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Abstract In an effort to reduce carbon dioxide (CO2) emissions to the atmosphere,
carbon capture and storage (CCS) technology has been developed to collect CO2 from
emissions generators and store it underground. Recent proposed legislation would
limit the volume of emissions generated from power sources, effectively requiring
some sources to participate in CCS. Both emissions sources and storage operators
require incentives to enter into contracts to capture excess emissions at the source,
and transport and store the CO2 underground. As the level of emissions from power
plants is stochastic and carryover into future time periods is expensive, we develop a
newsvendor model to determine the optimal price and volume of these contracts to
maximize the expected profit of the storage operator and encourage the participation
of multiple emissions sources. Because the storage operator has a limit on the amount
of CO2 that can be injected each month, this limit affects the allocation of the optimal
contract amounts between the emitters. The distribution of emissions and relative costs
of transportation also influence the optimal policy. In addition to analytical solutions,
we present data-driven methods for using correlated emissions data to determine the
optimal price and volume of these contracts.
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1 Introduction

Carbon capture and storage (CCS) is a technology to reduce CO2 emissions from
power plants and other stationary sources of greenhouse gas emissions. At a facility
fitted with carbon capture technology, CO2 is stripped from the emissions stream,
compressed, and transported to a storage site. A storage operator then injects the
compressed CO2 into a deep reservoir (typically between 800 to 3000 m depth) where
it remains underground indefinitely. The advantage of CCS is that the world could
continue to use widespread fossil fuel resources while minimizing climate change
impacts.Also, a number of non-power industrial processes (such as cement production)
which make a substantial contribution to global CO2 emissions but do not yet have
green alternatives can also participate in CCS. There are currently eight industrial-
scale CCS projects operating around the world, with others in the construction or
planning stages [14].

In 2013, the U.S. Environmental Protection Agency (EPA) proposed a performance
standard for new electric utility generating units that would set a limit on greenhouse
gas emissions [9]. The rule would limit CO2 emissions from new stationary power-
generation sources to 1100 lbs/MWh. Themost efficient coal power plant designs emit
approximately 1800 lbs/MWh, and therefore no new coal power plants could be built
without capturing at least a portion of their emissions. The performance standard is
based on the efficiency of new natural-gas power plants, which emit far less CO2 than
coal and can meet the 1100 lbs/MWh limit without retrofitting. The proposed rule,
when finally implemented, will only apply to newly constructed generating units. In
2014, the EPA released a second plan to cut greenhouse gas emissions from existing
power plants through a series of state/federal partnerships. The target for this second
“Clean Power Plan” is to cut carbon emissions from the entire power sector by 30%
from 2005 levels by 2030 [10].

Power plants have an incentive to participate in CCS technology to continue gener-
ating electricity tomeet demandwhile avoiding penalties associated with the proposed
legislation. The plants must have a financial incentive to participate in CCS for the
technology to become widespread. Rather than each plant developing and implement-
ing their own storage technology, the plants can capture their CO2 and outsource the
transportation and storage process to avoid building injection wells and hiring internal
engineering and operations teams. Storage operators also require a profit incentive to
invest in the transportation and storage infrastructure, and there are only certain loca-
tions that are suitable for carbon storage. Thus, the storage operator’s best course of
action is to contract with multiple power plants to transport their CO2 to the injection
site.

The topic of reducing the carbon footprint of a supply chain has recently attracted
attention from operations management researchers. Song and Leng [24] obtain the
optimal production quantities under three common carbon emissions policies: strict
cap on emissions, carbon tax, and cap-and-trade. Cachon [4] derives and compares the
optimal retail supply chain designs under three different objectives: minimizing oper-
ating costs, minimizing carbon emissions, and minimizing both. Benjaafar et al. [2]
also consider how firms’ operational decisions need to be adjusted when accounting
for carbon emissions under different carbon polices. Caro et al. [6] analyze the effect
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of carbon emission allocation rules (offsetting emissions vs. induced investment) on
the decisions of the supply chain players.

Specific details on the capture, transportation, and storage components of CCS are
included in [15]. The authors comprehensively describe current optimization efforts to
minimize costs in energy expansion planning models, and the decision to implement
capture technology in fossil-fuel burning power plants. They also discuss multiple
objective models that balance minimizing costs and also minimizing CO2 emissions,
and optimization formulations of pipeline networks. A series of papers [17,20,21]
focus on the development and improvement of SimCCS, a model that designs the
optimal CCS infrastructure that minimizes the costs of capturing, transporting and
storing CO2 underground. Klokk et al. [19] and Kemp and Kasim [18] consider the
optimal design of the CCS infrastructure while incorporating enhanced oil recovery
(EOR), and thus create a CO2 value chain to offset the cost associated with building
such infrastructure. Optimal investment schedules for a CO2 value chain with EOR
and CO2 permit options are derived in [13]. Huang et al. [16] formulate an optimiza-
tion problem to choose injection rates for CO2 enhanced coal bedmethane production.
A real options approach is taken to determine the optimal time to invest in capture
technology with unknown CCS costs in [22]. Baker et al. [1] analyze the relationships
between cost measures of different carbon capture technologies, and conduct a survey
of the literature to compare these costs. Our work complements this research by con-
sidering the options available to the storage operator, rather than the power producer.

Esposito et al. [11] discuss different types of CCS business models, which include
“Self Build and Operate, Joint-Venture Model, and Pay at the Gate.” Whereas the
existing CCS models focus on the first business model in which utilities own the
reservoirs and build and operate their networks of pipelines, our paper provides a
framework for the last model (Pay at the Gate) where utilities capture the CO2 at the
power generating sites and pay the storage operator a service fee that includes both the
transportation and storage of CO2. The storage operator owns the pipeline as well as
the storage site. The framework thus allows the power plant emissions sources (called
‘emitters’ henceforth) to participate in CCS while requiring limited internal expertise
and staffing, and the storage operator with the appropriate expertise can provide the
service to multiple utilities efficiently.

We consider a scenario where a storage operator needs to decide whether to pro-
vide service to emitters in the presence of uncertainty in emissions levels and private
information of emitter capture costs. Additionally, the storage operator must deter-
mine how large to scale his operations by determining the pipeline size and the service
price for transporting and storing CO2. Whereas the volume of a storage reservoir is
generally quite large, there is a limit on the injection rate (called ‘capacity’) into the
well. Because emissions levels vary from month to month, we adopt a multi-product
newsvendor model with limited capacity to determine the optimal (monthly) contract
amounts and service price.

Cai et al. [5] study the optimal contract design in a CCS supply chain, which
consists of a carbon emitter and a storage operator. The goal is to optimize the latter’s
expected profitwhile inducing the former to participate inCCS.We extend thiswork by
considering a storage operator’s optimal contract design when facing multiple carbon
emitters with restricted capacity at the storage site, and by using historical data to drive
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the optimization. The newsvendor model is used to incorporate the uncertainty in the
emissions, an important factor that affects the storage operator’s decision on which
emitters to serve, what is the volume he can commit to transport, and consequently,
what are the sizes of the pipelines to be built. We deliver insight into how to allocate
capacity and pipelines to the different emitters and how this differs from the decisions
made when analyzing each emitter separately.

We present three models in Sect. 2. In the single-emitter model, the optimal policy
that specifies the contract volume and the price is determined for the storage operator
dealing with each power plant separately. In the dual-emitter model, the storage opera-
tor must allocate contract volumes to two power plants with heterogeneous transporta-
tion costs. The optimal policy prescribes both contract volumes and a unified price.
For both of these models, we can determine analytically the optimal contract amounts
as functions of both the costs associated with each plant. The “N -emitter” model
develops heuristics for estimating the optimal solution when there are more than two
emitters. We analyze our results by calibrating emissions distributions using historical
emissions data from the EPA’s Air Markets ProgramDatabase [25]. Section 3 displays
the numerical results for each model applied to real emissions data. We fit probability
density functions to the emissions data and use these density functions to calculate
the optimal contract solutions analytically. We also model the correlation between
emitters and determine the optimal contracts under dependent emissions numerically
using simulation. Section 4 concludes and all proofs are included in the Appendix.

2 Model

We address the problem of a storage operator who needs to decide whether to provide
service to power plant emissions sources and how to price the service to achieve an
optimal expected profit. Additionally, the storage operatormust determine how large to
scale his operations by determining the volume of CO2 to accept from various emitters
with uncertain emissions levels. We structure this problem using a newsvendor model,
where the product being sold is the service of transporting and storing CO2, and the
price of the service is proportional to the volume of CO2 transported and stored. It is
too expensive to store excess CO2 from one time period for injection at a later date.
Thus, we focus on a single-period newsvendor method to determine the optimal “order
quantity” for each period. Because the emissions levels vary at each time period, the
demand faced by the storage operator is random. In order to encourage participation,
the storage operator designs contracts that guarantee certain pipeline space to transport
the capturedCO2 and store it at a selected injectionwell. Given that there is amaximum
injection rate at the site, there must be a limit on the total monthly contracted amount.
We thus study the situation where there are multiple emitters, each of whom has a
different transportation cost because of their varying distances to the storage site.

2.1 Contract construction and assumptions

The order of events is as follows. The storage operator estimates the distribution of
each plant’s historical emissions levels from the data, and the distribution of the capture
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cost for all emitters. The operator creates amonthly profit function by combining these
distributions with the costs of transporting and storing CO2, and optimizes the profit
function to find the monthly contract volume for each emitter and a unit price of CO2
that is the same for all emitters.

These contracts are then accepted or rejected by each emitter depending on their
actual costs of implementing carbon capture technology. That is, the emitter accepts
the contract only if the sum of the capture cost and the service price is less than the
alternative options available. The emitter may choose another storage operator if the
price is too high, or may choose to emit above the proposed legal limit and pay the
associated penalty.

For contracts that are accepted, the storage operator builds the pipeline to accommo-
date the agreed upon volume by the emitter. If one ormore emitters reject the contracts,
the operator may choose to build larger pipelines for the ones that have accepted the
contracts. The emitter has the right, but not the obligation, to have the agreed-upon
volume of CO2 stored each month. The emitter only pays for the actual volume of
CO2 transported in a particular month, not for the entire contract amount. However, if
the emitter wishes to transport more CO2 than the contract amount because of excess
emissions in a particular month, the storage operator may choose to accommodate this
request by trucking the excess amount of CO2 to the storage site, so long as there is
space available and the service price is higher than the sum of the trucking cost and
the injection cost.

We do not model failures in the emissions plant, pipelines, or storage facility. We
assume that the recent proposed legislation is applied equally to the power plants we
study, though in reality different rules may apply based on the age of the plant. We
also require that the total contract amount will be smaller than or equal to the capacity,
so that the storage operator will be able to accommodate all emitters as long as each
of them captures within their assigned contract volume.

2.2 Model notation

Let K denote the monthly payment of a one-time setup cost for a selected site. It
includes the cost of selecting a reservoir andbuilding the injectionwell. LetQ represent
the maximum injection amount for one month; we call this the capacity. Let c be the
marginal injection cost for storing CO2, αi the marginal monthly cost for pipeline
building and maintenance, and βi the marginal trucking costs for transporting CO2
from Emitter i . The transportation costs associated with the emitters differ due to their
varying distances from the injection site. Because transportation by pipeline is cheaper
than trucking, we further assume that αi < βi . Trucking is only used when an emitter
wishes to storemore than the contract amount and the pipeline cannot accommodate it.
We consider the policy where each emitter is given a cap on their emissions quantity,
and excess emissionsmust be stored using CCS to avoid a penalty. Let t denote the cost
of an emitter’s best alternative option, which can be using another storage operator’s
service, employing renewable energy, paying the penalty, etc.

Further, let Ei represent the amount of CO2 over the limit produced by Emitter i and
fi (·) and Fi (·) denote the density and cumulative distribution function of the excess
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emissions (Ei ) of Emitter i , respectively. We use F−1
i (·) to represent the inverse of the

cumulative distribution function of Ei and Fi (Ei ) ≡ 1−Fi (Ei ). Because each emitter
privately observes his capture cost and has an incentive not to disclose it, we consider
the capture cost as a random variable, but its distribution is known. Let g(·) and G(·)
denote the density and cumulative distribution function of the emitters’ capture cost,
respectively. Last, our decision variables include p, the unit price the operator charges
the emitters for CO2 stored, and qi , the contracted amount of CO2 transported via
pipeline from Emitter i , where Emitter i has the right but not the obligation to ship qi
units via the pipeline.

2.3 Newsvendor models for optimal contracts

We apply the newsvendor model to determine the optimal contracts under different
settings.We first review the single-emitter model, where the storage operator designs a
contract with one emitter. The second, andmainmodel of this paper, is the dual-emitter
model, where there are two emitters with different costs and emissions distributions. In
the event where emitters wish to deliver more than their contracted amount, the storage
operator will check their available capacity and allocate extra space by transportation
costs (the emitter who is closer will get priority). There are analytical solutions for the
single- and dual-emitter models, which we calibrate using the historical data for Ei .
The third model involves eight emitters in Illinois, where all of them have the joint
option to contract with a centrally located CCS site.

2.3.1 Single-emitter model

We first consider the scenario where there is only one emitter, Emitter i . The storage
operator designs an optimal contract that specifies a unit service price (pi ) and an
amount (qi ) he commits to transport via pipeline and subsequently store at the site.
This problem is studied in [5], who show that the storage operator’s optimization
problem is to maximize his expected profit (E�S

i ):

(P1) E�S
i (qi , pi ) = max

qi ,pi
{G(t − pi ) · E�S

i (qi |pi ) | s.t. qi ≤ Q},

where

E�S
i (qi |pi ) = −K − αi · qi + (pi − c) ·

∫ Q

0
F(Ei )dEi − βi ·

∫ Q

qi
F(Ei )dEi .

Here, superscript S is used to denote decision variables in the single-emitter model.
The optimal contract amount for the single-emitter i (qS

i ) is as follows:

qS
i = min{q∗

i , Q}, where q∗
i = F−1

i

(
1 − αi

βi

)
. (1)

Further, the optimal price (pSi ) solves the following equation:
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G(t − pSi ) ·
∫ Q

0
F(Ei )dEi − g(t − pSi ) · E�S

i (q
S
i |pSi ) = 0. (2)

Consider the special case where emissions follows an exponential distribution:
f (Ei ) = γ e−γ Ei ,∀Ei ≥ 0 and f (Ei ) = 0 otherwise. Then,

qS
i = min

{
1

γ
ln(ρ), Q

}
, where ρ = βi

αi
> 1.

We further assume that Emitter i’s private capture cost follows a uniform distribution:
g(x) = U [μ − δ, μ + δ], μ > δ > 0, and that ln(ρ)/γ < Q. The optimal service
price has a closed form solution (the derivation is provided in Appendix B):

pSi =
(
t − (μ − δ) + K + αi

γ
ln(ρ) + βi

γ

(
1

ρ
− e−γ Q

)

+ c

γ
(1 − e−γ Q)

) / (
1 + 1

γ
(1 − e−γ Q)

)
.

Thus, the higher the trucking cost relative to the pipeline cost, the higher the storage
operator wants to commit to in the contract, as long as the capacity is not exceeded.
Moreover, an increase in the transportation cost, set-up cost or injection cost can drive
up the service price.

2.3.2 Dual-emitter model

We now consider the scenario where the storage operator can choose to contract
with two emitters, Emitter 1 and 2. Recall that both emitters share the same capture
cost distribution function g(·) but each emitter has his own emissions distribution
( fi , i = 1, 2) as well as associated transportation costs (αi via pipeline and βi via
trucking). We calculate αi and βi as linearly proportional to the distance between the
emitter and the storage operator. Additionally, we assume without loss of generality
that Emitter 1 is located further from the operator than Emitter 2, and thus α1 > α2
and β1 > β2. Because these emitters may be owned or operated by the same utility
company, we assume that the storage operator offers an “off-the-shelf” service price,
that is, he charges the same price to both emitters.

The storage operator has to balance his available capacity against the risk associ-
ated with two separate contracts. In the analytical model, we assume that the emissions
distributions of the two emitters are independent, and we provide numerical analy-
sis for the situation where the emissions distributions are correlated in Sect. 3. For
given contract amounts q1 and q2, there are three possible outcomes to consider in
determining how much CO2 from each emitter gets stored: (i) When both plants emit
under their contract amounts, the operator stores the entire emissions quantities from
both emitters. (ii) When Emitter i produces above the contract amount while Emitter
j produces below the contract amount, the operator accepts the entire emissions quan-
tity from Emitter j first and then provides the rest of the available capacity to Emitter
i . (iii) When both plants emit above their contract amounts, the operator accepts the
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contract quantities from both emitters first. Because the cost of transporting CO2 from
Emitter 1 is more costly, the operator gives priority to Emitter 2 if there is any capacity
available after both contracts are fulfilled. Any overage from Emitter 1 is accepted
only if there is excess capacity after the entire emissions quantity from Emitter 2 has
been stored.
Optimal contract amounts. The storage operator’s objective is thus to choose the
optimal contract amounts (q1, q2) tomaximize his expected profit. Let E�D(q1, q2|p)
denote the expected profit given a unit service price p. It can be expressed as

E�D(q1, q2|p) = −K − α1 · q1 − α2 · q2 +
∫ q1

E1=0

∫ q2

E2=0
(p − c) · (E1 + E2)dF2(E2)dF1(E1)

+
∫ q2

E2=0

∫ ∞

E1=q1
[(p − c) · min{Q, E1 + E2} − β1 · (min{Q − E2, E1} − q1)]dF1(E1)dF2(E2)

+
∫ q1

E1=0

∫ ∞

E2=q2
[(p−c) · min{Q, E1+E2}−β2 · (min{Q − E1, E2} − q2)]dF2(E2)dF1(E1)

+
∫ ∞

E1=q1

∫ ∞

E2=q2
[(p − c) · min{Q, E1 + E2} − β2 · (min{E2, Q − q1} − q2)

− β1 · (min{Q − min{E2, Q − q1}, E1} − q1)]dF1(E1)dF2(E2). (3)

Figure 1 illustrates all possible combinations of storage amounts and the associated
profit functions in (3). We can then formulate an optimization problem for the storage
operator as

(P2) max
q1,q2

{E�D(q1, q2|p) | s.t. q1 + q2 ≤ Q}.

We use the Lagrangian method to solve (P2). The optimal solution to (P2) is summa-
rized in Proposition 1 below, and the proof is provided in Appendix A.

Proposition 1 Letλdenote theLagrangianmultiplier that satisfies theKarush–Kuhn–
Tucker conditions (11)–(15) outlined in Appendix A. Let Qc denote the cutoff value

q1

q2

E1

E2

E1 + E2 = Q
1

2

3
4

5

6

7

8

1 (p − c)(E1 + E2)

2 (p − c)(E1 + E2)− β2(E2 − q2)

3 (p − c)Q − β2(Q − E1 − q2)

4 (p − c)Q − β2(Q − q1 − q2)

5 (p − c)Q − β1(Q − E2 − q1) + β2(E2 − q2)

6 (p − c)Q − β1(Q − E2 − q1)

7 (p − c)(E1 + E2)− β1(E1 − q1)

8 (p − c)(E1 + E2)− β1(E1 − q1)− β2(E2 − q2)

Fig. 1 Profit values in regions of the emissions space for the dual-emitter model
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for the capacity that solves

F−1
1

(
1 − α1

(β1 − β2) · F2(Qc − qD
1 (0)) + β2

)
+ F−1

2

(
1 − α2

β2

)
= Qc. (4)

When Q ≥ Qc, the optimal contract amounts (qD
1 and qD

2 ) that maximize the
storage operator’s expected profit solve the following equations, respectively:

F1(q
D
1 ) = 1 − α1

(β1 − β2) · F2(Q − qD
1 ) + β2

and F2(q
D
2 ) = 1 − α2

β2
. (5)

When Q < Qc, the optimal contract amounts (qD
1 (λ) and qD

2 (λ)) solve the following
equations jointly:

qD
1 (λ) + qD

2 (λ) = Q, where

F1(q
D
1 (λ)) = 1− α1 + λ

(β1 − β2) · F2(Q − qD
1 (λ)) + β2

and F2(q
D
2 (λ)) = 1−α2 + λ

β2
.

(6)

We first note that the optimal contract amounts do not depend on p, so we can treat
the price optimization separately. Proposition 1 suggests that when the total capacity is
sufficiently large (Q ≥ Qc), the optimal contract amount for Emitter 2 is the same as
that in the single-emitter case, i.e., qD

2 = qS
2 . The optimal contract amount for Emitter

1, however, is lower than that when he is considered the sole emissions source, i.e.,
qD
1 ≤ qS

1 . When the capacity is restricted (Q < Qc), both optimal contracts are
smaller compared to those in the single-emitter cases, that is qD

1 < qS
1 and qD

2 < qS
2 .

To provide more intuition for the result, let us consider the special case where the
emission quantities for both emitters follow the same exponential distribution with
the same rate. The detailed derivation for this special case is provided in Appendix
B. When the capacity is sufficiently large, the optimal contract amount for Emitter 1
depends on the site capacity (Q) as well as the difference in the distances between the
emitters and the storage site (via β1 − β2). Specifically, qD

1 increases and converges
to qS

1 as either the site capacity increases or as the difference in distances decreases to
zero. When the capacity is restricted, both the optimal contract amounts decrease as
the site capacity decreases.

Optimal service price. Recall that the emitter’s choice to participate is only based
on his private capture cost. He participates only if the sum of the capture cost and the
service price is lower than the cost of his next best alternative. Thus, the probability
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that an emitter participates is G(t − p). Let E�D(qD
1 , qD

2 , p) denote the storage
operator’s expected profit, and we can write his profit optimization problem as

E�D(qD
1 , qD

2 , p) = max
p

{
G2(t − p) · E�D(qD

1 , qD
2 |p)

+G(t − p) · G(t − p) · (E�S
1 (q

S
1 |p) + E�S

2 (q
S
2 |p))

}
. (7)

The first term in (7) is the storage operator’s expected profit when both emitters accept
the contract of paying the unit price p. The second term represents the scenario where
only one emitter decides to participate in the contract. Because the pipeline is built
after the agreement is accepted or rejected, the storage operator can build the pipeline
to accommodate the optimal amount computed with the participating emitter as the
sole source of emissions. If only Emitter 1 accepts the contract, the storage operator
builds a pipeline that can take qS

1 from Emitter 1. Similarly, the storage operator could
build a pipeline that can take qS

2 from Emitter 2 if he is the only one who accepts
the contract. The following proposition displays the conditions for finding the optimal
price.

Proposition 2 The optimal price (pD) that maximizes E�D(qD
1 , qD

2 , p) solves the
equation below:

G2(t − pD) ·
(∫ Q

0
(1 − F1(E1) · F2(Q − E1))dE1

)
− 2G(t − pD) · g(t − pD) · E�D(qD1 , qD2 |pD)

+ G(t − pD) · G(t − pD) ·
(∫ Q

0
F1(E1)dE1 +

∫ Q

0
F2(E2)dE2

)

+ (2G(t − pD) − 1) · g(t − pD) · (E�S
1 (qS1 |pD) + E�S

2 (qS2 |pD)) = 0. (8)

It must also meet the second-order sufficient condition (51) and the non-negativity
conditions (52).

The proof is inAppendixC.As suggested byProposition 2, it is difficult to derive the
optimal price in a closed form. We thus consider the special case where the emissions
follow an exponential distribution ( f (Ei ) = γ e−γ Ei , ∀Ei ≥ 0) and the capture cost
follows a uniform distribution (g(x) = U [μ−δ, μ+δ],μ > δ > 0).We can show that
the optimal price pD decreases in capacity. The derivation is provided in Appendix B.
Additionally, we present numerical analysis of the optimal price in Sect. 3 and verify
that such a result is robust for more general distributions.

2.3.3 N-emitter model

Finally, we consider the model where the storage operator wishes to determine con-
tracts for more than two emitters. Given a set of contracts qi and emissions levels Ei

from N emitters, we can allocate storage space in a given month using Algorithm 1.
Each emitter is guaranteed min(Ei , qi ) space, and excess space is allocated in order
of distance, because closer emitters have lower trucking costs. We can calculate the
resulting values of Si which are the actual stored amounts.
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ALGORITHM 1: Allocating space for N -emitter model.
Input: Emissions data for E1, . . . , EN , contract amounts qi , Q, distances from each emitter to CCS

site.
Output: Volumes of CO2 stored, S1, . . . , SN .
Initialize: total = ∑N

i=1 min(Ei , qi ) and Si = min(Ei , qi ), and set i =index for closest emitter;
while total < Q do

if Ei > qi then
if Ei − qi < Q − total then

Si = Ei ;
total = total + Ei − qi ;

else
Si = qi + Q − total;
total = Q;

end
end
Set i to index for next closest emitter;
If no more emitters, exit;

end
Output injection amounts S1, . . . , SN ;

We estimate the expected profit for a series of emissions levels by calculating the
associated profit for injected amounts under the different conditions for a givenmonth:

�N (q1, . . . , qN |p) = −K +
N∑
i=1

((p − c) · Si − βi · ISi>qi · (Si − qi ) − αi · qi ),

(9)

where Ix is an indicator function for event x . We calculate the expected value of (9)
by averaging over the associated values of Si for the different historical Ei values, and
optimize the expected profit numerically to obtain the optimal contract amounts, qN

i .
Rather than using the framework for the expected profit maximized over the price as
in (7), we use a simplified expression

E�N
(
qN
1 , . . . , qN

N , p
)

= G(t − p) · E�
(
qN
1 , . . . , qN

N |p
)

(10)

to model the entire set of contracts as a single acceptance or rejection. To use the same
framework as (7) would require enumeration of all the possible acceptance/rejection
possibilities and the associated optimal contracts, so we use (10) as an approximation
to model the storage operator’s expected profit where we model a single probability
G(t − p) of all emitters accepting the contract. This heuristic overestimates the risk
to the storage operator by treating all the N emitters as having the same capture cost,
and hence is a conservative measure of the variation in their expected profit.

3 Experimental results and analysis

Our analysis suggests that the storage operator’s decisions on contract amounts and
service price is primarily driven by the capacity. By applying our analytical results
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Fig. 2 Locations and relative
emissions volumes from power
plant emitters (circles) and
possible CCS storage site (star)

to real emissions data, we arrive at the following results. When capacity is low, the
storage operator is more likely to prioritize large emitters or close emitters. The service
price may be higher than the price that could be offered separately, but this optimal
price decreases as capacity increases. As capacity increases, the proportional contract
allocation is larger for the emitter which has larger emissions levels and/or is closer
in distance. When the capacity is large, the storage operator offers both emitters the
optimal single-emitter contract amounts and lower service prices than they would be
offered separately. Additionally, the storage operator’s expected profit increases as
capacity increases. With a large capacity, both the emitters and the storage operators
benefit from joint contracts with multiple emitters.

3.1 Data and methods used

Whereas the proposed EPA rules are only intended for new power plants, we can
use emissions data from existing power plants as a proxy data set. Here, we use
measured CO2 emissions data from eight coal-fired power plants in Illinois (Fig. 2).
The eight power plants were chosen at random, though they are all larger stations with
multiple generating units and significant emissions. They also have a wide geographic
distribution through the state, which will impact their associated transportation costs.
Illinois was chosen because it is a good target for CCS given the high concentration
of coal-fired power in the region. Also, a deep saline aquifer covers much of the state
(the Mt. Simon Sandstone, at approximately 2100 m depth) that is widely viewed as
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a good storage reservoir for CO2. The model also contains a hypothetical storage site
in the center of the state. The hypothetical site is relatively close to an ongoing CCS
demonstration project, the Illinois-Basin Decatur project, which has been injecting
CO2 since 2011 [12].

The data set used here is based onmonthly emissions data (Megatonnes (Mt)/month)
and gross load (MWh/month) for each of the power plants, covering 13 years of
operation from2000–2012.Based on the proposedEPAcap,we compute the emissions
in excess of the cap that must be captured each month to maintain compliance. We
also introduce a correction to account for the power consumption associated with
the capture process, which leads to a drop in the effective power plant efficiency. A
plant with capture technology will typically produce 10–20 % more CO2 than a plant
without capture, and this additional CO2 must be accounted for [8]. The resulting time
histories of excess emissions that must be stored are given in Fig. 3. Coal-fired power
plants provide base-load power and typically maintain a fairly constant power output
and emissions rate. Nevertheless, rates do vary over time with fluctuating electricity
demand. Maintenance shut downs will also lead to occasional drops in emissions. We
use a normal distribution for the capture cost with mean $45/tonne, and a coefficient
of variation of one fourth. Cost-of-capture estimates vary widely depending on plant
designs and cost assumptions [7,8,23]. The $45/tonne is a reasonable but conservative
value. Some studies project capture costs as low as $25/tonne. Values for the rest of
the model parameters are given in Table 1.

Although the emissions data is not normally distributed (most of the historical time
series for the emissions fail the Shapiro–Wilks test for normality), these series are
unimodal and the normal distribution provides a tractable method for modeling cor-
relation. Additionally, we find the optimal solutions generated using the fitted normal
distributions are similar (with deviations less than 4%) to those generated using empir-
ical distributions resampled from the data, adding to the robustness of the solutions.
In both the dual- and N -emitter cases, correlation between the historical emissions
series of the plants may play a role in our results. Using multidimensional normal
distributions, we can easily model the dependence between output from emitters, and
we use simulated emissions from these dependent distributions to drive a numerical
optimization of the optimal price and quantity.

3.2 Single-emitter model

Methods for using data to find robust solutions to the variations of the newsvendor
problem exist [3]. For the case where the storage operator only deals with one emitter,
we use Eqs. (1) and (2) to find the optimal contract volume and price using fitted
normal distributions for each Fi . The optimal contract amounts for each emitter using
the single-emitter model are provided in Table 2. Because both the pipeline costs and
trucking costs are proportional to the distance between the emitters and the storage
site, the ratios of the two costs are the same for all emitters. Thus, the optimal contract
amounts are solely driven by the emissions distributions. Plant 1 generates the highest
emissions levels. Plant 4 produces the smallest emissions levels, and is relatively far
away, and hence has the lowest qS

i and the highest pSi . The optimal prices depend
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Fig. 3 Capture amount data for the eight emitters

not only on the emissions distributions, but also on the distances between the emitters
and the storage site. The expected profit is higher for emitters with larger emissions
levels. We use the results from the single-emitter model for comparison with those
from dual- and N -emitter models in the next section. This comparison will highlight
the effect of relative size and distance on the optimal results.
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Table 1 Cost parameter values
used in results

Parameter Value

K (fixed) $500,000 per month

α (pipeline) $0.02 per tonne per km

β (trucking) $0.06 per tonne per km

c (injection) $7 per tonne

Q (capacity) 1 Mt per month

t (penalty) $80 per tonne

Distribution of capture cost N (μ = $45, σ = $11.25) per tonne

Table 2 Optimal monthly
contracts for the single-emitter
case. The capacity Q is 1 Mt

qSi (Mt) pSi (millions/Mt) E�S
i (millions)

Plant 1 0.570 30.987 6.533

Plant 2 0.286 30.554 3.265

Plant 3 0.239 31.204 2.618

Plant 4 0.103 33.280 0.835

Plant 5 0.403 31.945 4.134

Plant 6 0.387 31.957 3.791

Plant 7 0.336 30.135 4.168

Plant 8 0.366 30.680 4.288

3.3 Dual-emitter model

We examine the effects of capacity, distances from the storage sites, emissions levels,
and correlation among emissions on the optimal contracts and the storage operator’s
expected profit.

Effect of capacity. Table 3 provides the optimal quantity allocation between Plants 1
and2 in the dual-emittermodelwhile varying capacity. In the example, Plant 1 is farther
than Plant 2, but Plant 1 has the largest emissions levels. We observe that when Q is
small, it is optimal to serve only one emitter. Because Plant 2 is close and qS

2 = 0.286,
the storage operator only contracts with Plant 2when Q ≤ 0.20. As capacity increases,
it becomes more profitable to contract with both emitters to diversify the risk if either
rejects the contract. The contract amounts for the larger Plant 1 increase much faster
than those for the smaller Plant 2. Moreover, the contract amounts converge to the
amounts in the single-emitter model. As the capacity increases, the optimal price
decreases when both emitters are served, but the storage operator’s expected profit
increases. This shows that serving both emitters at a single site not only benefits the
storage operator but also reduces the cost to the emitters.

Effect of location and correlation of emissions. Table 4 shows the optimal contract
amounts for two plants that have comparable emissions levels but large differences in
distances in the case where the capacity is restricted (Q = 0.55). Plant 5 is located
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Table 3 Varying Q for Plant 1
(Emitter 1) and Plant 2
(Emitter 2)

Q qD1 (Mt) qD2 (Mt) pD (millions/Mt) E�D (millions)

0.05 0.000 0.050 36.549 0.564

0.10 0.000 0.100 34.808 1.485

0.15 0.000 0.150 34.310 2.392

0.20 0.016 0.184 34.081 3.253

0.25 0.066 0.184 33.865 4.066

0.30 0.116 0.184 33.605 4.820

0.35 0.166 0.184 33.322 5.522

0.40 0.216 0.184 33.038 6.191

0.45 0.266 0.184 32.757 6.831

0.50 0.315 0.185 32.466 7.435

0.55 0.362 0.188 32.148 7.988

0.60 0.405 0.195 31.810 8.482

0.65 0.443 0.207 31.481 8.918

0.70 0.476 0.224 31.191 9.290

0.75 0.506 0.244 30.964 9.593

0.80 0.533 0.267 30.806 9.817

0.85 0.553 0.286 30.709 9.961

0.90 0.562 0.286 30.657 10.044

0.95 0.567 0.286 30.632 10.087

1.00 0.570 0.286 30.622 10.106

Table 4 Optimal results for
Plant 5 (Emitter 1) and Plant 7
(Emitter 2) with Q = 0.55

Single emitter Dual emitter Dual (dependent)

q (Mt) 0.403, 0.336 0.289, 0.261 0.288, 0.262

p (millions/Mt) 31.94, 30.14 31.95 31.87

E� (millions) 4.13, 4.17 7.52 7.39

farthest from the storage site while Plant 7 is located closest to the site. The first
column shows the results from the single-emitter model for each emitter. That is,
qS
5 = 0.403, qS

7 = 0.336. The second column demonstrates the results from the dual-
emitter model, i.e., qD

5 = 0.289, qD
7 = 0.261. Because the capacity is restricted,

the storage operator naturally decreases the contract amounts for both emitters when
compared to the single-emitter case. Moreover, the reduction rate for Plant 7 is lower,
i.e., (qS

5 − qD
5 )/qS

5 = 28% > (qS
7 − qD

7 )/qS
7 = 22% despite higher emissions levels

than Plant 5. This decision is primarily driven by the fact that Plant 7 is much closer.
The optimal service price (pD = $31.95) is close to the single-emitter service

price for Plant 5 (pS5 = $31.94). This decision is primarily driven by the fact that the
storage capacity is restricted, and thus the storage operator is not worried about the
case where only one emitter would accept the contract. If this happens, the storage
operator can adjust the quantity carried by the pipeline to the optimal contract amount
in the single-emitter case. The unused capacity will be low since both qS

5 and qS
7 are
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high enough. He is, however, more concerned about his profit from Plant 5. Because
Plant 5 has a higher emissions level and is located far away, the storage operator
needs to charge a high price so that he can make a profit comparable to the single-
emitter case. Nonetheless, his expected profit is lower than the sum of the expected
profits in the single-emitter case because of the restricted capacity, i.e., E�D <

E�S
5 + E�S

7 . The final column shows the optimal results calculated via simulation
using fitted correlated normal distributions, when correlation between plant emissions
is considered. While the optimal contract amounts in the dual-emitter case are not
affected by considering correlation, the optimal service price is slightly lower. With
positively correlated emissions (the correlation coefficient is +0.30), the variance in
total emissions is higher. The storage operator has a stronger incentive to reduce the
risk of only one emitter accepting the contract. The expected profit is lower than in the
independent case, where the overall emissions stream is expected to be more stable.

For the case where the capacity is large (Q = 1), results are displayed in Table 5.
Because the capacity is large, the storage operator can offer the contract amounts of the
single-emitter case to both emitters, i.e., qD

5 = qS
5 = 0.403 and qD

7 = qS
7 = 0.336.

The optimal service price in the dual-emitter case (pD = $30.89) is in between
those in the single-emitter cases. By setting this price, the storage operator is able to
increase the chance that both emitters participate and consequently achieve an expected
profit higher than the sum of the expected profits in the single-emitter case, that is,
E�D > E�S

5 + E�S
7 . When the correlation in emissions is considered, the optimal

contract amounts are not affected while the service price and the storage operator’s
expected profit both decrease. Similar reasons stated previously apply here as well.

Effect of emissions levels. Table 6 shows the optimal results for Plants 4 and 1. While
their distances from the storage sites are comparable, Plant 4 is the smallest emitter
while Plant 1 is the largest. We see that in the case of restricted capacity, the reduction
rate for Plant 4 is higher, that is, (qS

4 − qD
4 )/qS

4 = 15% and (qS
1 − qD

1 )/qS
1 = 10%.

This suggests that the storage operator should provide a higher reduction rate to the
emitter that has lower emissions levels in order to reduce the risk of low emissions
quantities from both emitters. Table 7 shows the optimal results for Plants 5 and 6.
These two emitters also have comparable distances from the storage sites, but Plant 5

Table 5 Optimal results for
Plant 5 (farthest) and Plant 7
(closest) with Q = 1

Single emitter Dual emitter Dual (dependent)

q (Mt) 0.403, 0.336 0.403, 0.336 0.403, 0.336

p (millions/Mt) 31.94, 30.14 30.89 30.76

E� (millions) 4.13, 4.17 8.68 8.48

Table 6 Optimal results for
Plant 4 (Emitter 1) and Plant 1
(Emitter 2) with Q = 0.6

Single emitter Dual emitter Dual (dependent)

q (Mt) 0.103, 0.570 0.087, 0.513 0.087, 0.513

p (millions/Mt) 33.28, 30.95 31.25 31.09

E� (millions) 0.835, 6.43 7.40 7.17
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Table 7 Optimal results for
Plant 5 (Emitter 1) and Plant 6
(Emitter 2) with Q = 0.55

Single emitter Dual emitter Dual (dependent)

q (Mt) 0.403, 0.387 0.310, 0.240 0.310, 0.240

p (millions/Mt) 31.94, 31.96 32.98 32.78

E� (millions) 4.13, 3.79 7.47 6.97

has a higher emission level, and thus the contract amount reduction is higher for the
smaller emitter (Plant 6), i.e., (qS

5 − qD
5 )/qS

5 = 23% < (qS
6 − qD

6 )/qS
6 = 38%.

In Table 6, the optimal service price in the dual-emitter case (pD = $31.25) is in
between those of the single-emitter cases (pS4 = $33.28 and pS1 = $30.95). Moreover,
it is closer to the single-emitter service price for Plant 1. This is because setting a
service price too high will increase the risk of Plant 1 not participating, which will
lead to the capacity being largely unused due to small emissions levels of Plant 4.
Due to comparable emissions levels between Plants 5 and 6, the service price in the
dual-emitter case (pD = $32.98) is higher than both prices in the single-emitter cases
(pS5 = $31.94 and pS6 = $31.96).

3.4 N -emitter model

For the N -emitter case, Fig. 4 shows the optimal contract amounts as the capacity
at the storage site increases from 0.4 to 3 Mt. When Q is very small, the storage
operator allocates positive contract amounts to all plants except for Plant 5, the one
located farthest from the storage site. As the capacity increases, we see greater rates
of increase in the contract amounts of Plants 2, 7 and 8 than those of Plants 1, 3, 4
and 6. This is primarily because Plants 2, 7 and 8 are closer than the others. When the
capacity is near 1 Mt, there is a sharp increase in the contract amount of Plants 1 and
8 and a sizable decrease in Plant 4, while the others continue to grow steadily. This is
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Fig. 4 Optimal contract amounts for the N -emitter model
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Table 8 Absolute differences using heuristic solution, compared to Table 3 for Plant 1 and Plant 2 while
varying Q

Q q̂1 − q∗
1 (Mt) q̂2 − q∗

2 (Mt) p̂ − p∗ (millions/per tonne) ˆE[�] − E[�] (millions)

0.05 0.006 −0.006 −2.719 −0.150

0.10 0.019 −0.019 −3.047 −0.379

0.15 0.042 −0.042 −3.122 −0.599

0.20 0.058 −0.058 −3.135 −0.782

0.25 0.046 −0.046 −3.050 −0.922

0.30 0.049 −0.049 −2.854 −1.014

0.35 0.042 −0.042 −2.629 −1.048

0.40 0.049 −0.049 −2.372 −1.059

0.45 0.027 −0.027 −2.140 −1.026

0.50 0.017 −0.017 −1.876 −0.973

0.55 0.017 −0.017 −1.581 −0.892

0.60 0.014 −0.014 −1.256 −0.779

0.65 0.004 −0.004 −0.940 −0.654

0.70 0.006 −0.006 −0.650 −0.520

0.75 0.023 −0.023 −0.413 −0.400

0.80 0.017 −0.017 −0.257 −0.247

0.85 0.005 0.006 −0.155 −0.118

0.90 0.012 0.007 −0.088 −0.028

0.95 0.017 0.006 −0.053 0.023

1.00 0.020 0.007 −0.037 0.037

because Plant 4 is not only located far away from the storage site, but it also has very
small emissions levels. The storage operator is better off keeping a higher allocation
for larger emitters, such as Plants 1 and 8.

This non-monotonicity appears again as Q is near 1.5Mt; both the contract amounts
of Plants 2 and 4 (the smallest two emitters) decrease as significant increases occur in
the contract amounts of Plants 1, 5 and 6. This is primarily driven by emissions levels
as they are the biggest emitters. As the capacity becomes higher, the optimal contract
amounts converge to those in the single-emitter case.

To assess the quality of our heuristic, we compare it to the optimal solution using
the dual-emitter model used in Table 3 to show the effect of changing the capacity
Q. Table 8 shows the absolute differences in the optimal results using our heuristic
code (with outputs q̂, p̂, and ˆE[�]) compared to the dual-emitter optimal results. The
heuristic uses historical data to form an expected profit function given emissions that
were realized, while the numerical results for the dual-emitter mode fit a normal distri-
bution to the data. In addition to the limitations of relying on numerical optimization
without knowledge of the objective function space, the heuristic faces the limitation
of assuming all emitters either accept or reject the contracts together.

We chose to use absolute differences to better differentiate units across columns
of the table. Table 8 reveals that as the capacity increases and the problem becomes
unconstrained, the heuristic solution approaches the optimal solution. Contract alloca-
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tions are comparable generally, but the heuristic favors allocating more to Plant 1 than
Plant 2 relative to the dual-emitter optimal solution. The price is significantly lower for
small capacity sizes, reflecting the desire to induce participation given that the storage
operator faces additional risk, as the emitters must either both reject or both accept
the contract under the heuristic. As a result, the expected profit is significantly lower
in the small capacity cases. We expect this heuristic to provide lower expected profits
than the true optimal as the dimensionality of the problem increases in the number of
emitters. However, we also note that there is error associated in fitting distributions
to data that affects the dual-emitter optimal solution that is not accounted for in the
numerical results.

4 Conclusion

We study the problem of designing optimal contracts between a storage operator and
multiple CO2 emitters. We model it as a newsvendor problem, where demands (emis-
sions levels) are uncertain but their distributions are estimated by historical emissions
data. The storage operator has a limited capacity for CO2 that can be injected each
month, and this limit may be less than the sum of the optimal amounts that would be
injected if each plant was considered separately. There are upfront costs of building a
pipeline to support the contract, and higher per unit costs to truck excess CO2 above
the contract level.We alsomodel the likelihood that the emitter will accept the contract
based on their costs of capturing CO2. We find an optimal solution for the case where
there are two emitters, and develop a heuristic to solve the case where there are N
emitters. The solution provides the storage operator with the optimal contract volumes
and a common service price that he should offer to the emitters.

We explore the effect of various governing parameters on the optimal contract
amounts.When the capacity is restricted, the storage operator adjusts contract amounts
downward from the single-emitter case, and we describe the factors that influence
the corresponding allocations. As capacity increases, the optimal contract amounts
approach those that would be offered in the single-emitter case. When capacity is
large, the expected profit is higher than the sum of the profits for each emitter in
the single-emitter case because of the added diversification from multiple emitters.
The relative costs of transportation for each emitter, which we take to be functions of
distances from the storage site, also affect the optimal contract amounts. Additionally
the distribution of the emissions drives the capacity allocations, particularly the overall
scale of emissions levels. We demonstrate that if the storage operator has a large
capacity, contracting with multiple emitters reduces risk associated with emissions
uncertainty, and consequently reduces the price of the service while increasing the
expected profit.

Appendix A: Proof of Proposition 1

Proof of Proposition 1 To solve the constrained optimization problem (P2), we apply
the Lagrangian method. Let L(q1, q2; λ) = E�D(q1, q2|p) − λ · (q1 + q2 − Q). The
Karush–Kuhn–Tucker conditions for the optimal solution are:
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∂L(q1, q2; λ)

∂q1
= ∂E�D(q1, q2|p)

∂q1
− λ = 0 (11)

∂L(q1, q2; λ)

∂q2
= ∂E�D(q1, q2|p)

∂q2
− λ = 0 (12)

λ · (q1 + q2 − Q) = 0 (13)

q1 + q2 − Q ≤ 0 (14)

q1, q2, λ ≥ 0 (15)

To compute ∂E�D(q1,q2|p)
∂q1

and ∂E�D(q1,q2|p)
∂q2

,wefirst rewrite the profit function accord-
ing to Fig. 1 as

E�D(q1, q2|p) = −K − α1 · q1 − α2 · q2 +
∫ q1

E1=0

∫ q2

E2=0
(p − c) · (E1 + E2)dF2(E2)dF1(E1)

+
∫ q2

E2=0

∫ Q−E2

E1=q1
(p−c) · (E1+E2)−β1(E1−q1)dF1(E1)dF2(E2)

+
∫ q2

E2=0

∫ ∞

E1=Q−E2

(p−c) · Q−β1(Q−E2−q1)dF1(E1)dF2(E2)

+
∫ q1

E1=0

∫ Q−E1

E2=q2
(p−c) · (E1+E2)−β2(E2−q2)dF2(E2)dF1(E1)

+
∫ q1

E1=0

∫ ∞

E2=Q−E1

(p−c) · Q−β2(Q−E1−q2)dF2(E2)dF1(E1)

+
∫ Q−q1

E2=q2

∫ Q−E2

E1=q1
(p − c) · (E1+E2)−β1(E1−q1)−β2(E2−q2)dF1(E1)dF2(E2)

+
∫ Q−q1

E2=q2

∫ ∞

E1=Q−E2

(p−c) · Q−β1(Q−E2−q1) − β2(E2 − q2)dF1(E1)dF2(E2)

+
∫ ∞

E1=q1

∫ ∞

E2=Q−q1
(p−c) · Q−β2(Q−q1−q2)dF2(E2)dF1(E1). (16)

∂E�D(q1, q2|p)
∂q1

= −α1 + f1(q1)
∫ q2

E2=0
(p − c) · (q1 + E2)dF2(E2)

+
∫ Q−E2

E1=q1

(∫ q2

E2=0
β1dF2(E2)

)
dF1(E1)

− f1(q1)
∫ q2

E2=0
(p − c) · (q1 + E2)dF2(E2)

+
∫ ∞

E1=Q−E2

(∫ q2

E2=0
β1dF2(E2)

)
dF1(E1)

+ f1(q1)
∫ Q−q1

E2=q2
(p − c) · (q1 + E2) − β2(E2 − q2)dF2(E2)

+ f1(q1)
∫ ∞

E2=Q−q1
(p − c)Q − β2(Q − q1 − q2)dF2(E2)

+
∫ Q−q1

E2=q2

(∫ Q−E2

E1=q1
β1dF1(E1)− f1(q1) · [(p−c) · (q1+E2)−β2(E2−q2)]

)
dF2(E2)

+
∫ Q−q1

E2=q2

(∫ ∞

E1=Q−E2

β1dF1(E1)

)
dF2(E2)
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+ f2(Q − q1)
∫ ∞

E1=q1
(p − c)Q − β2(Q − q1 − q2)dF1(E1)

+
∫ ∞

E1=q1

(∫ ∞

E2=Q−q1
β2dF2(E2)− f2(Q−q1) · [(p−c) · Q−β2(Q−q1−q2)]

)
dF1(E1)

− f1(q1)
∫ ∞

E2=Q−q1
(p − c)Q − β2(Q − q1 − q2)dF2(E2) (17)

∂E�D(q1, q2|p)
∂q1

= −α1 +
∫ ∞

E1=q1

∫ q2

E2=0
β1dF2(E2)dF1(E1)

+
∫ Q−q1

E2=q2

∫ ∞

E1=q1
β1dF1(E1)dF2(E2)

+
∫ ∞

E1=q1

∫ ∞

E2=Q−q1
β2dF2(E2)dF1(E1) (18)

∂E�D(q1, q2|p)
∂q1

= −α1 +
∫ ∞

E1=q1

(∫ Q−q1

E2=0
β1dF2(E2) +

∫ ∞

E2=Q−q1
β2dF2(E2)

)
dF1(E1)

(19)

∂E�D(q1, q2|p)
∂q1

= −α1 + F1(q1)
(
β1F2(Q − q1) + β2F2(Q − q1)

)
(20)

Thus, (11) becomes −α1 + F1(q1)(β1F2(Q − q1) + β2F2(Q − q1)) − λ = 0, i.e.,
qD
1 (λ) = F−1

1 (1 − α1+λ

(β1−β2)·F2(Q−qD
1 (λ))+β2

).

Also, L2
q1q2 ≡ ∂2L(q1,q2;λ)

∂q1∂q2
= 0 and L2

q21
≡ ∂2L(q1,q2;λ)

∂q21
= − f1(q1)

(β1F2(Q − q1) + β2F2(Q − q1)) − F1(q1) · f2(Q − q1) · (β1 − β2) < 0.

∂E�D(q1, q2|p)
∂q2

= −α2 + f2(q2)
∫ q1

E1=0
(p − c)(E1 + q2)dF1(E1)

+ f2(q2)
∫ Q−q2

E1=q1
(p − c) · (E1 + q2) − β1(E1 − q1)dF1(E1)

+ f2(q2)
∫ ∞

E1=Q−q2
(p − c) · Q − β1(Q − q1 − q2)dF1(E1)

+
∫ q1

E1=0

(∫ ∞

E2=Q−E1

β2dF2(E2)

)
dF1(E1)

+
∫ q1

E1=0

(∫ Q−E1

E2=q2
β2dF2(E2) − f2(q2) · (p − c) · (E1 + q2)

)
dF1(E1)

+
∫ Q−q1

E2=q2

(∫ Q−E2

E1=q1
β2dF1(E1)

)
dF2(E2)
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− f2(q2) ·
∫ Q−q2

E1=q1
(p − c) · (E1 + q2) − β1(E1 − q1)dF1(E1)

+
∫ Q−q1

E2=q2

(∫ ∞

E1=Q−E2

β2dF1(E1)

)
dF2(E2)

− f2(q2) ·
∫ ∞

E1=Q−q2
(p − c)Q − β1(Q − q1 − q2)dF1(E1)

+
∫ ∞

E1=q1

(∫ ∞

E2=Q−q1
β2dF2(E2)

)
dF1(E1) (21)

∂E�D(q1, q2|p)
∂q2

= −α2 +
∫ q1

E1=0

∫ Q−E1

E2=q2
β2dF2(E2)dF1(E1)

+
∫ q1

E1=0

∫ ∞

E2=Q−E1

β2dF2(E2)dF1(E1)

+
∫ Q−q1

E2=q2

∫ Q−E2

E1=q1
β2dF1(E1)dF2(E2)

+
∫ Q−q1

E2=q2

∫ ∞

E1=Q−E2

β2dF1(E1)dF2(E2)

+
∫ ∞

E1=q1

∫ ∞

E2=Q−q1
β2dF2(E2)dF1(E1) (22)

∂E�D(q1, q2|p)
∂q2

= −α2 +
∫ q1

E1=0

∫ ∞

E2=q2
β2dF2(E2)dF1(E1)

+
∫ ∞

E1=q1

∫ ∞

E2=q2
β2dF2(E2)dF1(E1)

= −α2 + β2F2(q2) (23)

Thus, (12) becomes −α2 + β2F2(q2) − λ = 0, i.e., qD
2 (λ) = F−1

2 (1 − α2+λ
β2

).

Also, L2
q2q1 ≡ ∂2L(q1,q2;λ)

∂q2∂q1
= 0 and L2

q22
≡ ∂2L(q1,q2;λ)

∂q22
= ∂2E�D(q1,q2|p)

∂q22
=

− f2(q2) · β2 < 0.
We first compute Qc as the solution for Q in qD

1 (0) + qD
2 (0) = Q, i.e.,

F−1
1

(
1 − α1

(β1 − β2) · F2(Qc − qD
1 (0)) + β2

)
+ F−1

2

(
1 − α2

β2

)
= Qc.

To find the optimal solution, we consider two cases.
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Case 1: Q ≥ Qc, then qD
1 (0) + qD

2 (0) ≤ Q is satisfied with λ = 0. The optimal
contract amounts solve the following equations: F1(qD

1 ) = 1 − α1
(β1−β2)·F2(Q−qD

1 )+β2

and F2(qD
2 ) = 1 − α2

β2
.

Case 2: Q < Qc, qD
1 + qD

2 ≤ Q is violated. We thus need to solve for λ using
qD
1 (λ)+ qD

2 (λ) = Q. Because L2
q21

< 0 and L2
q21
L2
q22

−L2
q1q2L2

q2q1 > 0, L is concave.

Thus, the optimal solution satisfies all KKT conditions and meets the second-order
sufficient conditions as well. �	

Appendix B: Derivation of the results for the special case

Single-emitter case. First, we compute q∗
i .

Fi (q
∗
i ) = e−γ q∗

i = α2

β2
⇒ q∗

i = 1

γ
ln

(
βi

αi

)
. (24)

Equation (2) ⇒ E�(q∗
i |pi ) = −K − αi

γ
ln(ρ) − βi

γ

(
1

ρ
− e−γ Q

)

+ p − c

γ
(1 − e−γ Q), (25)

t − pSi − (μ − δ)

2δ

(
1 + 1

γ
(1 − e−γ Q)

)
= 1

2δ
E�(q∗

i |pi )

⇒ pSi =
(
t − (μ − δ) + K + αi

γ
ln(ρ) + βi

γ

(
1

ρ
− e−γ Q

)
+ c

γ
(1 − e−γ Q)

)/

(
1 + 1

γ
(1 − e−γ Q)

)
. (26)

Dual-emitter case. First, we compute qD
1 , qD

2 , and E�D(qD
1 , qD

2 |p).

F2(q2) = e−γ q2 = α2

β2
⇒ qD

2 = 1

γ
ln

(
β2

α2

)
. (27)

F1(q1) = e−γ q1 = α1

(1 − e−γ (Q−q1))(β1 − β2) + β2
⇒

qD
1 = 1

γ
ln

(
β1

α1 + e−γ Q(β1 − β2)

)
. (28)

Let ρ = β1

α1 + e−γ Q(β1 − β2)
,

E�D(qD
1 , qD

2 |p) = −K − α1

γ
ln(ρ) − α2

γ
ln(ρ)

+ (p − c)

(
2

γ
(1 − e−γ Q) − Qe−γ Q

)
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− β2

(
1

γ

(
1

ρ
− e−γ Q

)
− e−γ QqD

1

)

− β1

(
1

γ

(
1

ρ
− e−γ Q

)
− e−γ Q(Q − qD

1 )

)
. (29)

Next, we compute Qc and λ.

Qc = qD
1 + qD

2 = 1

γ
ln

(
(α1 + e−γ Qc

(β1 − β2))α2

β1β2

)

⇒ Qc = 1

γ
ln

(
β1β2 − (β1 − β2)α2

α1α2

)
. (30)

e−γ q1 = α1 + λ

(1 − e−γ (Q−q1))(β1 − β2) + β2

⇒ qD
1 (λ) = 1

γ
ln

(
β1

α1 + λ + e−γ Q(β1 − β2)

)
, (31)

e−γ q2 = α2 + λ

β2
⇒ qD

2 (λ) = 1

γ
ln

(
β2

α2 + λ

)
. (32)

qD
1 (λ) + qD

2 (λ) = Q ⇒ (α1 + λ + (β1 − β2)e
−γ Q)(α2 + λ) − β1β2e

−γ Q = 0

⇒ λ = 1

2

√
(α1 − α2 + e−γ Q(β1 − β2))2 + 4β1β2e−γ Q

− 1

2
(α1 + α2 + e−γ Q(β1 − β2)). (33)

We also need to show that λ > 0 as long as β2 > α1, and ∂λ
∂Q < 0. Q < Qc ⇒

e−γ Q > e−γ Qc = β1β2−(β1−β2)α2
α1α2

. Thus,

(α1 − α2 + e−γ Q(β1 − β2))
2 + 4β1β2e

−γ Q − (α1 + α2 + e−γ Q(β1 − β2))
2

= 4(β1β2e
−γ Q − α1α2 − α2e

−γ Q(β1 − β2))

= 4(e−γ Qβ1(β2 − α2) + α2(e
−γ Qβ2 − α1))

> e−γ Qβ1(β2 − α2) + α2

(
β1β2 − (β1 − β2)α2

α1α2
β2 − α1

)

= e−γ Qβ1(β2 − α2) + 1

α1
(β1β2(β2 − α2) + α2(β

2
2 − α2

1)) > 0 if β2 > α1.

To verify ∂λ
∂Q < 0, first showing D(Q) = S(Q) − U (Q) < 0, where S(Q) ≡

(α1−α2+e−γ Q(β1−β2))
2+4β1β2e−γ Q andU (Q) ≡ (α1−α2+e−γ Q(β1+β2))

2.
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D(Q) = 4e−γ Qβ2(β1 − e−γ Qβ1 − (α1 − α2))

< 4e−γ Qβ2

(
β1 − β1β2 − (β1 − β2)α2

α1α2
β1 − (α1 − α2)

)

= 4e−γ Q β2

α1α2
(β1α2(α1 − β2) + β2

1 (α2 − β2) + α1α2(α2 − α1)) < 0. (34)

∂λ

∂Q
= 1

4
(S(Q))−

1
2 · ∂S(Q)

∂Q
+ 1

2
γ e−γ Q(β1 − β2)

= −1

2
γ e−γ Q(S(Q))−

1
2 ((α1 − α2 + e−γ Q(β1 − β2))(β1 − β2)

+ 2β1β2 − (β1 − β2)(S(Q))
1
2 )

<
−1

2
γ e−γ Q(S(Q))−

1
2 (e−γ Q(β1 − β2)

2 + 2β1β2 − e−γ Q(β1 − β2)(β1+β2))

= −γ e−γ Q(S(Q))−
1
2 β2((1 − e−γ Q)β1 + e−γ Qβ2) < 0. (35)

Last, we compute the optimal price pD by solving for it from Eq. (8):

E�D − E�S
1 − E�S

2 − 1

γ
(1 − e−γ Q) = K + α1

γ
(ln(ρ) − ln(ρ))

+ β1

γ

(
1

ρ
− 1

ρ

)
− (p − c − β1)Qe−γ Q

− e−γ Q

γ
(β1 − β2) ln(ρ)

− 1

γ

(
1 − e−γ Q

)
≡ T1 − (p − c)Qe−γ Q

(36)

E�S
1 + E�S

2 = (p − c)
2

γ
(1 − e−γ Q) − 2K − (α1 + α2)

1

γ
ln(ρ)

− (β1 + β2)
1

γ

(
1

ρ
− e−γ Q

)
≡ (p−c)

2

γ
(1 − e−γ Q) − T 2 (37)

G(t − p)2(Qe−γ Q) + 2G(t − p)

(
E�D − E�S

1 − E�S
2 − 1

γ
(1 − e−γ Q)

)

+ E�S
1 + E�S

2 = 0. (38)

Let t = t − c − μ + δ,

(
t − (p − c)

2δ

)2

(Qe−γ Q) + (t − (p − c))

δ
(T1 − (p − c)Qe−γ Q)

+ (p − c)
2

γ
(1 − e−γ Q) − T2 = 0. (39)
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pD = c + −B + √
B2 − 4AC

2A
, where A = Qe−γ Q

(
1

4δ2
+ 1

δ

)
,

B = 2

γ
(1 − e−γ Q) − 2t

δ
Qe−γ Q − T1

δ
,

and C = t2

4δ2
Qe−γ Q + t

δ
T1 − T2. (40)

As Q increases, T1 increases while T2 decreases. Thus, both A and C increase, and B
decreases. As a result, pD decreases in Q.

Appendix C: Proof of Proposition 2

We can use Fig. 1 to construct the derivative as the sum of three integrals:

∂E�D(qD
1 , qD

2 |p)
∂p

=
∫ Q

E1=0

∫ Q−E1

E2=0
(E1 + E2)dF2(E2)dF1(E1)

+
∫ Q

E1=0

∫ ∞

E2=Q−E1

QdF2(E2)dF1(E1)

+
∫ ∞

E1=Q

∫ ∞

E2=0
QdF2(E2)dF1(E1) (41)

∂E�D(qD
1 , qD

2 |p)
∂p

=
∫ Q

E1=0
E1F2(Q − E1)dF1(E1)

+
∫ Q

E1=0

∫ Q−E1

E2=0
E2dF2(E2)dF1(E1)

+ Q
∫ Q

E1=0
F2(Q − E1)dF1(E1) + QF1(Q) (42)

∂E�D(qD
1 , qD

2 |p)
∂p

=
∫ Q

E1=0

(
E1F2(Q − E1) + QF2(Q − E1)

+
∫ Q−E1

E2=0
E2dF2(E2)

)
dF1(E1) + Q(1 − F1(Q)) (43)

∂E�D(qD
1 , qD

2 |p)
∂p

=
∫ Q

E1=0

(
E1F2(Q−E1)+QF2(Q−E1)+(Q−E1)F2(Q−E1)

−
∫ Q−E1

E2=0
F2(E2)dE2

)
dF1(E1) + Q − QF1(Q) (44)

∂E�D(qD
1 , qD

2 |p)
∂p

= Q − QF1(Q) + QF1(Q)

−
∫ Q

E1=0

(∫ Q−E1

E2=0
F2(E2)dE2

)
dF1(E1). (45)
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Using integration by parts and Leibniz’ rule on the double integral leads to

= Q −
(
F1(E1)

∫ Q−E1

E2=0
F2(E2)dE2

) ∣∣∣∣
Q

E1=0
+

∫ Q

E1=0
F1(E1)F2(Q − E1)dE1

(46)

= Q −
∫ Q

E1=0
F1(E1)F2(Q − E1)dE1. (47)

Also,
∂2E�D(qD

1 ,qD
2 |p)

∂p2
= 0. We can write down the first-order condition on the

optimal price:

∂E�D(qD
1 , qD

2 , p)

∂p
= 2G(t − p) · (−g(t − p)) · E�D(qD

1 , qD
2 |p)

+ G2(t − p) · ∂E�D(qD
1 , qD

2 |p)
∂p

+ (1−2G(t− p)) · (−g(t− p)) · (E�S
1 (q

S
1 |p)+E�S

2 (q
S
2 |p))

+ G(t − p) · G(t − p) ·
(

∂E�S
1 (q

S
1 |p)

∂p
+ ∂E�S

2 (q
S
2 |p)

∂p

)

(48)
∂E�D(qD

1 , qD
2 , p)

∂p
= −2G(t − p) · g(t − p) · E�D(qD

1 , qD
2 |p)

+ G2(t − p) ·
(∫ Q

E1=0
(1 − F1(E1) · F2(Q − E1))dE1

)

+ (2G(t − p) − 1) · g(t − p) · (E�S
1 (q

S
1 |p) + E�S

2 (q
S
2 |p))

+ G(t − p) · G(t − p) ·
( ∫ Q

E1=0
F1(E1)dE1

+
∫ Q

E2=0
F2(E2)dE2

)
= 0, (49)

which gives the value of the optimal price pD . The second-order sufficient condition
for pD is:

∂2E�D(qD
1 , qD

2 , p)]
∂p2

= 2[g′
(t − p) · G(t − p) + g2(t − p)] · E�D(qD

1 , qD
2 |p)

− 2g(t − p) · G(t − p) · ∂E�D(qD
1 , qD

2 |p)
∂p

− [(g′
(t − p) · (2G(t − p) − 1) + 2g2(t − p)] · (E�S

1 (q
S
1 |p) + E�S

2 (q
S
2 |p))
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+ [g(t − p) · (2G(t − p) − 1)] ·
(

∂E�S
1 (q

S
1 |p)

∂p
+ ∂E�S

2 (q
S
2 |p)

∂p

)

+ [−g(t − p) · (1 − G(t − p)) + G(t − p) · g(t − p)] ·
(

∂E�S
1 (qS

1 |p)
∂p

+ ∂E�S
2 (qS

2 |p)
∂p

)
.

(50)

Thus, pD must satisfy the second-order condition:

2[g′
(t − pD) · G(t − pD) + g2(t − pD)] · E�D(qD

1 , qD
2 |pD)

− 2g(t − pD) · G(t − pD) ·
(∫ Q

E1=0
(1 − F1(E1) · F2(Q − E1))dE1

)

−
[
(g

′
(t − pD) · (2G(t − pD) − 1) + 2g2(t − pD)

]
·
(
E�S

1 (qS
1 |pD) + E�S

2 (qS
2 |pD)

)

+
[
4g(t − pD) · G(t − pD) − 2g(t − pD)

]
·
(∫ Q

E1=0
F1(E1)dE1 +

∫ Q

E2=0
F2(E2)dE2

)
< 0.

(51)

Additionally, we need to impose the following conditions to ensure the expected profit
of the storage operator is non-negative:

E�D
(
qD
1 , qD

2 |pD
)

, E�S
1

(
qS
1 |pD

)
, and E�S

2

(
qS
2 |pD

)
≥ 0. (52)
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