresponding to Figures 6 and 7 in [6]). For each case, we consider instances with
3, 5, 10, 25, 50, and 100 scenarios.

In terms of problem scale, the resulting instances consist of 85 × 48 = 4080 non-
anticipative binary first-stage commitment variables. The extensive form of the 100-
scenario instance contains 2,894,281 variables, 6,944,701 constraints, and 24,072,401
non-zeros, and clearly represents a significant computational challenge.

Finally, we have created larger versions of the base WECC-240 test case, using the
following process. First, we generate n copies of each thermal generator in the fleet,
and scale the load for each time period in each scenario by n. Second, for each of the
resulting thermal generators, we randomly sample a scaling factor β ∈ [1.0, 1.05]. We
then scale all cost information associated with the generator, relative to the original
WECC-240 case, by β; this specifically includes the startup cost parameters and all
parameters associated with the production cost curves. While the intent of this per-
turbation is to make the resulting cases more realistic, a side effect is mitigation of
solution symmetry induced by the presence of substitutable generators.We specifically
focus on variants of the WECC-240-r2 case in our experiments, although additional
instances are available. We denote the instances corresponding to n = 2 and n = 4
byWECC-240-r2-x2 andWECC-240-r2-x4, respectively. These instances respectively
possess 170 and 340 thermal generators, corresponding to fleet sizes present in smaller
ISO-scale systems (e.g., ISO-NE).

5 Empirical results

We now analyze the performance of the PH algorithm for two-stage SUC.We initially
consider the WECC-240-r1 case, for purposes of parameter tuning and analysis. We
then fix the PH configuration and examine performance on the out-of-sample and
more realistic WECC-240-r2 and WECC-240-r3 cases. We analyze scalability to the
largerWECC-240-r2-x2 andWECC-240-r2-x4 cases. Finally, we consider the impact
of tighter deterministic UC models on the performance in PH in Sect. 5.8.

5.1 Computational platforms

Our experiments are executed on two distinct compute platforms. The first represents
a commodity higher-end workstation, and consists of eight 8-core AMDOpteron 6278

123

https://prescient.sandia.gov
https://prescient.sandia.gov

Toward scalable stochastic unit commitment… 427

2.4 GHz processors with 512 GB of RAM. Such a workstation is representative of the
type of resource that is likely to be currently available or available in the near term
to typical utilities and ISOs, and can be purchased for <$20 K USD. This platform
allows for modest-scale parallelism. The second platform, used exclusively for the
larger 50 and 100-scenario instances, is SandiaNational Laboratories’ Red Sky cluster,
whose individual blades consist of two quad-core 2.3 GHz Intel X5570 processors and
12 GB of RAM. We observe that the dependency of the results on this particular HPC
architecture is negligible, in that a small-scale cluster with similar processors could
achieve identical performance. Finally, we note that when using CPLEX to solve
scenario sub-problems, results on Intel processors complete in roughly 60 % of the
time observed on AMD processors with similar clock speeds.

All parallel PH jobs are allocated a number of processes equal to the number
of scenarios, plus additional processes for executing the PH master algorithm and
coordinating communication among the sub-problem “solver server” processes. We
use CPLEX 12.5 as the extensive form and scenario sub-problem solver, with default
parameter settings unless otherwise noted.

5.2 Individual scenario sub-problem difficulty

The overall run-time of PH is largely a function of the difficulty of individual scenario
sub-problems, both with and without the augmented objective terms. Thus, we begin
the empirical analysis of PH performance considering CPLEX run-times on scenario
sub-problems. Specifically,we consider our 100-scenarioWECC-240-r1 instance, exe-
cuting PH in serial for one iteration using a ρ scaling factor equal to 1 and no variable
fixing. Warm-starting between iterations 0 and 1 is enabled, to reflect the actual PH
configuration used in subsequent experiments.We vary themipgap termination thresh-
old γ over {0.02, 0.025, 0.03}. As the results discussed below indicate, solution times
with smaller γ are prohibitive in the context of PH. For each invocation of CPLEX, we
allocate two threads; larger thread counts are not realistic in operational environments,
where the number of scenarios is likely to exceed the number of available compute
cores. In our experiments, PH is executed in serial, to prevent core contention.

In preliminary experimentation, we observed that CPLEX 12.5 performance is
significantly improved on a range of deterministic UC instances when the following
twooptions are employed. First,we enable the relaxation induced neighborhood search
(RINS) heuristic [4], to be applied every 100 nodes in the branch-and-cut tree. Second,
we set the search emphasis to “moving best bound” (option 3). Lacking either of these
options, the run-times reportedbeloware significantly inflated.Run-time is impacted to
a significantly lesser degree by two additionalCPLEXoptions thatwe employ: limiting
the number of cut passes at the root node to 1, and disabling presolve repetition.

Statistics for the scenario sub-problem solve times (in s) are reported in Table 1.
We report average and maximum statistics, particularly as the latter is a key driver in
parallel synchronous PH performance. The results immediately highlight the absolute
difficulty of the deterministic single-scenario instances associated with the WECC-
240-r1 case, which is consistent with results reported for similarly sized instances
[2,13]. Given target run-times on the order of 30 min for SUC solvers to be considered
viable in deployment contexts, it is clear that γ ≤ 0.02 is impractical; individual

123

428 K. Cheung et al.

Table 1 Solve time (in s) and
solution quality statistics for the
scenario sub-problems
associated with the 100-scenario
WECC-240-r1 instance

MIP gap (%) Solve time (avg./max.)

PH iteration 0 PH iteration 1

0.03 34.44/53.81 5.12/7.70

0.025 61.99/123.53 6.11/9.87

0.02 205.75/604.86 9.42/25.74

scenario solve times necessarily bound the time of individual PH iterations. In auxiliary
experimentation, we observe that the allocation of additional threads does not drop
the solve times appreciably, such that the additional cores can more effectively be
allocated to disparate scenario sub-problem solves.

Based on the results presented above, we limit scenario sub-problem solve times in
anyPH iteration to 2min in thePH tuning experiments described below inSect. 5.4, and
focus on cases when γ equals either 0.025 or 0.03. Values of γ significantly larger than
0.03—even in early PH iterations—yield very poor PH behavior, for the following rea-
son. In the WECC-240-r1 instance, feasible solutions are quickly found—leveraging
the characteristic that the majority of generators can be committed for all time periods,
while maintaining a low power output level. Taken across all scenarios, this can result
in premature convergence of PH, to this trivial and highly sub-optimal solution.

Finally, we note that the use of the CPLEX RINS and moving-best-bound options
empirically result in rapid reductions in the upper bound, relative to the default settings
that more rapidly increase the lower bound. This difference is key, in that it moves PH
away from the trivial solutions described above. There are two non-exclusive strategies
for achieving a target γ , and we have focused on those that reduce the optimality gap
through identification of high-quality incumbent solutions.

5.3 Solving the extensive form

Next, we analyze the computational difficulty of the extensive form of theWECC-240-
r1 instance, as a function of the number of scenarios considered. The results serve as
a performance baseline for the PH algorithm, and additionally provide an indication
of absolute instance difficulty.

We execute all experiments associated with extensive form solves on a 64-core
AMD workstation, allocating the maximum possible number of threads (64) to each
CPLEX run. Mirroring the case for individual scenario solves, enabling the RINS
heuristic andmoving best-bound emphasis yields significant improvements in solution
quality relative to the default parameter settings. Consequently, we employ identical
CPLEX parameter settings to those described in Sect. 5.2. For each instance, we
perform runs with a limit of 2 and 4 h of wall clock time. For each run, we record the
optimality gap reported at termination, the incumbent objective function value, the
final lower bound, and the observed wall clock time. The latter can differ from the
allocated time limit due to the granularity with which CPLEX checks the overall run
time against the allocated limit. The results for the 2 and 4 h run limits are reported in
Tables 2 and 3, respectively.

123

Toward scalable stochastic unit commitment… 429

Table 2 Solution quality statistics for the extensive form of the WECC-240-r1 instance, given 2 h of run
time

Scenarios Objective value MIP lower bound Gap % Run time (s)

3 64,279.18 63,708.67 0.89 7291

5 62,857.52 62,052.75 1.26 7309

10 61,873.01 60,769.78 1.77 7444

25 61,496.24 59,900.40 2.59 7739

50 61,911.74 59,432.08 4.01 8279

100 62,388.85 3500.70 94.39 9379

Table 3 Solution quality statistics for the extensive form of the WECC-240-r1 instance, given 4 h of run
time

Scenarios Objective value MIP lower bound Gap % Run time (s)

3 64,278.20 63,797.72 0.75 14,491

5 62,740.67 62,180.86 0.89 14,723

10 61,563.10 60,835.45 1.18 14,630

25 61,455.55 59,963.78 2.36 14,960

50 61,911.74 59,540.87 3.83 15,480

100 62,388.85 59,548.23 4.51 16,562

Examining the results,we immediately observe the absolute difficulty of theWECC-
240-r1 extensive forms. In no case was an optimality gap <0.75 % observed, and for
the larger instances—despite the overall run-time and number of cores available to
CPLEX—the gaps are significant. For the 50 and 100 scenario instances, processing
had not progressed beyond the root node of the branch-and-cut tree, and the root
relaxation (LP solve) time consumeda significant proportion of the run-time (e.g., 6084
s in the 100-scenario case). We highlight such behavior to illustrate that parallelism
opportunities for a direct solve of the stochastic UC extensive form are limited, given
currentmixed-integer solver technology. As reported for individual scenario instances,
identification of a feasible solution is relatively straightforward in the case ofWECC-
240-r1, specifically a trivial solution inwhich themajority of generators are committed
at low output levels for all time periods. Improvement of this trivial solution often does
not occur until beyond an hour of wall clock time, particularly for instances with 25
or more scenarios. Clearly, the difficulty of the root linear programming relaxation
solve alone precludes direct solution of the stochastic UC in an operational context.
However, the results do provide a key performance baseline.

5.4 Parameter tuning for PH

As discussed in Sect. 3, there are three key parameters underlying our PH algorithm for
stochastic UC: the scale factor α used to compute the ρ values for individual generator
commitment variables, the choice of initial sub-problem mipgap γ , and the discrete

123

430 K. Cheung et al.

variable fix lag μ. We now analyze the performance of the PH algorithm for various
choices of these parameters, to illustrate their influence on performance in terms of
both solution quality and run-time. For brevity, we do not perform a fully crossed
experiment, but rather explore a subset of parameter settings based on experience
with tuning PH in other domains and the sub-problem solve time statistics reported in
Sect. 5.2. In all experiments, we enable the cycle detection logic available in PySP’s
PH implementation. If cycles are detected, they are heuristically broken simply by
selecting the generator commitment variable involved in the cycling (representing a
single time period), and fixing the commitment value to maximum observed (0 or 1)
across all scenarios. For details of cycle detection logic, we refer to [24].

The initial experiments consist of the following PH configuration: α = 1.0, μ = 3
for iteration counter ν ≥ 1, immediate fixing at PH iteration 0 of all variables with
converged value equal to 0, and an initial mipgap γ = 0.03. We limit the total number
of PH iterations to 100, and record the terminating value of the convergence metric,
the final objective function value (which is the expected cost), the total number of
variables fixed, and the overall wall clock time. We execute the full set of scenario
instances on a 64-core workstation, and only 50 and 100 scenario instances on the
Red Sky cluster. Note that if full convergence is achieved, the objective function
values correspond to non-anticipative solution. The objective in this experiment is to
examine the overall nature of PH convergence on stochastic UC, for a relatively basic
configuration. Convergence acceleration mechanisms are discussed subsequently in
Sect. 5.5.

The results of this first experiment are reported in Table 4. We observe that in all
cases, PH converges to a non-anticipative solution in at most 33 iterations and in no
more than 20 min of wall clock time. The number of variables fixed at convergence
is typically large, which is suggestive of rapid and largely natural convergence of the
scenario sub-problems to a non-anticipative solution. Cycles are infrequently detected
and broken, and are more common in cases with fewer numbers of scenarios. With the
exception of the smaller 3 and 5-scenario instances, the PH solutions are significantly

Table 4 Solve time (in s) and solution quality statistics for PH executing on the WECC-240-r1 instance,
with α = 1.0, μ = 3, and γ = 0.03

Scenarios Convergence metric Obj. value PH L.B. # Vars Fx. Time

64-core workstation results

3 0.0 (in 23 iters) 64,727.714 63,188.709 4080 155

5 0.0 (in 26 iters) 62,911.104 61,609.576 4080 163

10 0.0 (in 26 iters) 61,493.375 60,347.220 4080 227

25 0.0 (in 27 iters) 60,990.111 59,875.661 4080 364

50 0.0 (in 17 iters) 60,721.319 59,527.252 4076 584

100 0.0 (in 23 iters) 61,156.832 59,880.559 4080 1218

Red sky results

50 0.0 (in 29 iters) 60,676.383 59,670.142 4062 514

100 0.0 (in 33 iters) 61,122.781 60,148.285 4073 672

123

Toward scalable stochastic unit commitment… 431

better than the extensive form solutions reported in Tables 2 and 3, even considering
those allocated 4 h of wall clock time. All run times are within the range required
for operational deployment. Further, we observe that the 50 and 100-scenario results
obtained on a 64-core workstation are obtained under conditions in which there is
significant core contention among the PH processes. For example, in the 100-scenario
run, 200 threads associatedwithCPLEXare created at eachPH iteration, to be allocated
across 64 cores. In contention-free contexts, the run times are no more than 11 min.

To assess solution quality in absolute terms, we additionally compute lower bounds
using the procedure described in Sect. 3.5. Specifically, we compute the lower bound
using PH following only the final iteration, as opposed to during each iteration. For
this computation, we allocate each sub-problem solve a limit of 300 s of wall clock
time. Relative to the extensive form lower bounds reported in Tables 2 and 3, the PH
bounds are of lower quality for the smaller (3, 5, and 10 scenario) instances. However,
the trend reverses for the larger instances, such that the PH bounds dominate on the
larger 50 and 100 scenario instances. Further, we note that the relative computational
effort required to compute the PH bounds is very modest (5 min of wall clock time),
and significantly larger run-times will lead to improved lower bounds. In all but one
case, the absolute optimality gaps for the PH solutions are <1500 (and more typically
1000) relative to objective function values of approximately 60,000—representing
optimality gaps of between 1.5 and 2.5 %.

Next, in an effort to improve solution quality, we replicate the prior experiment
with one exception: we decrease the ρ scale factor from α = 1.0 to 0.5. As reported in
[24], lower values of ρ can improve solution quality, albeit possibly at the expense of
increased run-times. The results are shown in Table 5. Relative to the results obtained
using α = 1.0, we achieve fully non-anticipative solutions in approximately the same
run-times.While the solutions are of similar quality (with each configuration achieving
the better solution approximately half of the time), the lower bounds obtained with
α = 0.5 are uniformly improved relative to the base α = 1.0 configuration. This is
consistent with the empirical observation reported in [7]: smaller ρ values generally
yield improved lower bounds in PH. The relative consistency of wall clock times
despite the increased number of PH iterations is due to the fact that lower α values
yield smaller iteration-to-iteration perturbations to the scenario sub-problems, which
in turn increases the effectiveness ofwarm-start solutions and consequently reduces the
sub-problem solve times. In contrast, larger values of α can induce large sub-problem
perturbations, such that sub-problem solve times can often significantly exceed (if a
limit were not imposed) the values reported in Table 1.

In the next experiment, we reduce γ from 0.03 to 0.025. Lower γ results in
improved sub-problem solutions, albeit at increased run-time costs. Intuitively, we
expect increases in PH run-times, but with generally improved solutions. The results,
shown in Table 6, indicate improved solutions, similar lower bound quality, but no
significant increase in run time. The absolute run-times do not exceed 22 min in cases
where there is significant multi-core contention; in contention-free situations, the run-
times do not exceed 11 min.

Finally, we replicate the previous experiment, with the exception that we increase
the PH variable iteration fix lag μ from 3 to 6. Increased fix lags should lead to better
solutions, as aggressive fixing runs the risk of premature convergence of particular

123

432 K. Cheung et al.

Table 5 Solve time (in s) and solution quality statistics for PH executing on the WECC-240-r1 instance,
with α = 0.5, μ = 3, and γ = 0.03

Scenarios Convergence metric Obj. value PH L.B. # Vars Fx. Time

64-core workstation results

3 0.0 (in 26 iters) 64,518.666 63,123.404 4079 137

5 0.0 (in 24 iters) 62,941.233 61,751.435 4075 144

10 0.0 (in 35 iters) 61,451.731 60,418.577 4078 220

25 0.0 (in 48 iters) 60,988.949 59,930.202 4079 400

50 0.0 (in 40 iters) 60,676.135 59,591.983 4062 694

100 0.0 (in 24 iters) 61,209.183 60,024.991 4080 1342

Red sky results

50 0.0 (in 49 iters) 60,623.569 59,732.214 4078 472

100 0.0 (in 53 iters) 61,172.185 60,217.081 4060 667

Table 6 Solve time (in s) and solution quality statistics for PH executing on the WECC-240-r1 instance,
with α = 0.5, μ = 3, and γ = 0.025

Scenarios Convergence metric Obj. value PH L.B. # Vars Fx. Time

64-core workstation results

3 0.0 (in 37 iters) 64,244.647 63,219.026 4080 213

5 0.0 (in 26 iters) 62,739.635 61,800.037 4077 319

10 0.0 (in 27 iters) 61,450.749 60,436.535 4080 261

25 0.0 (in 38 iters) 60,990.129 59,912.846 4071 418

50 0.0 (in 39 iters) 60,675.517 59,602.647 4080 652

100 0.0 (in 18 iters) 61,184.361 60,014.741 4069 1374

Red sky results

50 0.0 (in 40 iters) 60,623.297 59,749.630 4079 453

100 0.0 (in 57 iters) 61,126.760 60,198.469 4074 667

generator commitments. The results, reported in Table 7, confirm our intuition: μ = 6
results in consistently improved solutions and lower bounds at the expense of increased
computation time.

We note that lower values ofα generally yield improved lower bounds, as illustrated
by our empirical results; this behavior is discussed further in [7]. However, lower
values of α also delay primal convergence, due to more gradual changes in the PH
weight vectors. In our experiments, for example, α = 0.1 yields significantly longer
run-times than α = 0.5, holding all other parameters constant. The primal solution is
often of higher quality, but the configurations can drive the run-times to beyond those
required for operational environments—particularly for larger problem instances and
large numbers of scenarios.

123

Toward scalable stochastic unit commitment… 433

Table 7 Solve time (in s) and solution quality statistics for PH executing on the WECC-240-r1 instance,
with α = 0.5, μ = 6, and γ = 0.025

Scenarios Convergence metric Obj. value PH L.B. # Vars Fx. Time

64-core workstation results

3 0.0 (in 20 iters) 64,213.397 63,235.381 4080 508

5 0.0 (in 18 iters) 62,642.531 61,767.253 4079 674

10 0.0 (in 35 iters) 61,396.553 60,476.604 4066 648

25 0.0 (in 22 iters) 60,935.040 59,992.622 4066 761

50 0.0 (in 15 iters) 60,625.149 59,631.839 4034 1076

100 0.0 (in 25 iters) 61,155.387 60,014.571 4080 1735

Red sky results

50 0.0 (in 16 iters) 60,623.343 59,779.813 4007 404

100 0.0 (in 25 iters) 61,120.943 60,275.744 4080 549

5.5 Convergence accelerators for PH

Our results demonstrate that careful tuning of the PH configuration can yield “nat-
ural” convergence to a fully non-anticipative solution. However, in general, additional
mechanisms may be employed in cases where this does not occur. One example, vari-
able slamming—discussed in Sect. 3.2, forces non-anticipativity for non-converged
variables if the convergence metric associated with PH stops decreasing or decreases
at an insufficiently fast rate. Another option is to terminate PH once a sufficient num-
ber of first-stage variables have been fixed, and solve a restricted extensive form with
the remaining variables free. These accelerators can be used to reduce computation
times further than those reported in the experiments above, but perhaps at the expense
of solution quality.

5.6 Out-of-sample testing

To demonstrate that the performance associated with our PH configurations is not due
to specialized tuning on the specificWECC-240-r1 case, we now fix the configuration
with α = 0.5 and ν = 3. Instead of a fixed γ , we employ an innovative adaptive γ

strategy, inwhichwe set the initialmipgap, γ01 equal to the average gap associatedwith
solutions obtained after 2 min of wall clock time following the iteration 0 solves. This
makes sense for problems such as unit commitment where there is a goal to find a solu-
tion in a limited amount of wall clock time. In practice, the initial γ is sensitive to the
scenario set and test case under considerationmaking it difficult to set in such away that
the time available is used effectively. Further, this strategy empirically works well for
a broad range of instances, including the larger test cases we consider next in Sect. 5.7.

We test this PH configuration on 50-scenario versions of our WECC-240-r2 and
WECC-240-r3 test cases; the results of these runs are summarized in Table 8. Per-
formance statistics are qualitatively similar across a range of out-of-sample 50 and
100 scenario cases associated with our WECC-240 test case. The results indicate that

123

434 K. Cheung et al.

Table 8 Solve time (in s) and solution quality statistics for PH executing on 50-scenario WECC-240-r2
andWECC-240-r3 instances, with α = 0.5, μ = 3, and an adaptive γ strategy

Instance Convergence metric Obj. value PH L.B. # Vars Fx. Time

64-core workstation results

WECC-240-r2 0.0 (in 61 iters) 59,154.305 58,129.192 4076 843

WECC-240-r3 0.0 (in 29 iters) 87,611.436 86,464.088 4080 684

Red sky results

WECC-240-r2 0.0 (in 27 iters) 58,951.140 58,268.300 3991 814

WECC-240-r3 0.0 (in 53 iters) 87,644.537 86,533.268 4080 626

performance of PH extends to these out-of-sample instances. In particular, run-times
do not exceed 15 min (and are more typically on the order of 10 min), and lower
bound quality is maintained at approximately 1–2.5 %. Perhaps counterintuitively,
the specifics of the load scenarios (e.g., low versus high variability) do not appear to
impact PH convergence or solution quality in a systematic manner.

With some exceptions, the wall clock run time tends to increase with the number of
scenarios, even taking into account differences in the number of PH iterations. There
are two primary causes of this behavior. First, for larger numbers of scenarios in the
case of runs on the 64 core workstation, there is the issue of contention for processors.
Second, the times required to solve scenario sub-problems are not homogeneous, and
the PH algorithm waits for all sub-problems to report a solution before proceeding to
the next iteration. Consequently, although the wait time process is noisy, more sce-
narios generally lead to larger maximum sub-problem solve times given a particular
target mipgap.

5.7 Scalability tests

All of the PH configuration tuning and testing of enhancements for SUC described
thus far has been conducted on an realistic generator fleet from the WECC, using
realistic and high-accuracy load scenarios constructed from historical data associated
with ISO-NE. We now consider PH performance on our larger x2 and x4 variants the
base WECC case, to assess the potential to scalability to larger systems. Recall that
these two test case variants respectively possess 170 and 340 thermal generators, with
the latter approximating the fleet size of ISO-NE. We only consider runs on the Red
Sky cluster, due to the significant increase in scenario sub-problem difficulty (taking
advantage of the faster Intel processors).We limit the PH iteration 0 sub-problem solve
times to 180 and 240 s for the x2 and x4 cases, respectively. Finally, we note that the
number of non-anticipative (first stage) binary commitment variables for these cases
is 8160 and 16,320, respectively.

The results of the scalability tests, for x2 and x4 variants of the base WECC-240-
r2 case, are reported in Table 9; performance is qualitatively similar for a range
of other cases based on different load scenario sets. The number of PH iterations
required for convergence does not differ from the results observed for the base
WECC-240 experiments. Run times for x2 instances are typically <13 min, and the

123

Toward scalable stochastic unit commitment… 435

Table 9 Solve time (in s) and solution quality statistics for PH executing on 50-scenarioWECC-240-r2-x2
andWECC-240-r2-x4 instances, with α = 0.5, μ = 3, and an adaptive γ strategy

Instance Convergence metric Obj. value PH L.B. # Vars Fx. Time

Red sky results

WECC-240-r2-x2 0.0 (in 22 iters) 117,794.429 116,538.868 8159 741

WECC-240-r2-x4 0.0 (in 19 iters) 232,189.338 228,992.984 16, 311 1421

resulting solutions are typically within 1.5 % of optimal. Run-times for the larger x4
instances increase slightly, to typically <25 min, yielding solutions within 2 % of
optimal.

Overall, the results demonstrate the ability of a tuned PH configuration to obtain
provably high-quality solutions (within 2 % of optimal), on industrial-scale SUC
test cases with a moderate number of realistic load scenarios, in <25 min of wall
clock time—leveraging only modest commodity (cluster or shared-memory) parallel
computing resources. Fundamentally, this level of performance indicates that both the
run-time and scenario generation barriers (the latter is addressed in the companion [6])
to commercial adoption of SUC are mitigable in practice. Finally, we recall that the
day-ahead UC process generally results in a significant (between 50 and 75%) number
of fixed commitments, whichmust be honored in the reliability UC. Thus, the run-time
results reported in this paper represent worst-case performance in the case of reliability
SUC. In practice, the number of binary commitment decision variables is significantly
smaller, yielding faster scenario sub-problem solve times and consequently accelerated
PH solve times.

5.8 The impact of improved deterministic formulations on PH

A key advantage of PH over many alternative decomposition schemes relates to the
direct impact of improvements to solving the deterministic (single scenario) prob-
lem variant on both solution quality and overall run-time. Specifically, advances
in both the deterministic problem formulation (e.g., via polyhedral strengthen-
ing) and algorithm enhancements for solving the deterministic formulation (e.g.,
via either parameter tuning or more fundamental changes) can be immediately
leveraged—because the decomposition is scenario-based—in all PH scenario sub-
problem solves.

This feature is particularly relevant in the case of unit commitment, where
researchers have been able to achieve advances in particular in the realm of tighter
problem formulations. We now examine a particular advanced deterministic UC for-
mulation, very recently introduced by [10]. This formulation, which we denote MTR
(for the authors), focuses on tighter formulations for the constraints associated with
computing thermal generator startup costs. Relative to the CA deterministic model,
the MTR model yields significant performance improvements due to the introduction
of the alternative representation of startup cost computation constraints.

123

436 K. Cheung et al.

Table 10 Solve time (in s) and solution quality statistics for PH executing on theWECC-240-r1 instance,
with α = 0.5, μ = 3, and the MTR deterministic UC model

Scenarios Convergence metric Obj. value PH L.B. # Vars Fx. Time

64-core workstation results

3 0.0 (in 36 iters) 64,141.771 64,109.021 4080 237

5 0.0 (in 23 iters) 62,628.532 62,499.212 4080 161

10 0.0 (in 26 iters) 61,384.016 61,327.734 4080 215

25 0.0 (in 41 iters) 60,927.903 60,850.717 4080 366

50 0.0 (in 11 iters) 60,617.311 60,470.956 4044 318

On our WECC-240 problem instances, the MTR is able to solve deterministic
scenario sub-problems to optimality in reasonable (at most a minute) run times, elim-
inating the need for consideration of the mipgap parameter γ . In Table 10, we show
the results for PH when running on theWECC-240-r1 instance, with α = 0.5, μ = 3,
and using the MTR model. We immediately observe that while the run times are sim-
ilar to those observed in runs with the CA model, both the objective function values
obtained and the corresponding lower bounds are significantly improved. In particular,
the achieved optimality gaps are now expressed in fractions (e.g., <0.1) of a percent.
Similar results are obtained on the out-of-sample test cases, and on a wide range of
other WECC-240 and larger problem instances.

Overall, our experiments involving the MTR deterministic UC model strongly
highlight the key property that advances in the solution of deterministic UC can imme-
diately and seamlessly transfer to solution of the stochastic UC using PH. Advanced
UC features, such as higher resolution modeling of combined cycle units, can be
incorporated similarly.

6 Conclusions

Driven by the desire to directly incorporate representations of uncertainty, many
researchers have explored development of algorithms for solving the SUC problem.
Yet, these advances have not yet impacted practice, primarily due to the computa-
tional challenge of the problem. In this paper, we describe a decomposition-based
strategy for solving the SUC problem, based on the progressive hedging algorithm
of Rockafellar and Wets. Leveraging various advances over the past decade in the
configuration, tuning, and lower bounding of progressive hedging for the SUC, we
demonstrate tractable (≤15 min) solve times on the WECC-240 test case with a rea-
sonable number of scenarios. Further, the results scale to test cases with 170 and 340
thermal generators, where we obtain solutions in <25 min of run time. The resulting
solutions are provably within 1–2.5 % of optimal.

These performance levels canbe achievedwith both small-scalemulti-coreworksta-
tions and commodity distributedmemory clusters.Both platforms represent computing
capabilities either currently deployed at ISOs and utilities, or likely to be deployed
in the near future. Associated with our results are an extensive set of test cases for

123

Toward scalable stochastic unit commitment… 437

medium to large-scale SUC, filling a critical gap in the literature and establishing a
performance baseline for SUC solvers.

We are presently engaged in efforts to increase the scalability of our approach,
focusing on larger-scale, proprietary, ISO test cases and scenarios concurrently con-
sidering uncertainty in load and renewables output. The PH algorithm we described
is immediately extensible to the multi-stage case, which may have relevance for day
ahead unit commitment, but could also important for intra-day, as well as longer term
planning.

Acknowledgments Sandia National Laboratories is a multi-program laboratory managed and operated
by Sandia Corporation, a wholly owned subsidiary of LockheedMartin Corporation, for the USDepartment
of Energy’s National Nuclear Security Administration under Contract DE-AC04-94-AL85000. This work
was funded by the Department of Energy’s Advanced Research Projects Agency-Energy, under the Green
Energy Network Integration (GENI) project portfolio, and by Sandia’s Laboratory Directed Research and
Development program.

References

1. Caroe, C., Schultz, R.: Dual decomposition in stochastic integer programming. Oper. Res. Lett. 24(1–
2), 37–45 (1999)

2. Carrion, M., Arroyo, J.: A computationally efficient mixed-integer linear formulation for the thermal
unit commitment problem. IEEE Trans. Power Syst. 21(3), 1371–1378 (2006)

3. Cerisola, S., Baillo, A., Fernandez-Lopez, J.M., Ramos, A., Gollmer, R.: Stochastic power generation
unit commitment in electricity markets: a novel formulation and a comparison of solution methods.
Oper. Res. 57, 32–46 (2009)

4. Danna, E., Rothberg, E., Pape, C.L.: Exploring relaxation induced neighborhoods to improve MIP
solutions. Math. Program. 102(1), 71–90 (2005)

5. eTerraMarket. http://www.alstom.com. Accessed Apr 2015 (2014)
6. Feng, Y., Rios, I., Ryan, S.M., Spurkel, K., Watson, J.-P., Wets, R.J.-B., Woodruff, D.L.: Toward

scalable stochastic unit commitment. Part 1: load scenario generation. Energy Syst. (2015). doi:10.
1007/s12667-015-0146-8

7. Gade, D., Hackebeil, G., Ryan, S.M., Watson, J.-P., Wets, R.J.-B., Woodruff, D.L.: Obtaining lower
bounds from the progressive hedging algorithm for stochastic mixed-integer programs. (2015). http://
www.optimization-online.org/DB_HTML/2015/01/4728.html

8. Goez, J., Luedtke, J., Rajan, D., Kalagnanam, J.: Stochastic unit commitment problem. Tech. rep.,
IBM (2008)

9. Hart, W., Watson, J., Woodruff, D.: Pyomo: Modeling and solving mathematical programs in Python.
Math. Program. Comput. 3(3), 219–260 (2011)

10. Morales-Espana, G., Latorre, J.M., Ramos, A.: Tight and compact MILP formulation for the thermal
unit commitment problem. IEEE Trans. Power Syst. 21, 4897–4908 (2013)

11. Oren, S., Papavasiliou, A., O’Neil, R.: Reserve requirements for wind power integration: a scenario-
based stochastic programming framework. IEEE Trans. Power Syst. 26(4), 2197–2206 (2011)

12. Oren, S., Papavasiliou,A.,O’Neil, R.:Multi-area stochasti c unit commitment for highwind penetration
in a transmission-constrained network. Oper. Res. 61(3) (2013)

13. Ostrowski, J., Anjos, M., Vanneli, A.: Tight mixed integer linear programming formulations for the
unit commitment problem. IEEE Trans. Power Syst. 27(1), 39–46 (2012)

14. Papavasiliou, A.: Coupling renewable energy supply with deferrable demand. Ph.D. thesis, University
of California Berkeley (2011)

15. Papavasiliou, A., Oren, S.: A stochastic unit commitment model for integrating renewable supply and
demand response. In: Proceedings of the 2012 IEEE Power and Energy Society Meeting (2012)

16. Price, J.: Reduced network modeling of WECC as a market design prototype. In: Proceedings of the
2011 IEEE Power and Energy Society General Meeting (2011)

17. Rockafellar, R., Wets, R.J.B.: Scenarios and policy aggregation in optimization under uncertainty. In:
Mathematics of Operations Research, pp. 119–147 (1991)

123

http://www.alstom.com
http://dx.doi.org/10.1007/s12667-015-0146-8
http://dx.doi.org/10.1007/s12667-015-0146-8
http://www.optimization-online.org/DB_HTML/2015/01/4728.html
http://www.optimization-online.org/DB_HTML/2015/01/4728.html

438 K. Cheung et al.

18. Ruiz, P., Philbrick, C., Sauer, P.: Modeling approaches for computational cost reduction in stochastic
unit commitment formulations. IEEE Trans. Power Syst. 25(1), 588–589 (2010)

19. Ruiz, P., Philbrick, R., Zack, E., Cheung,K., Sauer, P.: Uncertaintymanagement in the unit commitment
problem. IEEE Trans. Power Syst. 24(2), 642–651 (2009)

20. Shapiro, A., Dentcheva, D., Ruszczyński, A.: Lectures on stochastic programming: modeling and
theory. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2009)

21. Siface, D., Vespucci, M., Gelmini, A.: Solution of the mixed integer large scale unit commitment
problem by means of a continuous stochastic linear programming model. Energy Syst. 5(2), 269–284
(2014). doi:10.1007/s12667-013-0107-z

22. Slyke, R.V., Wets, R.: L-shaped linear programs with applications to optimal control and stochastic
programming. SIAM J. Appl. Math. 17, 638–663 (1969)

23. Takriti, S., Birge, J., Long, E.: A stochastic model for the unit commitment problem. IEEE Trans.
Power Syst. 11(3), 1497–1508 (1996)

24. Watson, J., Woodruff, D.: Progressive hedging innovations for a class of stochastic mixed-integer
resource allocation problems. Comput. Manag. Sci. 8(4), 355–370 (2011)

25. Watson, J.P., Woodruff, D., Hart, W.: PySp: modeling and solving stochastic programs in Python.
Math. Program. Comput. 4(2), 109–149 (2012)

26. Zheng, Q., Wang, J., Pardalos, P., Guan, Y.: A decomposition approach to the two-stage stochastic unit
commitment problem. Ann. Oper. Res. 210(4), 387–410 (2013)

123

http://dx.doi.org/10.1007/s12667-013-0107-z

	Toward scalable stochastic unit commitment
	Part 2: solver configuration and performance assessment
	Abstract
	1 Introduction
	2 Unit commitment models
	2.1 Core deterministic UC model
	2.2 Two-stage stochastic UC model

	3 Solution approach based on progressive hedging
	3.1 Background
	3.2 Progressive hedging
	3.3 Specialization to stochastic UC
	3.4 Parallelization and deployment
	3.5 Computation of lower bounds

	4 WECC-240 case study
	5 Empirical results
	5.1 Computational platforms
	5.2 Individual scenario sub-problem difficulty
	5.3 Solving the extensive form
	5.4 Parameter tuning for PH
	5.5 Convergence accelerators for PH
	5.6 Out-of-sample testing
	5.7 Scalability tests
	5.8 The impact of improved deterministic formulations on PH

	6 Conclusions
	Acknowledgments
	References

