
Energy Syst (2015) 6:43–61
DOI 10.1007/s12667-013-0103-3

ORIGINAL PAPER

Benchmarking time series based forecasting models
for electricity balancing market prices

Gro Klæboe · Anders Lund Eriksrud ·
Stein-Erik Fleten

Received: 6 September 2013 / Accepted: 18 November 2013 / Published online: 7 December 2013
© Springer-Verlag Berlin Heidelberg 2013

Abstract In the trade-off between bidding in the day-ahead electricity market and the
real time balancing market, producers need good forecasts for balancing market prices
to make informed decisions. A range of earlier published models for forecasting of
balancing market prices, including a few extensions, is benchmarked. The models are
benchmarked both for 1 h-ahead and day-ahead forecast, and both point and interval
forecasts are compared. None of the benchmarked models produce informative day-
ahead point forecasts, suggesting that information available before the closing of the
day-ahead market is efficiently reflected in the day-ahead market price rather than
the balancing market price. Evaluation of the interval forecasts reveals that models
without balancing state information overestimate variance, making them unsuitable
for scenario generation.
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1 Introduction

According to the European Wind Energy Association [8], solar PV and wind power
accounted for the two largest share of new installed capacity in the EU in 2012.
The increased penetration of intermittent renewable sources in the power system will
increase the need for and cost of balancing reserves in the power system [11]. For
flexible generators, higher prices and volumes in the balancing market offer new
opportunities for profit. This raises the issue of how the producers should allocate
their capacity between the day-ahead market and the balancing market. The question
is analyzed by Glachant and Saguan [10] who study equilibrium relationships between
the day-ahead and the balancing market, and by Boomsma et al. [1] who constructed
a stochastic programming model, with scenarios for day-ahead and balancing market
prices.

In order to formulate good bidding strategies that take all the subsequent physical
markets into account, the market participants need good price forecast so that the
trade-off between sales in the day-ahead market and sales in the shorter-term markets
can be properly evaluated. Fleten and Pettersen [9] and Boomsma et al. [1] formulate
such bidding models from the retailer’s and producer’s perspective, respectively. A
challenge in this respect is to build price forecasts for the balancing market that deliver
useful information before the closure of the day-ahead market, i.e. 12–36 h ahead. The
balancing market is designed to take care of unforseen events or variations in the power
system, and if such events are known before the closing of the day-ahead market, they
are no longer unforseen and therefore reflected in the day-ahead market price rather
than in the balancing market price. The major question is if it is possible at all to create
informative forecasts for such a market?

Whereas the papers on modelling day-ahead electricity markets are numerous, the
modelling of balancing market prices has received less attention. Weron and Misiorek
[21] offer a good survey of day-ahead forecast methods and benchmark a range of
the time series methods against each other. Other articles that benchmarks day-ahead
forecasting methods include the work of Conejo et al. [4], who compare three different
time series models, neural network and wavelet models for the PJM Interconnection
day-ahead price, and that of Nogales et al. [16], who compare two different time series
models for the Spanish and the Californian day-ahead market prices. When it comes
to balancing market prices, no survey exists to our knowledge. However, case studies
exist, including Skytte [19], Fleten and Pettersen [9], Olsson and Söder [17], Jaehn-
ert et al. [12], Brolin and Söder [2] and Boomsma et al. [1]—all of them from the
Nordic market. The contribution of this article is a systematic review and benchmark-
ing of time series based methods for balancing market price forecasting. Emphasis
is laid on the day-ahead horizon, but both 1 h ahead and day-ahead forecasts are
benchmarked.

Since European balancing markets are operated by the national transmission sys-
tem operators (TSOs), the balancing markets have more country specific rules than
the day-ahead wholesale electricity exchanges. This study will focus on only one
balancing market—the Nord Pool price zone NO2 in Norway. Price models for
this area have previously been built by Jaehnert et al. Skytte [19] and Jaehnert
et al. [12].
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Benchmarking balancing market prices 45

2 The role of the balancing market

In most deregulated markets, electricity is traded numerous times before actual pro-
duction and consumption takes place. There exist non-physical forward- and future
markets used by producers and retailers for hedging. The day-ahead market (also
referred to as the spot market) is normally the largest market for physical trade, where
producers and retailers commit to a physical injection or withdrawal in the grid the
following day. However, as Glachant and Saguan [10] correctly point out, the day-
ahead market is in fact also a forward market, since the price the producers or retailers
in the last instance is exposed to, are the real-time balancing market price.

The electricity market is very special in the sense that demand and supply must
be in equilibrium in at every moment. Unlike other markets, failure of supply or
unusual high demand will not only result in a share of customers not being served,
but may, if not well perceived and proper measures taken, lead to deterioration of
the whole power system, and in the worst case, to a black out. With a black out, no
customer will be served, and it may have large adverse effects on production and
transmission equipment. To ensure safe operation of the electricity grid, a third party
is given monopoly on trading in the last minutes (usually 60 or more) before real
time operation with the mandate of ensuring instantaneous balance between demand
and supply. In Europe, this third party is usually a national body named transmission
system operator (TSO), whereas in the various US markets the role is given to an
independent system operator (ISO).

The power system has three levels of protection, on various timescales. ENTSO-E
[6] defines these as frequency containment, frequency restoration and replacement
reserves, commonly referred to as primary, secondary and tertiary reserves, respec-
tively. Due to the timescale, only replacement reserves can be traded ex post an event.
Thus, the balancing market in this context is understood as replacement reserve trade
between operator (SO) and the producers.

2.1 Properties of the balancing market

Glachant and Saguan [10] point out that the pricing policy in the balancing market
can follow one of two main philosophies: either the balancing market is seen as a
real time market, within a special institutional framework, or the balancing market
is perceived as a measure of last resort for producers or retailers who fail to fulfill
their commitments, with price mechanisms built in to discourage trading. Depending
on technology mix and the general regulatory environment, the balancing market
implementations usually lie somewhere in between these two extremes. Based on the
work of Rivero et al. [18] and van der Veen et al. [20], we find six properties useful to
describe a specific implementation of a balancing market. These are:

• Settlement granularity: what is the program time unit of the balancing market? Is
it equal to or different from the program time unit of the day-ahead market.

• Remuneration: is the producer paid for reservation of capacity or energy delivered
or both?
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Table 1 Characteristics of the
Norwegian balancing market Settlement granularity: Hourly

Remuneration: Energy only

Pricing scheme: Marginal pricing

Activation: Manual

Singe/dual pricing: Dual

Price cap/floor: Day-ahead price

• Pricing scheme: is the balancing market price set by the marginal cost of the last
activated unit, or by a cost covering scheme?

• Activation: are replace reserves activated manually or automatically?
• Single vs dual pricing: is the balancing market price paid to all producers who

deviate from their day-ahead market scheduling in a beneficial direction, or only to
those who have actively entered the balancing market as suppliers?

• Price caps/floors: is the balancing market price floored by the spot market price for
upward regulation, and capped by it for downward regulation, or can the balancing
market price take any value?

In the Nordic countries, balancing market prices are hourly; they have the same pro-
gram time unit as the day-ahead market. This is in contrast to the German system, where
the balancing market is settled and prices defined for every 15 min [15]. Remuneration
and pricing schemes vary quite a lot throughout Europe; the reader is referred to [18]
for details. In the Norwegian market, producers are remunerated for the utilization of
balancing power, and not for the reservation of capacity. 1 Norwegian producers are
paid for their balancing power based on marginal price for the most costly activated bid
that hour—in contrast to, for instance, France, Germany and Italy where the producer
is paid-as-bid [18]. When it comes to activation, the Nordic system is somewhat special
in the sense that tertiary reserves are activated manually, implying a certain inertia from
imbalance occurs until the activation of reserves takes place. Also, the Nordic system
has a dual imbalance pricing scheme, which means that producers have to state their
intention of participating in the balancing market to receive the balancing market price.
Producers who just happen to be in imbalance in the opposite direction of the system
(and thus passively helping the system), will not benefit from balancing market prices,
like they would in a single pricing regime such as Spain and Greece [20]. Furthermore,
in the Norwegian balancing market, there are price caps and floors stating that balanc-
ing prices can never be lower than the day-ahead prices in case of upward regulation,
and never higher than the day-ahead prices in the case of downward regulation. The
properties of the Norwegian balancing market are summarized in Table 1.

2.2 The causes of imbalance and demand for balancing power

ENTSO-E [6] identifies three sources of imbalance under normal operation: i) loss
of major production, consumption or transmission unit, or ii) stochastic fluctuation

1 In Norway, there exists an option market for balancing power, RKOM, where producers are paid for
reservation of capacity in addition to normal payment for balancing power. Since the turnover in this
market is rather marginal, the discussion is omitted for clarity reasons.
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of consumption and production, or iii) weaknesses in market design—for instance
the failure of hourly program time units to match the continuous changing consump-
tion. In addition to these causes, there is also the issue of whether the market players
influence the demand for balancing services through economic incentives in the bal-
ancing market. Van der Veen et al. [20] performed a simulation of the balancing market
with random events and found that the optimal balancing strategy (keep imbalances
small, opt for surplus rather than shortage) for players is fairly equal regardless of
imbalance payment regime. Möller [14] investigated the German balancing markets
and concluded that the producers anticipate the imbalances due to day-ahead market
design, and act to take advantage of it by producing more when there is an expected
need of upward balancing, and less when there is an expected need of downward
balancing. 2

If the demand for balancing services and the supply of these services are truly ran-
dom processes, balancing prices will also be a random process. However, although
failure events are hard to predict, it is interesting to see whether the patterns in con-
sumption and production fluctuation and the anticipation by the market players can
be described in any time series model that give more accurate prediction than the
forecasts of a purely random process.

3 Data

Balancing prices, day-ahead prices, balancing states and balancing volumes, as well
as overall production volumes, are collected for the NO2 price area for the period
19.07.2010–23.12.2012. The selection of estimation period was motivated by the
availability of data. The start date marks the day when forecasts of estimated pro-
duction and consumption for the next day was made available. Except for two lesser
adjustments, the price area borders have been stable during the whole period. NO2
covers the southern and western part of Norway, with connections to price areas NO1,
NO5 and DK1. Earlier, NO2 was a part of the NO1 area analyzed by [12,19].

For out-of-sample verification, the balancing market prices and volumes for NO2
in the period 02.01–22.03.2013 were selected. These are displayed in Figs. 1 and 2.
This period represents the non-holidays of the first quarter of 2013. All the data were
downloaded from the Nord Pool ftp server.

In most models for balancing price forecasting, we work with the balancing pre-
mium, rather than the balancing price directly. The balancing premium, δ, is defined
as:

δ = ρB M − ρspot (1)

Where possible, we have stayed faithful to the original model formulations which we
aim to benchmark. Therefore the data were log transformed and mean differenced in
some of the models, but not in others. The only deviation from the original formulation
is the EXO model, inspired by Jaehnert et al. [12]. We opted to log-transform the prices
and exogenous inputs in order to compress the variance and obtain better fit.

2 These patterns are probably quite pronounced in the German market, since it has a single-price regime
and also settlement time units of 15 min in the balancing market.
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Fig. 1 Realized balancing market volumes in the out-of-sample period. MWh/h
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Fig. 2 Observed balancing market premium in the out-of-sample period. NOK/MWh

As the focus of this article is on the balancing market, we have not attempted
to forecast price or turnover in the day-ahead market where this is needed as input
for the balancing market forecasts. In the models where day-ahead market prices or
day-ahead market volumes were used as input, we have simply used observed data.
This implies that the performance of the models that rely on such input, i.e. ARX and
EXO, will be overestimated. However, our opinion is that the forecasting results are
less biased by this simplification than by choosing an arbitrary model for day-ahead
market forecasting. The reader may want to keep in mind that the forecast performance
of these models should be regarded as an upper bound.
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4 Model families

There are generally two families of models for forecasting balancing prices - those
which explicitly model the balancing state and those which model it implicitly. Explic-
itly modeling the balancing state offers some advantages. It enables the analyst to make
different assumptions about the balancing prices depending on direction, and gives
the opportunity to include an explicit no-balancing state. As described in Sect. 2, the
manual activation of reserves in the Nordic market creates a quite large dead band
around zero, causing 50 % of the hours in our data set to be in the no-balancing state.
If balancing state is modeled implicitly, the balancing state is determined by the sign of
the balancing price forecast, and the no-regulation state will only occur if the balancing
price is equal to the spot price. Models which explicitly forecast the balancing state
include those of Olsson and Söder [17] and Jaehnert et al. [12], whereas Boomsma et
al. [1] and Brolin and Söder [2] use models that forecast the balancing market price
without regard to the balancing state.

The other main distinction is whether the model takes in exogenous explanation fac-
tors or only relies on current and past price information. A commonly used exogenous
explanation factor is the balancing volume, as used by [2,12,19]. Another frequently
used explanation factor is the day-ahead market price. The balancing market price is
alternatively modelled directly, as in [1], or as the difference to the day-ahead market
price, as is done in [12,19]. If the balancing market price is modelled as the differ-
ence to the day-ahead price, we will not regard this as using the day-ahead market
price as exogenous input, but if the day-ahead market price is used as an explanation
factor in itself, we will regard it as an exogenous explanation factor. Skytte [19] finds
that the day-ahead market price explains the balancing market price, whereas Jaehn-
ert et al. [12] find no correlation. It will therefore be interesting to further test the
relation.

4.1 Models for state determination

State determination and forecasts conditional on state are natural topics for regime
switching models. However, they are unsuitable for the purpose of determining bal-
ancing states and prices due to the fact that states are observable, and that there are
no exogenous driving forces that can predict the states. Instead, we turn to Markov
models and arrival rate models for predicting the balancing state. Jaehnert et al. [12]
use a SARIMA model and determine the balancing state from the price forecasts.
We prefer to utilize SARIMA models for price directly, and will come back to it in
Sect. 4.3.

The possible states that we aim to model are summarized in Table 2. As described
in [17], there is a fourth possible state which is balancing in both directions within
the same hour. Typically there might be a regulation in one direction in the beginning
of the hour and regulation in another towards the end. However, this state is so rare
that we exclude that possibility. The balancing price and volume for hours with two
balancing states were replaced by figures for the dominating direction when estimating
parameters.
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Table 2 Definition of balancing
market states

State Balancing volume ν Balancing price ρ

No regulation νup, νdown = 0 ρup, ρdown = ρspot

Up regulation νup > 0, νdown = 0 ρup > ρspot

Down regulation νdown > 0, νup = 0 |ρdown | < ρspot

Markov models for determining the balancing state have been used by Olsson
and Söder [17]. They used a non-time-homogenous Markov model, with different
transition probabilities depending on the duration of the balancing state. In this article,
we benchmark a duration dependent Markov model, with seven different transition
matrices. Balancing incidents with durations 0–5 h had individual transition matrices,
whereas a separate matrix was estimated for incidents lasting 6 h or more.

Another take on avoiding static transition probability matrices is to include calendar
information by making the transition matrices dependent on the hour of the day.
In this way, we can accommodate the fact that the probability of transition from
one state to another is greater in the transition hours from day to night and night to
day, whereas states are generally more stable in the middle of the night and during
mid day. We applied Pearson’s chi-square test to check whether a Markov transition
matrix estimated for each individual hour was significantly different from a transition
matrix for all hours. As 5 h (basically the day-night transition hours) were significantly
different, and suitable alternative clustering of hours was hard to find, we continued
with a Markov model with individual transition matrices for each hour of the day.

The other model that was tested in this article is inspired by inventory control theory,
and based on the work of Croston [5] (see also [22]). This model only separates demand
from non-demand, but does not discriminate between the balancing directions. In fact,
it is a moving-average arrival rate. The time between the occurrence of two events is
updated as a moving average every time an event occurs. Thus, this model discriminates
between no regulation and regulation states, whereas the distinction between up- and
down regulations is determined by separate price- or volume processes.

The main idea of Croston [5] was to separate the probability of the arrival of
demand and the size of the demand into two different stochastic processes. Applying
the approach of Willemain et al. [22], the time between arrivals is modeled as a moving
average in the following way: Let pt be the (moving) average time between arrivals
and let qt be the specific number of time steps since last event. Let νt be the balancing
volume in time step t. Then:

pt =
{

pt−1 if νt = 0

pt−1 + α ∗ (qt−1 − pt−1) if νt �= 0
(2)

The probability of regulation (the arrival rate) for each time step is expressed as 1/pt .
The average time between regulation was calculated as 1.98 from the historical data.

In his original article Croston [5] suggested using values of α in the range of 0.05–0.2,
based on experience. In this work, α was estimated by minimizing the sum of squared
residuals from the empirical arrival rate and the estimated arrival rate (described in
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Table 3 Summary of balancing
state determination models for
benchmarking

Name State determination model

Hour specific Markov Markov transition matrix dependent
on the hour of the day

Duration dependent
Markov

Markov transition matrix dependent
on the duration of the state

Arrival rate Time between arrivals is a
moving-average process

(2)) from the historical data. The optimum was found at α = 0.01, suggesting a rather
slow-moving average.

A summary of state determination models that will be benchmarked can be found
in Table 3.

4.2 Models for balancing volume forecasting

In forecasting balancing volume, we test the model from Jaehnert et al. [12] with
a randomly drawn volume given a balancing state. As in the original article, the
general extreme value distribution was found to offer the best fit among all the tested
probability distributions. However, since the fit was not particulary good, we also
tested with random sampling from historical values.

Additional literature on time series forecasting of balancing volume is rather mea-
gre. Whereas Möller [14] performs advanced analysis of the German market demand
for balancing volume, we take a simpler approach and fit an ordinary SARIMA model.
Since the augmented Dickey-Fuller test showed that the volume time series is not
integrated, a SARMA-model will be sufficient. We found a SARMA(1,2)(1,1) model
suitable.

As the Nordic market has many hours with no regulation state, a time series model
that does not distinguish between incidents and the size of the incident has been
showed to yield too low prediction with too high variability (cf [5]). We therefore
also build a new model for balancing volume forecasting, with states determined by
a moving average arrival rate model, as described in Sect. 4.1. The model was origi-
nally formulated for inventory control problems, where the demand usually has two
states: Either there is demand, or there is none. For balancing power, the state is
more complicated, as demand either is zero, positive (upward regulation) or negative
(downward regulation). However, we choose to discretize the state in two: regula-
tion or no regulation. We could have imagined having two arrival rate processes -
one each for upward and downward regulation. However, since there is no way of
excluding the arrivals of both states in the same time step, we found that approach
unsuitable for modelling the Nordic market. Instead, we let the arrival rate model
determine the arrivals of balancing incidents, and the sign of the balancing volume
forecast determine whether there is an upward or downward regulation. An added
advantage, is that we then can take correlation between demands of different signs into
account.

The balancing volume itself is modelled as a stationary unevenly spaced autoregres-
sive process of order 1 (AR1), with parameters estimated according to the algorithms
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Table 4 Summary of volume
models for benchmarking

Name State model Volume forecast method

RAND Markov Random from distribution

HIST Markov Random from historical values

SARMA None Seasonal ARMA model

CROST Arrival AR1-model for unevenly
spaced time series

in [7]. Ordinary time series analysis techniques will fail, since they require evenly
spaced data measurements, which would imply either artificially compressing the
time series, or inserting 0 values where there really are no observations, thus distort-
ing the variance (for more on uneven time series, see [13]). Instead, we use algorithms
that acknowledge that adjacent observations are more strongly correlated than events
further spaced apart in time, and that variance increase over time, and therefore should
be scaled by the time between incidents.

A summary of the models benchmarked for volume can be found in Table 4.

4.3 Models for balancing premium forecasting

As a reference, a standard SARIMA time series model will be defined and bench-
marked. Jaehnert et al. [12] find a SARIMA(1,1,2)x(1,1,2)24 model suited for short
term forecasting of balancing market prices. The analysis of our data set revealed that
the balancing premium time series was not integrated, and seasonal effects were so
weak that they could be ignored. An ARMA(1,1) model was found to be sufficient
and suitable.

Boomsma et al. [1] use an autoregressive model with external input in order to
make scenarios for the balancing market price (ρB M ), as specified in (3) (where L() is
the lag operator, φ is the autocorrelation coefficient, β is the coefficient of the external
input, and ε is the random error). The external input is the current and previous values
of the spot market price (ρspot ). These authors forecast the balancing market price
directly, rather than as defining it as the difference to the day-ahead market price. The
balancing market state is then defined implicitly, depending on whether the balancing
market price is higher or lower than the day-ahead market price.

(1 − φL)
(
ρB M

t − βρ
spot
t

)
= εt (3)

Reconstructing this model for our data set gave a fairly well specified model. An
inspection of the residuals revealed thick tails and a slight autocorrelation in the residu-
als. The autocorrelation could have been remedied through the inclusion of more lags.
Tests showed that by extending the model with one more lag, the problems with auto-
correlated errors disappeared. As expected, this improved the probabilistic forecast,
although only very slightly, and somewhat more surprising, gave slightly worse point
forecast, measured by mean average error. Since differences between the original and
improved model were marginal, and did not alter the rank of the models’ performance,
we decided to stay true to the original formulation.
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Olsson and Söder [17] also use a pure time series models to forecast balancing mar-
ket prices. However, they use two different time series—one for upward regulation and
one for downward regulation. A Markov model determines the switch between differ-
ent balancing states. The continuous upward and downward regulation time series are
assumed to be independent, but upward balancing time steps are assumed to be corre-
lated with other upward balancing time steps and vice versa for downward balancing.
The time series for upward- and downward balancing market premiums are assumed
to be continuous. But we must use techniques for unevenly spaced time series to esti-
mate the parameters, since the observed upward and downward balancing prices are
not defined for all time steps. Using similar techniques as those of Olsson and Söder
[17], we estimated the parameters from analysis of the autocovariance function.

Our implementation differs from that of Olsson and Söder [17] in three ways:
First, we use a hour-specific Markov model for transition probability, rather than a
duration-dependent Markov model, due to better performance on longer-term forecast.
Second, we do not find strong evidence for seasonality, and therefore limit our search
for suitable models to the ARIMA-family of models. Third, we find that a simpler
model with no differencing (i.e., we stick to ARMA-models) and fewer orders for the
continuous up- and down processes is sufficient. An ARMA(1,1) process (with no
intercept) was chosen for upward regulation, whereas an ARMA(2,1) with intercept
was deemed suitable for downward regulation.

Jaehnert et al. [12] found that balancing premiums to a large degree can be explained
by the balancing volumes. We wanted to include a model that explained balancing mar-
ket premiums from exogenously given time series. However, upon investigating the
data, we found the correlation between the balancing volume and the balancing mar-
ket premium to have weakened since the publication of Jaehnert et al. [12]. Pearson’s
correlation coefficient had declined from 0.78 in the 2003–2007 NO1 data set to 0.47
in the 2010–2012 NO2 dataset.3 We tried to include the balancing demand in neigh-
boring price zones, without improved explanation power. In the end, we settled for
two models (one for each balancing direction) where the balancing market premiums
are determined by the balancing volume, the day-ahead market price and the overall
power production in the NO2 price zone. The balancing volume was forecast using
the CROST model of Sect. 4.2

As observed by Conejo et al. [4], naive forecasts can be hard to beat when forecasting
spot prices, and in industry these practices for predicting balancing prices are common
too. For short-term forecasts, we will use the balancing market price from the last hour,
but for day-ahead forecasts we will use the price for the same hour in a similar day.
Although balancing market prices are less seasonal than day-ahead market electricity
prices, we use a similar definition as that of Conejo [4].4

A summary of the models that will be benchmarked can be found in Table 5.

3 The current NO2 price zone was formerly a part of NO1.
4 For Mondays, Saturdays and Sundays, we use the balancing market price of the same hour the previous
week, whereas for Tuesdays,Wednesdays, Thursdays and Fridays, we use the same hour on the last workday.
However, for day-ahead forecasts it must be taken into account that the balancing market price on Monday
is not revealed entirely before the bidding for Tuesday closes at Monday noon, so the remaining hours are
collected from Tuesday the last week.
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Table 5 Description of
balancing market price models
for benchmarking

Name State
model

Volume
model

Price forecast
method

ARMA None None ARMA time
series model

ARX None None AR1 model with spot
price as exogenous
input

ARM Markov None ARMA models

EXO Arrival AR1 for unevenly
spaced time series

Regression on
exogenous factor

NAIVE None None Price equal to price in
similar hour

5 Test performance measurement

5.1 One step ahead vs multiple steps ahead

In short term forecasting, the one step ahead forecast is often used as a benchmark
for how well a model performs. For the power produced the one step ahead forecast
may be relevant for intra-day operations, for instance in the trade-off between trading
on a multilateral intra day market or taking part in the balancing market. The most
important trade-off is however often between the day-ahead market and the balancing
market. If a producer is to make coordinated bids between the day-ahead market and
balancing market (see for instance [1]), a price forecast for the balancing market is
needed before the day-ahead market closes, 12–36 h ahead of the operating hour. Thus,
forecasts for both one-step ahead and 12–36 steps ahead will be tested.

5.2 Point vs interval forecast

Forecasts are often evaluated by how well the forecast mean matches the observed
value. Deviations can be measured, for instance, by using the mean absolute error
(MAE). We will measure the models’ ability to offer a point forecast in this way too.
As done by Weron and Misiorek [21], we will compare performance by looking at the
MAE averaged over the week. Weron and Misiorek [21] calculate a quasi mean average
percentage error (MAPE) by introducing a weighed MAE. The weekly average MAE
is divided by the average price that week, so that one can avoid trouble calculating
MAPE when the simulated prices are close to zero. For balancing prices, the problem
is even worse, since balancing market premiums can take both positive and negative
values, and the expected values are close to zero. Therefore, we choose to report the
MAEs directly, but for the sake of comparison, we also provide the average absolute
balancing market premiums of that week, ¯|δt |.

Models for trade-off between trading in different markets are often based on sto-
chastic optimization and the construction of scenario trees [1]. In these applications,
the distribution of the forecast is equally or more important than the forecast mean.
Therefore, the models are evaluated for their ability to produce correct probabilis-
tic forecasts as well. We will evaluate the interval forecasts by their unconditional
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coverage: Let yt be an observed value in the out-of-sample period, and let Lt (p)

and Ut (p) be the upper and lower limits of the probabilistic forecasts for coverage
probability, p, respectively. We then define an indicator variable as follows:

It =
{

1, if yt ∈ [Lt (p), Ut (p)]
0, ifyt /∈ [Lt (p), Ut (p)] (4)

Christoffersen [3] points out that the unconditional coverage can be a misleading
measure if heteroskedasticity is present. Even if the unconditional coverage fits the
theoretical percentiles on aggregated level, outliers may come clustered in times with
higher variability. However, we find the unconditional coverage measure a sufficient
sophisticated measure for benchmarking, and caution future potential users of these
models to take a closer look at the conditional coverage before implementing them.

6 Forecasting performance

6.1 Benchmarking of state determination models

In order to determine which state determination model is better, we simulated 3,000
out-of-sample scenarios (1,920 time steps) for the two variants of each model: 1 h
ahead forecasts and 12–36 h ahead forecasts. Then we compared the simulated states
to the observed states. Every time the model predicted the correct state, a score of 1
was assigned, otherwise the score was 0. We then compared the mean for all the 3,000
scenarios, both for each time step and averaged over all the 1,920 time steps.

The two alternative Markov models were benchmarked directly against each other.
In order to compare with the arrival rate model, we assessed the Markov models’ ability
to discriminate between a regulation state and a non-regulation state, and compared
the results with those of the arrival rate model.

The average scores for the two Markov models are found in Table 6. The comparison
shows that the duration dependent model performs better on short horizon forecasts,
whereas the hour dependent Markov model is slightly better in the long run. Neither
model has an impressive hit rate for the day-ahead forecasts. In Fig. 3 the distribution
of the hit rates is displayed. The overall picture is quite similar for both models: For the
1-h-ahead predictions, most hours are predicted fairly correctly with scores in the range
from 0.7–0.9, whereas a certain group of hours seems difficult to predict, and thus gets
a low score. Typical hours that are difficult to predict are direct transitions from upward
to downward balancing and vice versa, since the probability of this transition is low.
When comparing the hour specific Markov model to the duration dependent Markov
model, we observe that the 1-h ahead forecast is sharper for the duration dependent
Markov model, with less variation in the prediction hit rate. For the day-ahead forecast,

Table 6 Share of correctly
predicted balancing states (up,
down, no balancing)

Forecast horizon (hours ahead) 1 12–36

Hour specific Markov 0.63 0.37

Duration dependent Markov 0.73 0.35
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Fig. 3 Score of correctly predicted balancing state. The score is the average of 3,000 scenarios, and the
density plot shows the distribution over 1,920 time steps. Upper panel represents the hour dependent Markov
model, and the lower panel represents the duration dependent Markov model. The light gray density plot is
the 1-h-ahead forecast, and the dark grey density plot is the day-ahead forecast

the prediction scores drop dramatically, to levels below 0.5. The duration dependent
Markov model produces day-ahead forecasts that are slightly worse than the hour
specific Markov model. This is not too surprising, as the duration dependent Markov
model uses two state information measures (current state and current duration), and
both errors grow larger with the time horizon.

The two Markov models’ and the arrival rate models’ ability to predict the correct
state when considering only two states (regulation and no regulation) can be found in
Table 7. For short-horizon forecasts, the duration dependent Markov model is best.
However, it performs worst when it comes to the day-ahead horizon. The score of the
arrival rate model is remarkably stable, probably due to the relative stable arrival rate
(moving average coefficient α as low as 0.01).

For day-ahead forecasts it seems that the hour specific Markov model and the arrival
rate model give the best forecast. As they are qualitatively different in the number of
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Table 7 Share of correctly
predicted balancing state

Two states: balancing, no
balancing

Forecast hours ahead 1 12–36

Arrival rate 0.59 0.59

Hour specific Markov 0.67 0.54

Duration dependent Markov 0.73 0.51

Table 8 Mean absolute error of balancing market volume forecasting for various models

w ¯|νt | 1 h ahead forecast Day ahead forecast

RAND HIST SARMA CROST RAND HIST SARMA CROST

1 109.80 77.68 76.73 37.99 67.53 108.44 107.25 103.63 110.18

2 59.12 59.74 53.96 33.56 46.73 88.97 86.50 54.64 30.60

3 86.65 65.54 60.36 44.57 68.79 100.28 98.39 72.20 45.17

4 35.05 66.18 54.83 34.13 33.79 63.47 60.97 61.09 20.61

5 90.43 68.02 56.23 41.69 96.00 79.61 80.41 71.47 47.40

6 43.03 61.29 43.23 25.02 33.21 73.88 70.54 53.46 25.54

7 21.45 49.28 35.97 15.22 19.38 51.82 50.19 27.99 14.69

8 43.02 53.49 44.04 18.97 33.62 56.60 56.10 19.04 25.89

9 121.85 83.81 80.12 35.90 78.31 106.29 107.01 78.69 65.02

10 94.84 89.05 77.77 35.48 58.70 87.94 87.48 145.74 50.86

11 98.37 73.21 71.35 43.86 65.66 117.01 113.50 57.52 55.78

12 39.88 45.85 36.59 30.60 39.85 66.52 64.10 104.29 41.55

MWh. Weekly average

states they are able to predict, the analyst must weigh the arrival rate model’s precision
against the disadvantage of operating with only a binary balancing state.

6.2 Benchmarking of balancing volume forecasting models

The mean average error of the four different models can be found in Table 8. The
ranking of the different model is quite clear: for short-term forecasting (1 h ahead),
the SARMA-model outperforms all other models in all weeks. For day-ahead forecast,
the CROST model with unevenly spaced time series is best for all weeks, except week
1 and 8 where the SARMA-model is better. The task of predicting the day-ahead
balancing market volume is difficult; the SARMA model has the worst performance
in week 10 and 12, whereas the CROST model is the worst in week 1. Thus, for day-
ahead forecasting, no model is unambiguously the best. The models without memory—
RAND and HIST—perform badly in times of spikes—for instance in week 1, 9 and
11 (cf Fig. 1).

The models’ ability to create well calibrated probabilistic forecasts can be evaluated
by studying Table 9. The table shows how many of the observed values that fall within
the limits of four specified interquantile ranges: 50, 75, 90 and 99 %. Generally, the
models are too narrow in the middle range, except for the SARMA model, which is too
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Table 9 Unconditional coverage. Percentage of observed balancing volume that fall within the interval
specified by the simulated values’ median ± range/2

Range (%) 1 h ahead forecast Day ahead forecast

RAND HIST SARMA CROST RAND HIST SARMA CROST

50 24.90 30.94 77.76 24.32 15.16 15.36 74.01 43.18

75 42.03 43.07 87.66 82.60 71.77 71.98 84.64 77.60

90 87.86 82.24 93.75 93.44 90.36 91.82 91.30 88.13

99 99.32 98.65 97.55 98.18 99.95 99.69 97.92 97.45

Table 10 Mean absolute error for various balancing market premium models

w ¯|δt | 1 h ahead forecast Day ahead forecast

ARMA ARX ARM EXO NAIVE ARMA ARX ARM EXO NAIVE

1 40.82 14.89 19.39 11.51 26.50 9.68 40.92 41.11 40.31 40.76 46.61

2 53.19 29.21 49.61 28.76 45.68 29.41 53.37 52.89 54.55 53.31 64.91

3 93.19 48.63 68.32 50.92 82.98 42.56 93.03 94.77 93.39 94.12 145.76

4 64.23 41.05 72.61 43.64 62.56 42.63 64.81 65.12 64.20 65.69 85.62

5 40.86 14.70 18.02 9.78 26.95 9.57 41.06 41.18 39.17 41.13 42.84

6 30.15 15.32 23.80 15.28 22.81 15.19 30.36 30.28 31.21 30.18 38.52

7 36.98 18.03 25.51 17.02 32.70 16.03 37.66 37.44 37.89 37.63 47.43

8 31.38 12.38 16.09 9.98 25.88 9.10 31.75 31.79 30.57 32.39 35.26

9 32.90 11.90 14.73 8.24 19.44 7.52 33.13 32.97 31.91 33.16 21.19

10 32.66 12.44 14.63 10.26 19.53 8.58 32.69 32.62 31.61 32.06 29.08

11 89.66 49.27 82.98 49.16 78.58 52.48 89.74 90.22 88.40 90.28 131.84

12 87.58 63.25 88.48 57.07 81.80 64.68 87.58 88.39 87.98 87.85 145.47

NOK/MWh. Weekly average

wide. Extreme values are captured quite well for all the models. No model captures
the probabilistic structure for 1-h ahead forecast very well, but for day-ahead forecast
the CROST model has a better performance.

Conclusively, the models with memory generally perform better than those without
memory on both short and day-ahead horizons. No model is unambiguously the best
in all respects; however, the CROST model has satisfactory performance on the day-
ahead forecasts both in terms of capturing the spread and having a mean average error
lower than the other models for all but 2 weeks. The SARMA model has relatively
low mean average errors in forecasting the balancing volume an hour ahead, but the
variance is too large. This result was anticipated by [5] for models that do not separate
the stochastic processes of arrival and size of demand.

6.3 Benchmarking of price forecasts

In Table 10, the weekly average MAE for forecasts of balancing market premium
is shown. For the 1 h ahead forecast, the naive model is hard to beat. In 8 of the
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Table 11 Unconditional coverage. Percentage of observed balancing market premiums that fall within the
interval specified by the simulated values’ median ± range/2

Range (%) 1 h ahead forecast Day ahead forecast

ARMA ARX ARM EXO ARMA ARX ARM EXO

50 86.51 79.01 39.01 58.44 80.36 80.63 37.76 14.27

75 91.98 89.22 79.84 67.71 92.97 92.76 78.13 77.19

90 94.48 92.45 88.70 83.07 95.21 95.21 89.32 91.56

99 96.77 94.69 94.64 96.09 97.08 97.24 95.36 96.41

12 weeks, the naive model has the best short-term performance. The ARM model
generally performs well, and is best in 3 of 12 weeks, whereas the pure ARMA model
is best in 1 week. The EXO model seems to be a little less accurate for 1 h ahead
forecast. This is to be expected, since the linkage from time step to time step in the
EXO model is based on balancing state and balancing volume, and not on balancing
premium directly. Since the correlation between balancing market volume and price
is lower than it historically has been, balancing volume acts as a worse predictor for
the balancing premium than the lagged values of the premium itself.

For the day-ahead forecasts, the striking result is how similar the four non-naive
models perform. Moreover, the mean average error of the models is very close to the
mean absolute balancing market premium of that week. Thus, the accuracy of the model
is comparable to a model where the balancing market premium forecast is constant and
zero. A practitioner of forecasting might find this a disappointing result, but keeping
the structure of the power market in mind, the result is not too surprising. Factors
that could influence the balancing market price, such as the outage of plants, weather
conditions or production from intermittent sources, will be taken into account when
performing day-ahead bidding if known before the closure of the day-ahead market,
and thus are reflected in the spot market price rather than the balancing market price.
Thus, there is no information basis that can aid the forecasting of next day’s balancing
prices before the day-ahead market has closed.

The naive model, which uses the balancing prices from the day before (shifted back
to account for weekend effects if necessary), performs worse than the other models in
all but 2 weeks.

The evaluation of the methods’ probabilistic forecasts are displayed in Table 11. The
table shows a clear distinction between the models which includes state information
(EXO and ARM) versus those which are purely time series based (ARMA and ARX).
The models without state information generally have forecasts that are too wide. This
illustrates the point of Croston [5]—not discriminating between demand and non-
demand in forecasting may lead to an overestimation of variance. Although admittedly
not perfect, the models that include state information better reflect the distribution of
the observed values. For day-ahead forecasts, the EXO-model performs slightly better
than the ARM-model. This may be due to the fact that the ARM-model is based
on a Markov model for state determination, whereas the EXO-model is based on a
balancing volume model that utilises a moving average arrival rate for determining
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the balancing state. As seen in Sect. 6.1, the arrival rate model performs better than
Markov models for day-ahead forecasts.

The results from the evaluation of the probabilistic forecast shown in Table 11 imply
that building models for forecasting balancing market prices is not futile, even though
the forecasts are outperformed by naive models on an hour-ahead horizon, and even
though the average errors for day-ahead forecasts are on the same level as a constant
forecast of zero would have delivered. The shape of the simulated distribution is
important for making good operational decisions in real bidding situations. Studying
the day-ahead forecasts we note that models without balancing state descriptions
severely overestimate variance, and create too wide forecasts. The models with explicit
information on balancing state (ARM and EXO) create better interval forecasts.

7 Conclusions

In this paper, we have recreated and developed three models for the prediction of
balancing state, four models for the prediction of balancing volume and five mod-
els for forecasting of the balancing market price premium. All models have been
benchmarked, with special emphasis of the ability of the model to create balancing
market premium forecast that can assist the bidding process where a producer has
to decide on how to allocate power between the day-ahead market and the balancing
market.

Our analysis confirms that it is hard to predict the balancing market before the
closure of the day-ahead market. The balancing market is designed to handle unfore-
seen events and fluctuation, and therefore we are not surprised by concluding that
the volume and the premium in the balancing market are random. In fact, it could be
interpreted as a sign of an efficient electricity market that it is not possible to predict
the balancing market price. Any predictable relation between the information avail-
able before the closing of the day-ahead market and the balancing market would open
speculative possibilities, as the producers then could make a profit by buying in the
day-ahead market and sell in the balancing market (or vice versa).

However, stating that it is impossible to capture the expected balancing market
premium precisely, does not mean that balancing market forecasting is futile or that
it does not matter which forecasting model that is used. The evaluation of the interval
forecasts clearly shows that models which include balancing state describe the distri-
bution of the forecasted premium or volume far better than models without balancing
state information. Thus, we have shown that the observations of Croston [5] also apply
to the balancing market: Separating between demand and non-demand is important
for estimating the variance correctly. Getting the distribution of scenarios right is cru-
cial for stochastic optimization models, thus for that purpose we strongly recommend
using models with balancing state information for scenario generation.
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