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Abstract This paper presents a software tool that has been developed for optimal con-
figuration of hybrid power systems. These systems can be either interconnected to the
main power grid or operated autonomously, and may contain a variety of components,
including dispatchable generators (e.g., diesel generators, microturbines, biogas gen-
erators), non-dispatchable renewable energy technologies (e.g., wind turbines, photo-
voltaics), batteries, converters and dump loads. A software tool that optimizes such
systems has been developed in MATLAB, using a combination of genetic algorithms
and tabu search. The optimal configuration is expressed in terms of minimum cost
of electricity (in e/kWh), taking into account operational and component size con-
straints. The needed input includes weather data (e.g., solar, wind, and temperature
time-series), load data, system components data, and general parameters (e.g., project
lifetime, discount rate). As a case study, in this paper the tool is used for evaluating
an autonomous hybrid power system that includes renewable energy technologies in
Chania region, Crete. Moreover, the performance of the tool is investigated for seven
additional scenarios of the case study, via sensitivity analysis, studying the effect on
the results of the uncertainty of weather and cost data.
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1 Introduction

Hybrid power systems use multiple generation sources and can incorporate different
components such as production, storage, power conditioning, demand-side manage-
ment and system control to supply power [1]. These systems can be used in small
isolated communities, where renewable energy sources (RES) are often present. Since
renewable technologies such as wind turbines (WTs) and photovoltaics (PVs) are
dependent on a resource that is not dispatchable, there is an impact on the reliabil-
ity of the electric energy of the system, which has to be considered [2]. The basic
ways to solve this problem is either grid expansion, or installation of conventional
generators (such as diesel generators) and/or use of storage as a type of energy-
balancing medium. However, in isolated or remote areas, grid expansion can be too
expensive [1].

The analysis and design of hybrid power systems can be challenging, due to the
large number of design options and the uncertainty in key parameters, such as load
evolution and future fuel price. The capacity optimization is even more challenging
for the case of autonomous systems, which are not connected to the main grid, because
these systems have to satisfy their load using only their own resources. Renewable
power sources add further complexity because their power output may be intermittent,
seasonal, and non dispatchable, and the availability of renewable resources may be
uncertain. For these reasons, this paper is focused on the analysis of hybrid autonomous
power systems (HAPS) that contain renewable energy technologies.

The problem of optimal HAPS sizing belongs to the category of combinatorial
optimization problems, since the sizes of system’s components, which constitute the
design variables, can only take discrete values. For the solution of this problem, sev-
eral methods have been proposed. From the category of conventional combinatorial
optimization methods, linear programming [3] and dynamic programming [4] have
been used. The use of statistical methods [5] and probability methods [6] has been also
proposed. These methods take into account the uncertainty in many key parameters
of power system’s operation. Artificial intelligence methods have been also applied,
including neural networks [7] and neuro-fuzzy systems [8]. Moreover, this problem
has been solved by heuristic methods [9,10]. All the above conventional methods pro-
vide suboptimal solutions, which are usually combined with increased computational
complexity. The most direct method for solving HAPS sizing problem is the complete
enumeration method that is used by HOMER software [11], however it can be proved
extremely time consuming.

In recent years, new methods have been developed, in order to solve many types
of complex optimization problems, particularly those of combinatorial nature. These
methods are called metaheuristics and include genetic algorithms (GAs), simulated
annealing (SA), tabu search (TS), and particle swarm optimization (PSO) among oth-
ers. Metaheuristics orchestrate an interaction between local improvement procedures
and higher level strategies to create a process capable of escaping from local optima
and performing a robust search of a solution space. From the area of metaheuristics,
GAs [12–14], SA [15], TS [16], PSO [17], as well as hybrid methods [18] have been
proposed for the solution of optimal HAPS sizing. Moreover, HOGA software [19]
uses a GA in order to minimize the net present cost of a hybrid power system.
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A software tool for capacity optimization 35

This paper presents a software tool that was developed in MATLAB for capacity
optimization of hybrid power systems, by using a combination of GAs and TS. The
capacity optimization of system components is based on the minimization of the
levelized cost of energy, subject to operational and component size constraints. The
effectiveness of the software tool is investigated in the sizing of a small autonomous
power system, located in Chania, Greece. The design variables of the case study
system include the size of its available components, i.e., WTs, PVs, diesel generator,
batteries and converter. Moreover, the performance of the software tool is investigated
for seven alternative scenarios of the case study system, which analyze the effects on
the optimization results of a large number of key and uncertain parameters that include
weather and cost data.

The paper is organized as follows: Sect. 2 formulates the HAPS optimal sizing
problem and Sect. 3 describes the capabilities of the developed software tool, as well
as the modelling of HAPS components. Section 4 presents the main characteristics
of the proposed GA and TS metaheuristics for the solution of HAPS sizing problem.
Section 5 describes the examined test system and discusses the results provided by
the software tool. Section 6 presents the results of sensitivity analysis and Sect. 7
concludes the paper.

2 Problem formulation

This paper deals with HAPS optimal sizing problem that belongs to the category of
non-linear combinatorial optimization problems. This optimization problem has to
fulfil the objective defined by (1) subject to the constraints (3–6). In particular, the
problem is formulated as follows.

2.1 Objective function

Minimization of system’s cost of electricity, COE:

min(COE) (1)

The COE (e/kWh) of HAPS is calculated as follows:

COE = Cantot

Eanloadserved
(2)

whereCantot (e) is the total annualized cost and Eanloadserved (kWh) is the total annual
electric energy production that serves load, i.e., Eanloadserved takes into account the
amount of load demand that cannot be satisfied, which means that in case of unmet
load, Eanloadserved is smaller than the total annual electric energy demand.Cantot takes
into account the annualized capital costs, the annualized replacement costs, the annual
operation and maintenance (O&M) costs, and the annual fuel costs (if applicable) of
system’s components.
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2.2 Constraints

1. Unmet load constraint:

fU L =

year∑

�t
U L�t · �t

Eanload
≤ fU L max (3)

where fU L is the annual unmet load fraction,UL�t (kW) is the unmet load during the
simulation time step�t (h), Eanload (kWh) is the total annual electric energy demand,
and fU L max is the maximum allowable annual unmet load fraction. In this paper, the
value of fU L max has been taken equal to 5 %.

2. Minimum RES penetration constraint:

fRES = EanRES

Eantot
≥ fRESmin where 0 ≤ fRESmin ≤ 1 (4)

where fRES is the RES penetration of the system, EanRES (kWh) is the total annual
renewable energy production, Eantot (kWh) is the total annual energy production of
the system, and fRESmin is the minimum allowable RES penetration. In this paper,
the value of fRESmin has been taken equal to 80%. As a result, the energy production
of studied HAPS is based mainly on RES technologies.

3. Components’ size constraints:

si zecomp ≥ 0 ∀ comp (5)

si zecomp ≤ si zecompmax ∀ comp (6)

where si zecomp is the size of system’s component comp, and si zecompmax is the
maximum allowable size of comp. The values of si zecompmax for the studied system
are shown in Table 1.

3 Capabilities of the developed software tool and modelling of HAPS
components

In order to model and simulate hybrid power systems, a software tool has been devel-
oped inMATLAB.Themain graphical user interface of this tool is shown inFig. 1. This
tool can be used either for interconnected or for autonomous power systems that may
contain a variety of components, including dispatchable generators (e.g., diesel gener-
ators,microturbines, biogas generators), non-dispatchable renewable energy technolo-
gies (e.g., WTs, PVs, run-of-river small hydros), batteries, converters, and a variety of
loads (AC, DC, thermal, dump). The capacity optimization for any examined system
is implemented by a hybrid GA-TS methodology, which will be presented in the next
Section.
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Fig. 1 Interface of the proposed software tool

In our specific case, the examined hybrid power system is considered to be
autonomous (HAPS) that has to serve electrical load, and it can contain the following
five component types:

1. WTs.
2. Polycrystalline silicon (poly-Si) PVs.
3. Generator with diesel fuel.
4. Lead-acid batteries.
5. Converter.

The modelling of HAPS components is implemented as follows. The WT modelling
is implemented using a power curve profile that is based on manufacturer’s data. The
selected WT has the following characteristics: rated power 10 kW AC, cut-in speed
(Vin) 3m/s, and cut-out speed (Vout ) 24m/s. For theWT power curve fitting, a seventh
order polynomial expression has been selected, as it provides accurate correlation with
real data, while it presents exclusively positive values for the generated power in the
interval [Vin Vout ].

In PV modelling, the output of the PV array PPV (in kW) is calculated from [20]:

PPV = fPV · PSTC · GA

GSTC
· (1 + (TC − TSTC ) · CT ) (7)

where fPV is the PV derating factor, PSTC is the nominal PV array power in kWp

under standard test conditions (STC), GA is the global solar radiation incident on the
PV array in kW/m2, GSTC is the solar radiation under STC (1 kW/m2), TC is the
temperature of the PV cells, TSTC is the STC temperature (25 ◦C), and CT is the PV
temperature coefficient (−0.004/◦C for poly-Si). The PV derating factor is a scaling
factor applied to the PV array output to account for losses, such as dust cover, aging
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Fig. 2 SFC for the considered diesel generator

and unreliability of the PV array, and is considered to be equal to 0.80. TC can be
estimated from the ambient temperature Ta (in ◦C) and the global solar radiation on a
horizontal plane G (in kW/m2) using (8) [21]:

TC = Ta + (NOCT − 20)

0.8
· G (8)

where NOCT is the normal operating cell temperature, which obtains the value of
45 ◦C.

The diesel generator fuel consumption F (L/h) is assumed to be a quadratic function
of its electrical power output:

F = 0.0952 · P2

Prated
+ 0.163 · P + 0.0622 · Prated (9)

where Prated is generator’s rated power and P is generator’s output power. To avoid
engine damage, constant-speed diesel generators typically do not operate below a
minimum load ratio of their rated capacity. In this paper, this ratio is set equal to
30%. Figure 2 shows the specific fuel consumprion (SFC, in L/kWh) for the spe-
cific generator. As it can been seen, SFC remains constant when diesel genera-
tor operates above 60% of its rated capacity. Lead-acid batteries have been mod-
elled assuming maximum charge and discharge current equal to C/5 [22]. Finally,
converter efficiency has been taken equal to 90% for both directions (inverter and
rectifier).

The simulation process examines a particular system configuration, in which com-
ponents sizes satisfy constraints (5) and (6). Then, for every time step�t , the available
renewable power (from WTs and PVs) is calculated and then is compared with the
load. In case of excess, the surplus renewable energy is charging the batteries, if they
are not fully charged. If renewable power sources are not capable to fully serve the
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40 Y. A. Katsigiannis et al.

load, the remaining electric load has to be supplied by diesel generator and/or bat-
teries. From all possible combinations, it is selected the one that supplies the load at
the least cost. When the whole year’s simulation has been completed, it is determined
whether the system is feasible, i.e., it is checked if it satisfies the constraints (3) and
(4). After the end of the simulation, the COE is calculated by taking into account:
(1) the annual results of the simulation, (2) the capital, replacement, O&M and fuel
cost (if applicable) of each component, (3) the components’ lifetime, (4) the project
lifetime, and (5) the discount rate.

An additional aspect of system operation arises, which is whether (and how) the
diesel generator should charge the battery bank. Two common control strategies that
can be used are load following (LF) strategy and cycle charging (CC) strategy. It has
been found [23] that over awide range of conditions, the better of these two strategies is
virtually as cost-effective as an ideal predictive strategy, which assumes the existence
of perfect knowledge in future load and wind conditions. In the LF strategy, batteries
are not charged at all with diesel-generated energy; the diesel operating point is set
to match the instantaneous required load. LF strategy tends to be optimal in systems
with a lot of renewable power, when the renewable power output sometimes exceeds
the load. In the CC strategy, whenever the diesel generator needs to operate to serve
the primary load, it operates at full output power. A set point state of charge, SOCa ,
has also to be set in this strategy. The charging of the battery by the diesel generator
will not stop until it reaches the specified SOCa . In this paper, three alternative values
of SOCa have been considered: 80, 90 and 100%, so the total number of examined
dispatch strategies is 4. CC strategy tends to be optimal in systems with little or no
renewable power.

4 Proposed optimization methodology

For the optimization of a considered power system, a hybrid GA-TS methodology is
used. In this Section, the main characteristics of GAs and TS are described, as well
as the way that they are combined together in order to search for the optimal hybrid
power system configuration.

4.1 GA implementation

GAs mimic natural evolutionary principles to constitute search and optimization pro-
cedures, and can be classified in two categories:

1. Binary GAs: they borrow their working principle directly from natural genetics, as
the variables are represented by bits of zeros and ones. Binary GAs are preferred
when the problem consists of discrete variables.

2. Continuous GAs: although they present the same working principle with binary
GAs, the variables here are represented by floating-point numbers over whatever
range is deemed appropriate.ContinuousGAs are ideally suited to handle problems
with a continuous search space.
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The first step of a GA is the random generation of the initial population. Then a GA
follows an iterated procedure that consists of the following steps:

1. Evaluation of objective function.
2. Reproduction of population, which makes duplicates of good solutions and elim-

inates bad solutions.
3. Crossover, in which existing population members (parents) are mated in order to

produce new population members (offspring).
4. Mutation, which randomly changes the values at a small portion of population

members.

The considered sizes of each component can take only discrete values, so the binary
GA is selected. In the proposed GA, each chromosome consists of six genes, of which
the first five genes represent the HAPS component sizes (WT, PV, diesel generator,
batteries and converter), while the sixth gene refers to adopted dispatch strategy. For
the constraint handling, the penalty function approach is adopted, in which an exterior
penalty term that penalizes infeasible solutions is used. Since different constraints
may take different orders of magnitude, prior to the calculation of the overall penalty
function all constraints are normalized.

4.2 TS implementation

TS is a powerful optimization procedure that has been successfully applied to a number
of combinatorial problems. It uses an operation called move to define the neighbour-
hood of any given solution. TS can be viewed as an iterative technique that explores a
set of problem solutions by repeatedly making moves from one solution to another, in
the manner of a greatest-descent algorithm. TS is characterized by the ability to escape
from local optima and the occurrence of cycles, which usually cause simple descent
algorithms to terminate. This goal is obtained by using a finite-size list of forbidden
moves, called tabu moves, derived from the recent history of the search. The basic
underlying assumption is that the suboptimal points, where the simple greatest-descent
algorithm stops, can be better starting points with respect to random restarts, provided
that care is taken so that the local minima do not become attractors of the dynamics
included by the algorithm, and that limit cycles do not arise [24].

The two main components of the TS are the tabu list restrictions and the aspiration
criteria of the solution associated with these restrictions. The tabu list restrictions
could be stated directly as a given change of moves or indirectly as a set of logical
relationships or linear inequalities. The tabu list is also referred to as the adaptive
memory in a sense that some attributes are temporarily fixed as long as they are in
the tabu list. Tabu lists are managed by recording moves in the order in which they
are made. If a new attribute enters into the tabu list, the oldest one is released from
the tabu list. The proper choice of the tabu list size is critical to the success of the
algorithm and it depends on the specific problem.

Aspiration criteria can override tabu restrictions. That is, if a certain move is forbid-
den, the aspiration criteria, when satisfied, can reactivate this move. The appropriate
use of such criteria can be very important for enabling a TS method to achieve its
best performance levels. The most widely used aspiration criterion removes a tabu
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classification from a trial move when a move yields a solution better than the best
obtained so far. However, other aspiration criteria have been also proposed [24].

In the proposed TS methodology for HAPS optimal sizing, the neighbourhood of a
current solution contains all configurations of similar component sizes, as well as the
alternative dispatch strategies options.More specifically, amove is defined by selecting
each time the next larger size (if permitted) and the previous smaller size (if permitted)
of a component size, while for the dispatch strategy a move is defined by examining
the three remaining options of the current strategy. Since the HAPS contains five
components (Sect. 3), at maximum 10 configurations with different component sizes
are considered that are added to the three remaining dispatch strategies, consequently
the maximum number of configurations that belong to the neighbourhood of current
solution is 13.

The TS algorithm is composed of the following steps:

1. Determination of the tabu list size.
2. Generation of an initial feasible solution, and calculation of its COE.
3. Setting of the global best solution equal to the initial solution (current solution).
4. Finding of a set of feasible trial solutions that are neighbours to the current solution

and sorting of them in ascending order of COE.
5. Checking if the selected move of the first trial solution belongs to the tabu list. If it

belongs and the aspiration criterion (Step 6) is not satisfied, a selection of the next
solution of the sorted set of trial solutions has to be done. Otherwise, the solution
is accepted (current solution) and the update of the tabu list is performed by adding
in it the chosen move, and by removing from it the oldest move, with respect to
tabu list size.

6. Examination of the aspiration criterion. In the proposed algorithm a move aspi-
ration is satisfied if the move yields a solution better than the best obtained so
far.

7. Update of the global best solution if the best acceptable solution found from the
trial set has a lower COE value.

8. Repeat Steps 4–7. Stop the procedure if the termination criterion is satisfied. In
this paper the search is terminated if a maximum predefined allowable number of
iterations is reached.

4.3 Hybrid GA-TS methodology

Hybrid optimization methods combine the advantages of individual optimization
methods in order to find the optimal solution in a fast and effective manner. GAs
are stochastic methods that excel at gravitating towards the global optimum. How-
ever, these methods are not especially fast at finding the optimum in a given solution
region. For this reason, GAs are often combined with local search. More specifically,
the GAs find the region of the optimum, and then the local optimizer takes over to
find the optimum. During the local search procedure, the quality of the initial solu-
tion is essential for its successful implementation. Then the local search method is
proceeding iteratively from one solution to another until a chosen termination crite-
rion is satisfied. In this paper, the combination of GAs with TS is implemented. More
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specifically, GA provides the initial solution. In order to improve the quality of results,
the conventional local search method has been replaced by TS. TS can be seen as an
extension of local search, as its inherent adaptive memory ensures that the search will
not return periodically and stack to the same solutions.

5 Results and discussion

5.1 Case study system

In the considered HAPS, the project lifetime and the discount rate are assumed to
be 20 years and 5%, respectively. The simulation time step �t is taken equal to 10
min (1/6 h). The annual wind, solar and ambient temperature data needed for the
estimation of WT and PV performance refer to measurements for the mountainous
region of Keramia (altitude 500 m), in Chania, Crete, Greece. The annual HAPS peak
load has been considered equal to 30 kW, whereas the necessary HAPS load profile
was computed by downscaling the actual annual load profile of Crete Island, which is
the largest autonomous power system of Greece, with 600 MW peak load and 17%
min/max annual load. An additional noise has been added in the load profile, in order
to reduce the min/max annual load ratio from 17% (Crete power system) to 12%
(HAPS). It should be noted that the proposed methodology is general and it can be
also applied to different geographical locations using the following data: (1) wind,
solar, ambient temperature and load time-series, (2) the longitude, latitude and time
zone of the region (needed for the calculation of the global solar radiation incident on
the PV array GA), and (3) the altitude of the region (needed for the correction of the
WT output due to atmospheric pressure variation).

The WT hub height has been considered 30 m, and the PVs do not include tracking
system. The cost, lifetime, and size characteristics for each component are presented
in Table 1. For each component, the minimum size is equal to zero. Moreover, with the
exception of diesel generator, all components have constant increment of their size,
as Table 1 shows. The considered sizes for the diesel generator are 0, 5, 8, 10, 15, 20,
25, and 30 kW. For the optimal design problem of the HAPS of Table 1, the complete
enumeration method requires:

8︸︷︷︸
WTs

· 31︸︷︷︸
PVs

· 8︸︷︷︸
Dsl

· 16︸︷︷︸
Bat.

· 31︸︷︷︸
Conv.

· 4︸︷︷︸
Disp.

= 3,936,256 (10)

i.e., approximately 4 million evaluations in order to find the optimal COE; in (10)
Disp. denotes the number of dispatch strategies. The computational time for each
COE evaluation is approximately 1.4 s. Consequently, the evaluations of the complete
enumeration method require more than 2 months. That is why it is essential to develop
an alternative optimization method (hybrid GA-TS methodology) in order to solve the
HAPS optimal design problem in a fast and effective way.

5.2 Hybrid GA-TS methodology results

The optimum configuration parameters of the adopted GA are: population size equal
to 50, number of generations equal to 15, Gray coding, tournament selection, uniform
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Fig. 3 GA convergence for the case study system

crossover, and 0.01 mutation rate [12], which leads to 800 performed evaluations of
objective function (COE). Regarding TS, it has been found that the optimal tabu list
size is six, as smaller tabu list sizes stick in a local optimum, while larger tabu list
sizes do not search thoroughly the optimal solution neighborhood. The number of
TS iterations was kept equal to 10 (up to 130 COE evaluations), as it was proved to
be adequate for all considered scenarios (case study system and sensitivity analysis
scenarios). As a result, the maximum total number of performed COE evaluations is
930, which is a very small portion compared to 4 million evaluations that required
by complete enumeration. The required time for the hybrid GA-TS methodology is
approximately 20 min.

The GA convergence for the case study system is shown in Fig. 3. For the specific
scenario, TS does not improve the above solution, i.e., GA solution represents optimal
solution. The obtained configuration consists of 3WTs, 15 kWp PVs, diesel generator
of 5 kW, 48 batteries, converter of 23 kW,LFdispatch strategy, and the resultingCOE is
0.1756 e/kWh. Regarding the share of annual energy production among components
of the above configuration, non-dispatchable renewable energy technologies (WTs
and PVs) produce directly 38%, batteries produce 44%, and diesel generator produces
18%.

In order to evaluate the proposed software tool, a similar case study was imple-
mented in HOMER software. The search space was limited around the optimal solu-
tion found by the hybrid GA-TS methodology; otherwise the complete enumeration
method that is used by HOMER would make the whole process prohibitive in terms
of computational time. The study of the results, which are listed in Table 2, shows
that HOMER computes a COE value that is approximately 10% higher. The main
differences between the two configurations of Table 2 are that in HOMER the diesel
generator has larger size and produces more electricity, while the contribution of bat-
teries is restricted, which explains the lower size of the converter. These differences
can be explainedmainly from the different batteries models between the two softwares
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Table 2 Optimal configuration comparison between the proposed tool and HOMER

Software tool WTs PVs (kWp) Dsl (kW) Batteries Converter
(kW)

Dispatch
strategy

COE(e/kWh)

Proposed software 3 15 5 48 23 LF 0.1756

HOMER 3 18 10 48 17 LF 0.195

(HOMER uses a more detailed model), as well as from the different diesel genera-
tor modelling (HOMER assumes linear function of fuel consumption, whereas the
proposed tool considers a quadratic function).

6 Sensitivity analysis

The uncertainty in many HAPS variables over which the designer has no control
makes essential the need for sensitivity analysis. The uncertain parameters may con-
tain weather data, components efficiency and/or cost data. In this section, seven alter-
native scenarios have been developed and analysed. These scenarios are based on the
following modifications of the case study system of Sect. 5.1 (initial scenario):

1. 10 % increase of wind speed.
2. 10 % decrease of wind speed.
3. 5 % increase of solar radiation.
4. 5 % decrease of solar radiation.
5. Installation of a 2-axis PV tracking system (additional PV capital and replacement

cost: 800 e/kWp, additional PV annual O&M cost: 25e/kWp, annual PV energy
production is increased over 31%).

6. Increase of diesel fuel price from 1.5 to 2.0 e/L.
7. 50 % capital and replacement cost reduction of renewable energy technologies

(WTs and PVs).

The first four scenarios consider modified wind and solar data series compared to
the initial scenario. Scenario 5 is a combination of increased efficiency and increased
cost for the PVs. In scenario 6, the effect of increased diesel fuel cost is examined.
Scenario 7 considers a reduction of capital and replacement cost of renewable energy
technologies that may be attributed either to technology improvement and economies
of scale or to a modification in the regulatory regime that promotes the installation
of RES technologies by offering incentives that reduce their capital and replacement
cost.

Table 3 presents the minimum COE values, their corresponding optimal configu-
rations, and the optimization methodology from which the optimal configuration was
obtained. As it can be seen, in the majority of cases (6 out of 8) the optimal solution
has been taken directly GA. However, the small additional computational burden of
TS, as well as the provided assurance that the obtained solution is optimal amongst
its neighbourhood, makes its utilization essential.
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Table 3 Optimal configuration for sensitivity analysis scenarios

Case WTs PVs
(kWp)

Dsl (kW) Batteries Converter
(kW)

Dispatch
strategy

COE
(e/kWh)

Method

Initial 3 15 5 48 23 LF 0.1756 GA

Wind+10 % 2 14 5 60 21 LF 0.1580 GA+TS

Wind−10 % 3 17 5 84 24 LF 0.1943 GA

Solar+5 % 3 18 0 96 21 LF 0.1752 GA

Solar−5 % 3 18 0 96 24 LF 0.1775 GA

2-axis PV 4 8 8 72 23 LF 0.2334 GA

Diesel 2e/L 3 20 0 84 25 LF 0.1760 GA

RES −50 % 4 21 0 60 24 LF 0.1383 GA+TS

The study of Table 3 draws the following main conclusions for the considered
scenarios:

1. The wind potential (scenarios 1 & 2) affects more the value of COE in comparison
with the solar potential (scenarios 3 & 4).

2. The adoption of a 2-axis PV tracking system (scenario 5) reduces the installed
PV capacity (due to higher PV efficiency) and produces significantly higher COE
values. As a result, the installation of such a system is not advisable.

3. In four scenarios the optimal solution contains no diesel generators. In themajority
of these cases, the number of batteries is increased.

4. The configurations in all examined scenarios contain 2-4 WTs, adequate capacity
of PVs (in case of fixed slope PV panels), large number of batteries, converters of
similar sizes, and adoption of LF dispatch strategy.

7 Conclusions

This paper dealt with the presentation of a software tool that was implemented in
MATLAB, in order to evaluate optimal configuration of hybrid power systems that
contain renewable energy technologies. In this specific study, small autonomous power
systems were studied, as their limitations make the task of optimal sizing even more
challenging. Apart from the base case study system, a large number of alternative
scenarios was developed through a detailed sensitivity analysis study, in order to
investigate the uncertainty in key input parameters.

In all examined small autonomous hybrid power system configurations, the target
was their economic and reliable operation throughout the year, with high penetration
of renewable technologies. The analysis of results showed the significant contribution
of WTs, PVs and batteries. The share of conventional diesel generators proved to be
negligible or small in all cases.

Regarding the developed software tool, it was proved that it presents adequate
capabilities for the design of hybrid power systems. However, future versions can
also include a number of additional characteristics, such as additional types of loads
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(hydrogen loads, deferrable loads), additional electricity storage technologies (fly-
wheels, supercapacitors, etc), additional system components (electrolyzer, hydrogen
tank, reservoir hydros, etc), and capability of handling multi-objective optimization
problems (i.e., problems that include financial and environmental criteria).
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