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Abstract We develop a stochastic dynamic programming model that co-optimizes the
use of energy storage for multiple applications, such as energy, capacity, and backup
services, while accounting for market and system uncertainty. Using the example of a
battery that has been installed in a home as a distributed storage device, we demonstrate
the ability of the model to co-optimize services that ‘compete’ for the capacity of the
battery. We also show that these multiple uses of a battery can provide substantive
value.

Keywords Energy storage · Stochastic dynamic program · Co-optimization

1 Introduction

Developments in the electricity industry over the past few years have increased interest
in energy storage. One of the reasons for this interest is the introduction of markets
that signal the cost and value of the services that storage can provide. Another is the
increasing strains that renewable energy is placing on electric power systems and the
role that storage can play in mitigating these integration issues.
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476 X. Xi et al.

A number of papers study potential uses of storage and estimate the value of some
of those applications based on historical data. EPRI [1] provides one of the first dis-
cussions of storage. Because the discussion is framed in the 1970s, before the advent
of restructured electricity markets, it focuses on storage use by a vertically integrated
utility to avert the need for peaking generation capacity by shifting on-peak loads
to off-peak periods. More recent discussions of storage focus on the role of markets
[2,3]. These papers provide comprehensive overviews of storage technologies and
uses, including energy, capacity, renewable-related, transmission, distribution, and
consumer applications.

One of the most commonly studied storage applications is what is often called
‘energy arbitrage’—charging storage when wholesale energy prices are low and dis-
charging when high to take advantage of diurnal price differences [4–6]. Many of
these analyses use a perfect-foresight assumption, under which prices are assumed
to be known perfectly when making storage decisions. This assumption allows the
value of arbitrage (and other) services to be estimated using historical price data and
patterns.

Other analyses expand these works by relaxing the perfect-foresight assumption
or by considering arbitrage in conjunction with other uses. Mokrian and Stephen
[7] describe a stochastic dynamic programming (SDP) model to maximize expected
arbitrage revenues while accounting for energy price uncertainty. Sioshansi et al.
[8,9] relax the perfect-foresight assumption by examining a ‘backcasting’ heuris-
tic whereby storage is dispatched using historical price patterns that are assumed to
repeat themselves. Walawalkar et al. [10] examine storage economics in the New
York ISO market, considering both arbitrage and ancillary services (AS). AS are
excess generating capacity that a utility or system operator (SO) reserves in order
to provide a buffer for real-time deviations between actual and forecasted demand
or supply of energy. They find that storage has a high probability of yielding a pos-
itive net present value if installed in New York City. Drury et al. [11] examine the
value of arbitrage and AS from storage in a number of markets in the United States.
Other papers examine interactions between storage and renewables. This includes
the use of storage to mitigate renewable variability and uncertainty [12–14]; the eco-
nomic and emissions impacts of storage and renewables [15–18]; and using storage to
reduce the need for dedicated transmission to deliver renewable energy to load centers
[19,20].

There are, however, numerous issues and nuances of storage that are not well
addressed by this literature. One is that most analyses consider only a single storage
application and do not co-optimize multiple storage uses. Evaluating multiple uses
of storage is critically important, given the high capital costs of most storage tech-
nologies. Most storage analyses that consider only one application find that storage
is not economic on the basis of that single use. Since different storage applications
can conflict with each other, determining the value of multiple storage applications
requires those applications to be co-optimized. For instance, if storage is discharged at
time t to earn arbitrage revenue this can conflict with its ability to provide AS at time
s ≥ t , since there may be less energy in storage in the future. Although Walawalkar
et al. [10] analyze the value of AS and arbitrage, they do not employ an optimization
method in their analysis. Rather, they rely on heuristics based on price duration curves
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and patterns. Similarly, the analysis of Drury et al. [11] is limited in that they do not
fully account for the uncertain interactions between providing energy and AS.

The effects of price and system uncertainty are also often neglected in storage
analyses. Price uncertainty can impact storage use, since charging, discharging, and
other decisions may not be value-maximizing depending on the stream of realized
prices. Although Mokrian and Stephen [7] develop a model that maximizes expected
arbitrage revenue while accounting for price uncertainty, this neglects other forms of
uncertainty that can also impact storage. For instance, if storage provides AS at time
t , the amount of energy in storage at time s > t varies depending on how much energy
must actually be provided as a result of the reserved capacity being called. This can
affect the ability of storage to provide other services in the future.

Another important facet of storage is the potential scale of the technology. Many
storage analyses consider ‘utility-scale’ storage—devices that can charge and dis-
charge hundreds of MW for multiple (in some cases more than 20) hours. Although
most storage is currently utility-scale,1 smaller-scale storage is also becoming an
attractive option, due to the ability of such distributed storage to provide services that
utility-scale storage cannot. For example, American Electric Power (AEP) installed a
1 MW sodium-sulfur (NaS) battery facility in a community in West Virginia to relieve
a constraint on a distribution-level transformer [23].

Given these limitations of existing storage modeling techniques, this paper describes
an SDP model that co-optimizes multiple storage applications while accounting for
market and system uncertainty. Using this model we study the value of a battery that is
installed in a residential home as a stationary storage device. We use a discretization-
based approach to derive near-optimal policies and provide bounds on the optimality
gap. This analysis demonstrates how the operation and value of the battery varies
depending on the combination of applications considered. Although our case study
focuses on small-scale distributed storage, our model is sufficiently general that it can
be applied to other cases, including utility-scale storage.

The remainder of this paper is organized as follows. Section 2 describes in further
detail services that storage, particularly distributed storage, can provide. This discus-
sion also motivates the storage applications that we focus on in our analysis. Section 3
provides the formulation of our model and Sect. 4 discusses the discretization tech-
nique that we use to find near-optimal solutions. Section 5 discusses the assumptions
and data underlying the case study that we examine. Section 6 summarizes our results,
and Sect. 7 concludes.

2 Uses of distributed storage

Our model assumes distributed storage, whereby batteries are installed in residential
homes. We do not make an explicit assumption regarding battery ownership—they
could in principle be owned by the homeowner, utility, or an aggregator that pro-

1 Pumped hydroelectric storage (PHS) accounts for most currently installed storage capacity [21] and
interest in compressed-air energy storage (CAES) is increasing [22]. Due to their physical attributes and
geological requirements, PHS and CAES are both utility-scale storage technologies.
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vides storage using batteries deployed in multiple homes. We assume that the decision
maker that optimizes battery use (which can be a different entity than the battery
owner) is exposed to wholesale market price signals, for instance real-time energy
and AS prices. The homeowner does not have to be exposed to or pay such prices,
however. For example, the batteries could be owned by the utility, which optimizes
their use against real-time prices, while the homeowner pays a fixed time-invariant
retail electricity rate. We assume that the battery pack includes an automated control
system that charges and discharges the battery, or a communication system that allows
centralized control by the decision maker. Although they are not currently ubiquitous,
such systems have existed for some time. Examples include the automated air condi-
tioning cycling system implemented by Southern California Edison beginning in 1980
[24], and the communication and control systems used by the NaS battery deployed
by AEP in West Virginia. Given these assumptions utility or aggregator ownership
may be the easiest contractually, although other ownership structures could be used.
For example, the homeowner could own the battery and lease it to the utility, which
provides the homeowner with an electricity bill rebate. The battery pack would include
a communication system that allows the utility to operate it remotely. The homeowner
continues to pay a fixed retail rate for its electricity, while the utility optimizes battery
charging and discharging.

Although storage can provide many services, we focus on four that are particularly
conducive to this case: energy arbitrage, AS, backup energy, and relief of distribution
constraints. We discuss in Sect. 3 how our model can capture other uses that we do not
consider here. An entity that sells capacity in the AS market is contractually obligated
to provide energy in real-time if called upon by the SO. AS are typically given two-part
payments. One is a capacity payment, which is paid regardless of whether the reserved
capacity is actually needed in real-time. The other is an energy payment, which is paid if
energy is called in real-time. An entity that sells AS capacity but cannot provide called
energy is penalized for its shortfall. The penalty rate is typically a fixed percentage
premium over the real-time energy price. AS are categorized into different quality
levels, depending on the rate at which the provider is obligated to respond to a call
for energy in real-time. Three common types of AS are regulation, and spinning and
non-spinning reserves. Regulation is the highest-quality of all AS, which is used to
fine-tune the frequency and voltage of the grid by exactly matching real-time energy
demand and supply. Thus, regulation requires the greatest flexibility on the part of
the supplier. Regulation is further subdivided into regulation-up and -down services.
A provider of regulation up must increase its output from a baseline level if called
in real-time, whereas a regulation down provider must decrease it. Some SOs treat
regulation up and down as two separate capacity products, and in such a market an
entity could sell different amounts of the two capacities. Others treat them as a single
product, and an entity that sells regulation capacity in such a market is obligated to
provide both regulation-up and -down energy, if required. Although energy storage
can provide different AS, regulation is significantly more valuable than other AS [25].
Thus we focus on regulation services only in our analysis.

Backup energy refers to using the battery as an energy source for the home in the
event of a supply disruption, such as a generation, transmission, or distribution outage.
This storage application could be of great value to both the end user and the utility.
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Electricity service disruptions are inconvenient and costly to end users and customers
derive value from averting an outage. For instance, the cost of the blackout that affected
the northeastern United States and Canadian province of Ontario in 2003 is estimated
to be between $6.4 billion and $10 billion [26]. A utility could also derive value since
the battery could help it meet reliability standards. This is one of the ancillary benefits
of the NaS batteries that AEP installed in West Virginia [23]. Even if a battery does
not have sufficient storage capacity to provide energy throughout a prolonged outage,
a limited energy supply could reduce the severity of an outage.

The final application that we consider is the use of batteries to relieve distribution
constraints. Increasing use of electronic devices can create bottlenecks and strains on
distribution systems. The introduction of plug-in electric vehicles (PEVs), which can
require high-power fast charging, can exacerbate this issue. Mohseni and Stevie [27]
examine PEV integration in two regions of the United States and predict significant
risks to utilities due to potential geographic clustering of PEV owners. For instance, if
several PEVs in a neighborhood begin charging in the early evening when they arrive
home, the total vehicle and building loads can overload a distribution-level transformer.
Batteries installed in-home can relieve these strains by shifting loads to periods with
lower distribution-level loads. This can also be useful without PEVs, since increasing
use of electric devices can overload the electric circuit leading into a home, which a
battery could relieve.

3 Model formulation

With the applications that we study, storage decisions depend on two markets, energy
and regulation, the state of the system (i.e., whether there is an outage or not), and an
exogenous building energy demand. In each time period, the storage operator makes
battery charging, discharging, and regulation sales decisions. If the system is not in an
outage state, the battery can be charged or discharged from the grid and can provide
regulation. Otherwise, the battery can only be discharged to serve the building load.
We assume in our analysis that all decisions are made at hourly timesteps, although
this can be relaxed by appropriately scaling the parameters and variables. The model
assumes that the battery is sufficiently small compared to the total market that storage
decisions do not impact prices or otherwise affect the system.

Our model formulation follows the conventions and notation that Powell [28] uses.
We give the formulation by first defining the relevant parameters and variables, and
then giving state-transition and objective functions. We use the convention that vari-
ables with a subscript t are unknown (stochastic) before hour t and become known
(deterministic) at hour t .

3.1 Parameters

P
b

Maximum charging and discharging power capacity of the battery (kW)
R Maximum storage level of the battery (kWh)
R Minimum storage level of the battery (kWh)
ηc Charging efficiency of the battery
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ηd Discharging efficiency of the battery

P
h

Maximum power capacity of the home (kW)
V L Penalty for unserved building energy ($/kWh)
V R Penalty for unserved regulation call

γ Discount factor

The power capacity of the battery, P
b
, typically reflects power limits of the inverter in

the battery pack or thermal limits of the electrochemical storage medium of the battery
(batteries generate heat when charged and discharged). The minimum storage level, R,
arises because some battery technologies suffer extreme cycle-life degradation if the
state of charge (SOC) falls too low. For instance, lithium-ion batteries can typically
only cycle down to a 30 % SOC, and this type of a restriction is included in our
model. The unitless ratios, ηc and ηd , reflect efficiency losses from battery charging
and discharging. The product of these two terms, ηc ·ηd , gives the roundtrip efficiency
of the battery (i.e., kWh of energy that can be discharged in net per kWh of energy

charged into the battery). P
h

is the total power capacity of the building circuit. V L is
the cost associated with unserved building load. V R captures the penalty imposed by
the SO for an unserved regulation call, which is modeled as being a fixed percentage
of the prevailing wholesale energy price.

3.2 Decision (action) variables

ed
t Energy discharged from battery in hour t for energy sales (kWh)

ec
t Energy charged into battery in hour t (kWh)

el
t Energy discharged from battery in hour t to serve building load (kWh)

lt Building load met in hour t (kWh)
ku

t Regulation-up capacity sold in hour t (kW-h)
kd

t Regulation-down capacity sold in hour t (kW-h)

We also define at = (ed
t , ec

t , el
t , lt , ku

t , kd
t ) as a vector of hour-t decision variables.

3.3 State variables

xt Total energy in storage at the beginning of hour t (kWh)
pe

t Hour-t market price of energy ($/kWh)
pu

t Hour-t regulation-up capacity price ($/kW-h2)
pd

t Hour-t regulation-down capacity price ($/kW-h)
Dt Hour-t building energy demand (kWh)
It Hour-t outage state (1 if there is an outage, 0 otherwise)
δu

t Hour-(t − 1) dispatch-to-contract ratio of regulation up
δd

t Hour-(t − 1) dispatch-to-contract ratio of regulation down

We also define St = (xt , pe
t , pu

t , pd
t , Dt , It , δ

u
t , δd

t ) as a vector of hour-t state vari-
ables.

2 A kW-h, which is a unit for one kW of AS capacity provided for 1 h, should be distinguished from a
kWh, which is a unit of energy.
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We use the concept of a dispatch-to-contract ratio of regulation up and regulation
down to model the relationship between regulation capacity sales and the amount of
energy that the battery is obligated to provide as a result of regulation energy being
called by the SO [29]. The battery must either charge or discharge energy to meet
these obligations or pay the deviation penalty for unserved energy. Kempton and
Tomić [29] define the dispatch-to-contract ratio of an AS product as the actual energy
dispatched over its contract period divided by the contracted capacity. For example,
the hour-t dispatch-to-contract ratio of regulation would be calculated by dividing the
total amount of regulation energy dispatched in the hour by the amount of regulation
capacity that the SO reserved. Thus, by definition, the terms δu

t+1 · ku
t and δd

t+1 · kd
t

are the amount of regulation-up and -down energy, respectively, that the battery must
provide in hour t . Using historical data covering several years, Kempton and Tomić
[29] estimate a dispatch-to-contact ratio of 0.08 for regulation in the California ISO
market. This value indicates that each kW of regulation capacity sold in the market
for 1 h will result, on average, in 0.08 kWh of net energy actually being called in
real-time. The dispatch-to-contract ratio approach can also be used to model other AS
products, such as spinning and non-spinning reserves.

The hour-t ratios are assumed to be unknown when the battery decides how much
regulation capacity to sell in hour t .3 Once the capacity decisions are made, the ratios
are then determined and the state of charge of the battery changes or the battery incurs
a deviation penalty. We define nu

t and nd
t as the amount of regulation-up and -down

energy, respectively, that is called by the SO in hour t − 1 but is unserved. These are
auxiliary variables used in our state transition equations and objective function.

3.4 Exogenous variables

We assume that the variables pe
t , pu

t , pd
t , Dt , It , δu

t , and δd
t evolve randomly

and independently of any of the decision variables, but may be dependent on one
another. We define p̂e

t , p̂u
t , p̂d

t , D̂t , Ît , δ̂u
t , and δ̂d

t as exogenous random vari-
ables that define the change in the exogenous variables between hour t − 1 and
hour t . These random variables may be dependent on one another. We also define
Wt = (pe

t , pu
t , pd

t , Dt , It , δ
u
t , δd

t ) as a vector of hour-t exogenous variables. Thus,
we can define the vector of hour-t state variables as St = (xt , Wt ), where xt is the
endogenous and Wt the exogenous variables. We assume the random process, {Wt }Tt=1
is Markovian, where T is the optimization horizon. We let Prob {Wt+1|Wt } represent
the hour-(t + 1) transition probabilities. Our solution technique does not require any
explicit assumption regarding the dependence of the exogenous random variables.

3.5 State-transition function

The state variables, pe
t , pu

t , pd
t , Dt , It , δu

t , and δd
t , evolve randomly according to the

following transition equations:

3 This is also why we define δu
t and δd

t as the hour-(t − 1) ratios, due to our time definition convention.
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pe
t+1 = p̂e

t+1 + pe
t ,

pu
t+1 = p̂u

t+1 + pu
t ,

pd
t+1 = p̂d

t+1 + pd
t ,

Dt+1 = D̂t+1 + Dt ,

It+1 = Ît+1 + It ,

δu
t+1 = δ̂u

t+1 + δu
t ,

and

δd
t+1 = δ̂d

t+1 + δd
t .

To define the state-transition function for the storage level of the battery, we first
define nu

t and nd
t as:

nu
t = max

{
0, δu

t ku
t−1 − ηd(xt−1 − R)+ ed

t−1 + el
t−1 − ec

t−1

}
(1)

and

nd
t = max

{
0, δd

t kd
t−1 − (R − xt−1)/η

c − ed
t−1 − el

t−1 + ec
t−1

}
. (2)

These equations define unserved regulation energy as the difference between the
amount of regulation called by the SO and the maximum amount of regulation energy
that the battery can feasibly provide. Equation (1) defines the maximum amount of
regulation-up energy that the battery can provide as the maximum that can be dis-
charged from the battery without violating energy constraints, plus the amount of
energy that the battery charges in hour t − 1 (since the battery can choose not to
charge this energy, which provides more energy in net to the SO). Equation (2) defines
the maximum amount of regulation-down energy that the battery can provide as the
maximum amount that can be charged plus the amount of energy that the battery
discharges in hour t − 1.

The storage level of the battery evolves according to the function:

xt+1 = θ(xt , Wt+1, at )

= xt + ηc(ec
t + δd

t+1kd
t − nd

t+1)− (ed
t + el

t + δu
t+1ku

t − nu
t+1)/η

d .

This function defines the storage level at the beginning of hour t + 1 as the starting
storage level at hour t plus net energy charged into the device, less efficiency losses.
Energy charged into the battery at hour t equals the sum of energy charged and the
amount of regulation down energy that the battery provides. Energy discharged is
defined analogously.
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3.6 Constraints

Total battery charging and discharging are both constrained to be less than the power
capacity of the battery:

0 ≤ ec
t + kd

t ≤ P
b
, (3)

and

0 ≤ ed
t + el

t + ku
t ≤ P

b
. (4)

The storage level of the battery is similarly constrained to be within its upper and
lower bounds:

R ≤ xt ≤ R. (5)

The total net power going into and out of the home is also constrained by the power
capacity of the building circuit. Moreover, there can only be net power flows into or
out of the house if there is not an outage:

− P
h
(1− It ) ≤ lt − el

t + ec
t − ed

t − ku
t , (6)

and

lt − el
t + ec

t − ed
t + kd

t ≤ P
h
(1− It ). (7)

The battery cannot be charged and arbitrage and regulation sales are not possible if
there is an outage:

ed
t , ec

t , kd
t , ku

t = 0, if It = 1. (8)

The building load served in each hour is constrained to be no greater than the
building demand:

lt ≤ Dt . (9)

The decision variables are also constrained to be non-negative:

ed
t , ec

t , el
t , lt , ku

t , kd
t ≥ 0. (10)

Constraints (6), (7), and (8) together force the building load to be either served by
the battery or left unserved in any time period with an outage. We let As denote the
set of decision vectors, a, that are feasible in constraints (3) through (10) when the
system is in the state s.
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3.7 Objective function

The net profit earned in hour t is given by:

Ct (St , at ) = pe
t (e

d
t − ec

t )− V L(Dt − lt )+ pu
t ku

t + pd
t kd

t

+ pe
t−1

[
δu

t ku
t−1 − (1+ V R)nu

t − δd
t kd

t−1 + (1− V R)nd
t

]
.

The first term, pe
t (e

d
t −ec

t ), is the revenue for energy sales. The term, V L(Dt−lt ), is
the penalty associated with unserved building load. The third term, pu

t ku
t + pd

t kd
t , is the

payment for regulation capacity sales. The final term, pe
t−1[δu

t ku
t−1 − (1+ V R)nu

t −
δd

t kd
t−1 + (1 − V R)nd

t ], is the revenue for net regulation energy provided, less the
penalty for unserved regulation energy.

Let Π denote the set of all feasible policies. A policy, Aπ
t (St ), is a mapping between

an hour-t state, St , and a feasible hour-t decision, a ∈ As . For each π ∈ Π define the
total expected discounted profit from hour t as:

Gπ
t (St ) = E

[
T∑

τ=t

γ τ−t Cτ (Sτ , Aπ
τ (Sτ ))

∣∣∣∣∣ St

]
. (11)

The objective is then to find an optimal policy π∗ that satisfies:

Gπ∗
t (St ) = sup

π∈Π
Gπ

t (St ),

for all 0 ≤ t ≤ T .

4 Solution technique

Finding exact solutions to our SDP is generally difficult due to the dimension of the
problem and the continuous state, decision, and random variables in the model. Thus,
we propose solving an approximate version of the SDP in a two-phase manner. In
the first phase, the exogenous state and decision variables are discretized, and optimal
policies and objective function values for each state are found by solving the discretized
SDP (DSDP) using backward induction. In the second phase a mixed-integer program
(MIP), in which the value function of the true SDP is approximated as piecewise-
linear using the optimal objective function values from the DSDP, is solved to obtain
a near-optimal policy. This MIP has a 1-h planning horizon and is solved in a rolling
fashion 1 h at a time. This provides a feasible policy and can be used to generate a
statistical lower bound on the optimal objective function value of the true SDP. We
further use a backcasting heuristic to find feasible policies, which also provides lower
bounds, and generate upper bounds using sample average approximation (SAA) and
sample path averaging methods. Throughout this discussion we use the notational
convention that state and action variables without tildes are from the continuous state
and action variable spaces, whereas variables with tildes are from the corresponding
discretization.
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4.1 Approximation algorithm

To give the formulation of the DSDP, we let Ãs̃ denote the set of decision variables, ã,
that are feasible in constraints (3) through (10) and satisfy the discretization when the
system is in state S̃. We define Jt as the set of possible values that S̃t can take. We also
define Prob{W̃t+1|W̃t } as the transition probabilities of the exogenous state variables
in the discretized space. Further details regarding the discretization and the transition
probabilities for the discrete exogenous state variables used in our case study are given
in Sect. 5.4.

We can define the following Bellman equation for the DSDP:

F̃t (S̃t ) = max
ãt∈ÃS̃t

Ct (S̃t , ãt )+ γ E

[
F̃t+1(S̃t+1)|S̃t

]
,

= max
ãt∈ÃS̃t

Ct (S̃t , ãt ) (12)

+ γ
∑

j∈Jt+1

Prob
{

W̃ j
t+1|W̃t

}
· F̃t+1

(
x̃ j

t+1, W̃ j
t+1

)
. (13)

Since we assume that the exogenous random variables are all Markovian, Bellman
equation (12) represents a Markov decision process, which can be solved using back-
ward induction. Solving the DSDP gives optimal objective function values, F̃∗t (S̃t ),
for each discretized state. These are used in the second phase to construct a MIP,
in which a piecewise-linear approximation of the value function of the true SDP is
used.

To formulate the MIP, we first define the piecewise-linear approximation of the hour-
t value function for a given state, W̃ j

t . This piecewise-linear function has breakpoints
at the possible discrete values that x̃t can take. If we define Mt as the number of values
that x̃t can take, then the piecewise-linear approximation for a given state, W̃ j

t , is given
by:

F pl
t (xt , W̃ j

t ) =
Mt−1∑
m=1

F̃∗t (x̃m+1
t , W̃ j

t )− F̃∗t (x̃m
t , W̃ j

t )

x̃m+1
t − x̃m

t

· qm, j
t ,

where:

Mt−1∑
m=1

qm, j
t = xt ,

0 ≤ qm, j
t ≤ ym, j

t · (x̃m+1
t − x̃m

t ),∀ m = 1, . . . , Mt − 1,

and

ym, j
t ≤ ym+1, j

t ∈ {0, 1},∀ m = 1, . . . , Mt − 1.
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The auxiliary variable, ym, j
t , indicates which piece of the approximation xt lies in,

and qm, j
t indicates how much storage capacity in each piece xt covers. For ease of

notation, we can also define the piecewise linear approximation as:

F pl
t (xt , W̃ j

t ) =
Mt−1∑
m=1

σ̃m
t (W̃ j

t ) · qm, j
t ,

where:

σ̃m
t (W̃ j

t ) = F̃∗t (x̃m+1
t , W̃ j

t )− F̃∗t (x̃m
t , W̃ j

t )

x̃m+1
t − x̃m

t

,

are the slopes of the piecewise-linear approximation. The formulation of the hour-t
MIP is then given by:

max
at∈ASt

F M I P
t (St , at ) = max

at∈ASt

Ct (St , at ) (14)

+γ
∑

j∈Jt+1

Prob
{

W̃ j
t+1|Wt

}
· F pl

t+1

(
θ

(
xt , W̃ j

t+1, at

)
, W̃ j

t+1

)
.

This MIP uses a piecewise linear approximation of the true cost-to-go function
of the SDP, which is constructed from the optimal value of the DSDP. The expected
cost-to-go, E

[
Ft+1(St+1)|St

]
, is computed numerically by averaging over the set

of discrete values that W̃t+1 is assumed to take in the DSDP. Given an exoge-
nous hour-t state, Wt , from the continuous space, we compute conditional transi-

tion probabilities, Prob
{

W̃ j
t+1|Wt

}
, to the discrete states, W̃ j

t+1, used in the DSDP.

This is generally done by discretizing the conditional distribution Prob {Wt+1|Wt },
and we describe in detail how this is in our case study in Sect. 5.4. The term,
θ
(
xt , W̃ j

t+1, at
)
, represents the hour-(t + 1) storage level resulting from the cho-

sen action, at , and the realized exogenous state, W̃ j
t+1, We do not restrict xt+1 to

take on a discretized value, since we interpolate on the storage variable. This also
allows the action variables to be chosen from the continuous space. Alternatively,
one could also attempt interpolation on the exogenous state variables. Our results
in Sect. 6.5 suggest, however, that interpolation on the storage level variable only
is sufficient, insomuch as this method provides policies with relatively small opti-
mality gaps. Note that this MIP only determines hour-t actions—our algorithm uses
a forward-rolling optimization method to find a policy over the full planning hori-
zon. The detailed formulation of the MIP, including all of the constraints, is given in
Appendix A.

An optimal solution of the MIP is feasible but not optimal in the true SDP. This is
because the only factors that are unknown when making hour-t decisions and affect the
system state at hour t+1 are the dispatch-to contract-ratios. However, since regulation
calls can go unserved, with a penalty, unserved regulation energy can be defined
accordingly to ensure feasibility of the solution. The pseudocode in Algorithm 1
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summarizes the approximation algorithm that we use to find near-optimal solutions to
our SDP. Steps 1 and 2 represent the first phase of the algorithm, in which the SDP is
discretized and the resulting DSDP is solved exactly using backward induction. The
second phase of the algorithm works by iterating through the hours of the optimization
horizon. In each hour, the exogenous variables, Wt , are first observed (step 5). Then
the amount of unserved regulation energy in hour t − 1 is updated, based on the
actual hour-(t − 1) dispatch-to-contract ratio (step 7) and the resulting energy level of
the battery is determined (step 8). Finally, the MIP is solved to determine the hour-t
actions, ât , (step 10) and the hour-t profit contribution is calculated (step 11).

Algorithm 1 Approximation Algorithm Pseudocode

1: Initialize: Discretize state and action variables xt , pe
t , pu

t , pd
t , Dt , It , δu

t , δd
t , ed

t , ec
t , el

t , lt , ku
t , and kd

t
2: Solve DSDP exactly using backward induction and obtain optimal objective function values, F̃∗t (S̃t ),

for each discretized state
3: Fix x1 equal to lowest discretized value of xt {assume battery starts empty}
4: for t = 1 to T do
5: Sample Wt from continuous random distribution
6: if t > 1 then
7: Let nu

t ← max
{

0, δu
t k̂u

t−1 − ηd (xt−1 − R)+ êd
t−1 + êl

t−1 − êc
t−1

}
and nd

t ← max{
0, δd

t k̂d
t−1 − (R − xt−1)/ηc − êd

t−1 − êl
t−1 + êc

t−1

}

{update hour-(t − 1) unserved regulation}
8: Let xt ← xt−1 + ηc(êc

t−1 + δd
t k̂d

t−1 − nd
t )− (êd

t−1 + êl
t−1 + δu

t k̂u
t−1 − nu

t )/ηd

{update hour-t storage level}
9: end if
10: Let ât ← arg maxat∈ASt

F M I P
t (St , at ) {solve the MIP}

11: Let Ct ← pe
t (êd

t − êc
t )− V L (Dt − l̂t )+ pu

t k̂u
t + pd

t k̂d
t + pe

t−1[δu
t k̂u

t−1 − (1+ V R)n̂u
t − δd

t k̂d
t−1 +

(1− V R)n̂d
t ] {calculate hour-t profit contribution}

12: end for

4.2 Statistical bounds

To evaluate the quality of the policies found by the approximation algorithm, we
compute two statistical lower and upper bounds on the optimized value of the SDP.
We say that an estimator, V̂N , is a valid statistical upper bound of the true optimal value,
V ∗, if V ∗ ≤ E [V̂N ], and similarly, V̂N is a valid statistical lower bound if E [V̂N ] ≤
V ∗, where N is the number of replications of the random variables underlying the
calculation of V̂N . The statistical bound, V̂N , is consistent if V̂N → V ∗ as N →∞.

We use implementable and feasible policies to generate lower bounds on the opti-
mized objective value of the SDP. A policy is implementable and feasible if it satisfies
the constraints of the problem and is nonanticipative. The resulting objective function
value from using such a policy provides a statistical lower bound on the optimal value
of the true SDP [30]. One of the lower bounds that we compute is found by randomly
generating sample paths, ω, of the exogenous random variables, W , and using the
approximation algorithm, outlined in Sect. 4.1, to derive a feasible policy. Because the
approximation algorithm assumes that the hour s > t exogenous random variables are
unknown when hour-t decisions are made, the policy is nonanticipative. Let G I F (ωi )
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denote the profit of the battery over the T -hour horizon given the sample path, ωi ,
of exogenous state variables. This is computed as the sum of the profit contributions
calculated in step 11 of Algorithm 1 when using an implementable and feasible policy
derived using the algorithm (this also gives rise to the superscript, I F , indicating that
the bound is generated using implementable and feasible policies). Note that step 11 of
Algorithm 1 computes the profit contributions using the ‘true’ values of the exogenous
state variables, drawn from the continuous space. Thus, G I F (ωi ) is a lower bound on
the value of the optimal objective function value of SDP over the T -hour horizon,
given ωi . The statistical lower bound using I sample paths is given by:

B I F
L =

1

I
I∑

i=1

G I F (ωi ).

We generate 100 of these statistical lower bounds, using a random sample of 1,000
i.i.d (independent and identically distributed) ωi ’s for each. By generating 100 repli-
cations of the lower bound, we compute a sample standard error, providing confidence
intervals.

Our other statistical lower bound is also generated from implementable and feasi-
ble policies, which are derived using a backcasting heuristic [8,9]. The pseudocode in
Algorithm 2 outlines the heuristic, which relies on the fact that the exogenous random
variables tend to exhibit diurnal patterns (we explicitly model these types of patterns
in our case study, as discussed in Sect. 5). The heuristic determines decisions in a
forward-rolling fashion. In each hour, the exogenous state variables, Wt , are observed
(step 2) and the starting storage level of the battery is updated based on the amount
of regulation energy called in the previous hour (steps 4 and 5). The exogenous ran-
dom variables in hours t + 1 through t + 23 are assumed to equal the actual values
from the previous day (step 7), and a deterministic linear program with a 24-h opti-
mization horizon is solved (step 8). Appendix B gives the detailed formulation of
this linear program. The hour-t action variables from the linear program solution are
used (step 9) and the hour-t profit contribution is computed based on these actions
(step 10).

As with our approximation algorithm, the backcasting heuristic generates imple-
mentable and feasible policies. This is because hour-t decisions are determined based
solely on historical information that is available at that time. The policy is feasible
because we compute the unserved regulation energy based on the actual dispatch-to-
contract ratio in each hour. Let G BC (ωi ) denote the profit of the battery over the T -hour
horizon given the sample path, ωi (the superscript, BC , indicates that this bound is
generated using the backcasting technique). This is given by the sum of profits over the
T -hour horizon using the policy derived by using Algorithm 2, as computed in step 11
of the algorithm. The statistical lower bound generated by applying the backcasting
heuristic to I sample paths is given by:

B BC
L = 1

I
I∑

i=1

G BC (ωi ).
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Algorithm 2 Backcasting Heuristic Pseudocode
1: Let x1 ← R {assume battery starts empty}
2: for t = 1 to T do
3: Sample Wt from continuous random distribution
4: if t > 1 then
5: Let nu

t ← max
{

0, δu
t k̂u

t−1 − ηd (xt−1 − R)+ êd
t−1 + êl

t−1 − êc
t−1

}
and nd

t ← max{
0, δd

t k̂d
t−1 − (R − xt−1)/ηc − êd

t−1 − êl
t−1 + êc

t−1

}

{update hour-(t − 1) unserved regulation}
6: Let xt ← xt−1 + ηc(êc

t−1 + δd
t k̂d

t−1 − nd
t )− (êd

t−1 + êl
t−1 + δu

t k̂u
t−1 − nu

t )/ηd

{update hour-t storage level}
7: end if
8: Let Wτ ← Wτ−24 ∀ τ = t + 1, . . . , t + 23 {assume previous day’s exogenous random variables

repeat themselves}
9: Solve the 24-hour deterministic linear program given in Appendix B, let {ȧτ }t+23

τ=t denote optimized
values of the decision variables

10: Let ât ← ȧt {save hour-t decision variables from the deterministic linear program solution only}
11: Let Ct ← pe

t (êd
t − êc

t )− V L (Dt − l̂t )+ pu
t k̂u

t + pd
t k̂d

t + pe
t−1[δu

t k̂u
t−1 − (1+ V R)n̂u

t − δd
t k̂d

t−1 +
(1− V R)n̂d

t ] {calculate hour-t profit contribution}
12: end for

As before, we generate 100 of these bounds using a random sample of 1,000 ωi ’s for
each.

We generate one set of upper bounds using a two-stage SAA technique. This is done
by solving a stochastic program, the formulation of which is given in Appendix C, in
which the expected profit of the battery is maximized with uncertain future exogenous
random variables. Specifically, the stochastic program has a two-stage scenario tree,
in which the first stage is hour 1 and the second stage is hours 2 through T . Thus,
the scenario tree assumes that hour-1 decisions are made without knowledge of the
exogenous random variables in hours 2 through T , while subsequent decisions are
made with full knowledge of future states. Let BS AA

U denote the optimal expected
objective function value of the problem in stage one (the superscript, S AA, indicates
that this bound is generated using an SAA). BS AA

U provides a valid statistical upper
bound on the optimized objective function value of the true SDP with a T -hour planning
horizon [30]. The scenario tree used has 20 sample paths and is randomly generated by
sampling from the exogenous random variable distributions.4 We generate and solve
1,000 of these stochastic programs in order to compute a standard error for the upper
bound.

Our other set of upper bounds is generated using a sample path averaging technique.
This bound is computed by randomly generating sample paths of the exogenous ran-
dom variables. For each sample path, ωi , of exogenous state variables we solve a
deterministic linear program in which the full sequence of random variable realiza-
tions is known in hour 1. The linear program has the same structure as that used for
the backcasting heuristic, and the formulation is given in Appendix B. Let G DET (ωi )

denote the profit of the battery over the T -hour horizon with the sample path, ωi (the

4 The scenario tree only has 20 sample paths because the resulting two-stage model is computationally
intractable with a larger tree.
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superscript, DET , indicates that this bound is generated using deterministic prob-
lems). The statistical upper bound generated by applying the averaging technique to
I sample paths is then given by:

B DET
U = 1

I
I∑

i=1

G DET (ωi ).

We generate 100 of these bounds using a random sample of 1,000 ωi ’s for each.
Sample average approximation gives a consistent statistical upper bound when the

random variables are mutually and serially independent [30]. Otherwise, applying a
conditional sampling scheme yields consistency with dependent random variables. In
our case study, the random variables, It , are serially dependent. We do not apply a
conditional sampling scheme, however, since even two conditional samples at each
stage yields 2167 sample paths, making the problem intractable. Hence, our SAA
technique does not guarantee consistent upper bounds.

5 Case study

To provide a numerical example of our model we study a case in which a single battery
is installed in a home in the state of Ohio. We assume that the home is in the PJM
Interconnection system, and use PJM market rules and data to set the parameter values
and the distribution of the random variables. In doing so, we use market and system
data from the summer of 2009 to study battery use and values over a ‘typical’ summer
week (a 168-h horizon).

5.1 Battery characteristics

We assume that the battery has an energy storage capacity of R = 11.2 kWh and a
minimum energy level of R = 3 kWh. The battery is also assumed to have a charging

and discharging capacity of P
b = 7.2 kW, which implies that it is connected to a

240 V/30 A appliance circuit. We assume 10 % efficiency losses when charging and
discharging the battery, meaning ηc = ηd = 0.9. This further implies that the battery
has a roundtrip efficiency of ηc · ηd = 0.81. The building is assumed to have a power

capacity of P
h = 10 kW, which is typical of homes in the region that we model.

5.2 Market assumptions

The PJM market treats regulation up and down as a single capacity product with a
single price, and we use this convention in our case study. In terms of our model,
this means that the state variables, pu

t and pd
t , are fixed equal to each other in every

hour (we define the value of these state variables as pu
t = pd

t = pr
t /2, where pr

t is
the regulation capacity price in hour t , so as not to double-count capacity payments).
The decision variables, ku

t and kd
t , are also constrained to equal each other in every

hour, since the battery cannot differentiate between sales of regulation-up and -down
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capacity. We let kt = ku
t = kd

t denote the amount of regulation capacity sold in hour t .
The dispatch-to-contract ratios, δu

t and δd
t , are not fixed equal to one another, because

the system may need more regulation energy in one direction than the other.
We assume that an unserved regulation deployment by the battery incurs a penalty

of V R = 0.15, based on PJM tariffs. This means that if the battery cannot supply
regulation-up energy, it must purchase replacement energy from the market at 115 %
of the real-time energy price. Likewise, if it cannot provide regulation-down energy,
then it must sell its excess energy to the market at 85 % of the real-time energy price. We
use a penalty cost of V L = $3.72/kWh on any unserved building load [31]. Because
we only model a single week, we assume a discount factor of γ = 1.

5.3 Exogenous random variables

Although our model does not require any specific correlation structure among the
exogenous random variables, p̂e

t , p̂u
t , p̂d

t , D̂t , Ît , δ̂u
t , and δ̂d

t , are all assumed to
be mutually independent in our case study. We further assume that the price, load,
and dispatch-to-contact ratio variables are serially independent through time. These
assumptions are based on empirical analyses of historical PJM and Ohio power system
data.

Historical energy and regulation capacity prices have little correlation—e.g., during
2009 these prices had a correlation of about−0.15. This is because high energy prices
signal less generating capacity being available and higher-cost generation having to be
used to serve the load, whereas high regulation prices signal a lack of fast-responding
generation. Indeed, energy prices tend to peak during the day when electricity demand
is the highest, whereas regulation prices can peak overnight when loads are low and
only baseload generators with slow ramping rates are online. These differences in the
diurnal price patterns also explain the slightly negative correlation between energy and
regulation prices. Tests of historical price data from the California ISO and Singapore
electricity markets show that energy price patterns best fit a log-normal distribution
[32,33]. Our own examination of 2009 PJM energy prices show similar results, and
as such we assume that the energy prices have a log-normal distribution. Although
the distribution of regulation prices has not been examined, our analysis of 2009 PJM
data shows that these prices also fit a log-normal distribution, which we assume. In
order to capture diurnal energy and regulation price patterns, we allow for different
location and scale parameters in the log-normal distributions for each of the 24 h of
the day. We fit these parameters using least-square estimation based on price data from
the PJM market in the summer of 2009.

Seppala [34] examines the statistical properties of the electricity demand of res-
idential homes. He compares several parametrized distribution functions and finds
that a log-normal distribution provides the best fit. Thus, we assume that the building
demand has a log-normal distribution and allow the location and scale parameters to
vary in each of the 24 h of the day. We fit these parameters using least-square estimation
based on historical residential load data for the summer of 2009 provided by AEP for
a set of its customers in Ohio. The loads correspond to a home that is approximately
200 m2 (2,200 ft2) in size. Although there is a relationship between energy prices
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and loads, we are modeling a single building which has only a marginal effect on the
system. Moreover, since we allow the distribution of the hourly prices and loads to
vary, this captures any coincidence in energy prices and building demand.

The distributions of the dispatch-to-contract ratios for regulation up and down are
estimated using least-square estimation based on historical PJM data from the summer
of 2009. These data specify the amount of regulation capacity reserved in each hour
and the amount of regulation energy deployed in real-time. The data do not show
any diurnal patterns in the ratios. As such, we assume that the distributions are time-
invariant. Hypothesis testing shows that a Gaussian distribution best fits the historical
data, which we use in our case study.

A number of approaches are used to model power system reliability, with Markov-
based models being the most common. The mechanics of component failure and
repair suggest that power system failure follows a Markov process with exponentially
distributed time between failures [35]. Semi-Markov models are also used, however
[36,37]. We model system outages using a two-state Markov chain in which the system
can either be in an outage or non-outage state. Transitions between these states depend
solely on the present state of the system, and the transition probabilities are time-
invariant. We use system reliability data reported by FirstEnergy in 2009, which had
an average of 1.24 outages per customer during the year which lasted an average of 2 h,
to estimate the transition probabilities. Based on these values, we assume a probability
of 0.000142 that the system has an outage at hour t + 1 if it is in a non-outage state at
hour t , and a probability of 0.5 that it recovers from an outage in each hour.

5.4 Model discretization and algorithm implementation

Table 1 summarizes the discretization of the state variables used in our approximation
algorithm. The underlying distributions of the p̂e

t , δ̂u
t , and δ̂d

t variables are discretized
into five possible outcomes using bracket medians. The distributions of the p̂u

t , p̂d
t

variables are similarly discretized into four possible outcomes and the distribution of
the D̂t variables into three possible outcomes. The outage variable, It , is assumed to
only take on two values, thus no further discretization of this variable is done. The
storage level state variable, xt , is discretized into 21 possible values with equal interval
widths between R and R. Because we assume that the regulation capacity prices, pu

t
and pd

t , equal each other in each hour, this eliminates one dimension of the state space
giving 63,000 possible states in each hour.

Table 1 Discretization of state
variables in approximation
algorithm

Variable Type Distribution Number of values

p̃e
t Exogenous Log-normal 5

p̃u
t = p̃d

t Exogenous Log-normal 4

D̃t Exogenous Log-normal 3

It Exogenous Bernoulli 2

δ̃u
t Exogenous Gaussian 5

δ̃d
t Exogenous Gaussian 5

x̃t Endogenous n/a 21
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Since we use bracket medians to discretize the price, building demand, and dispatch-
to-contract ratio variables, each discretized value is equally likely. Moreover, since we
assume that these variables and the outage state are mutually independent, we have
the following state-transition probabilities:

Prob
{

W̃t+1|Wt

}
= Prob

{
p̃e

t+1

} · Prob
{

p̃u
t+1(= p̃d

t+1)
}
· Prob

{
D̃t+1

}

·Prob {It+1|It } · Prob
{
δ̃u

t+1

}
· Prob

{
δ̃d

t+1

}

= 1

5
· 1

4
· 1

3
· Prob {It+1|It } · 1

5
· 1

5

= 1

1, 500
· Prob {It+1|It } ,

where the term, Prob
{

p̃u
t+1(= p̃d

t+1)
}
, highlights the fact that we restrict the regulation

prices to equal each other in each hour and Prob {It+1|It } depends on the hour-t outage
state.

The assumption that x̃t takes on only 21 possible values implies that the charging
and discharging variables, ẽd

t , ẽc
t , and ẽl

t , can take at most 21 values, corresponding to
possible state transitions between x̃t and x̃t+1. We discretize the regulation capacity
variables, k̃t , using 1 kW interval widths, which implies that these variables can take
on at most eight values. Table 2 summarizes the number of possible values that the
state variables can take in our discretization. Again, because we assume that the action
variables k̃u

t and k̃d
t must equal each other in each hour, this eliminates one dimension

of the action variable.
When solving the DSDP, we go through the action space and enumerate all feasible

combinations of action variables. However, the actual number of values that these
variables can take is significantly less than the product of the values in Table 2, due to
the power capacity constraints. Moreover, as it is suboptimal to charge and discharge
energy simultaneously for non-regulation sales (due to the efficiency losses), we can
eliminate action vectors in which both ẽc

t and ẽd
t are simultaneously positive from

consideration. The starting storage level, x̃t , and the outage state, It , also limit the
number of possible state transitions. Algorithm 3 summarizes the steps used for such
action enumeration, which reduces the total number of feasible actions in each hour to
170 (18 when there is an outage and 152 otherwise). In the algorithm, we define � as
the width of the intervals between the discrete values which the ẽd

t , ẽc
t , and ẽl

t variables

Table 2 Discretization of
action variables in
approximation algorithm

Variable Number of discretized
values

ẽd
t 21

ẽc
t 21

ẽl
t 21

l̃t 21

k̃t = k̃u
t = k̃d

t 8
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Algorithm 3 State Reduction Procedure Pseudocode
1: for t = 1 to T do
2: if It = 0 then
3: for k̃t = 0 to 7 do
4: Let αt ← R − k̃t {remaining power capacity for services other than regulation}
5: for ẽc

t = � to αt in increments of � do
6: Let ẽd

t , ẽl
t ← 0 {suboptimal to charge and discharge simultaneously}

7: end for
8: for ẽd

t = � to αt in increments of � do
9: for ẽl

t = � to αt − ẽd
t in increments of � do

10: Let ẽc
t ← 0 {suboptimal to charge and discharge simultaneously}

11: end for
12: end for
13: end for
14: else
15: for ẽl

t = 0 to P
b

in increments of � do
16: Let ẽd

t , ẽc
t , k̃t ← 0 {no grid services during outage}

17: end for
18: end if
19: end for

can take. In our case study, � = 0.41 kW. Note that due to the high penalty on unserved
building loads, the value of l̃t can be determined by constraints (6), (7), and (9) and the
values of It , ẽc

t , ẽd
t , ẽl

t , and k̃t . Specifically, if It = 1, then l̃t = min{D̃t , ẽl
t }. Otherwise,

if It = 0 and D̃t ≤ P
h
, then l̃t = D̃t . These two conditions are true due to the high

penalty on unserved building loads. Finally, if It = 0 and D̃t > P
h

then we let:

l̃t = P
h + ẽl

t .

6 Case study results

We study the interactions between and values of different storage applications by exam-
ining four cases, which allow the battery to be used for different storage applications.
We examine (1) arbitrage-only; (2) arbitrage and backup-energy; (3) arbitrage, backup-
energy, and regulation; and (4) arbitrage, backup-energy, regulation, and distribution-
relief cases. Since storage use depends on the realization of the exogenous random
variables, we use a common randomly generated sample path (which is drawn from
the continuous distributions) in our comparison between the four different cases.

6.1 Arbitrage-only

We first examine a case in which the battery is used solely for energy arbitrage. In
this case we assume that the system does not experience outages (i.e., we fix It = 0
with probability 1 for all t), that the battery cannot provide regulation (i.e., we fix

ku
t , kd

t = 0 ∀ t), and that the distribution system is not overloaded (i.e., Dt ≤ P
h

with
probability 1 for all t). Figure 1 shows hourly energy prices and net energy sales by the
battery in the arbitrage-only case on a single day. Because the battery is used solely
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Fig. 1 Net energy discharged from battery in arbitrage-only case

for arbitrage, the value generated by the battery is relatively low—the actual realized
value of the battery over the week amounts to about $1.85.

6.2 Backup energy

In the backup-energy case we relax the restriction that It be fixed equal to zero in every
hour and allow the system to experience outages according to the probabilities given
in Sect. 5.3. We still assume in this case that the battery cannot provide regulation and
that the distribution system is not overloaded by the building load. Figure 2 shows
the starting storage level of the battery in the arbitrage-only and arbitrage and backup
cases. The results are for the same day shown in Fig. 1. Comparing the two cases
shows that the storage level of the battery is kept higher in the backup-energy case,
in order to provide a safety stock of energy in case of an outage. This is done at the
expense of arbitrage profits since the battery is charged using higher-priced energy in
hour 3.

These battery usage patterns persist over the week—on average about 6.8 kWh of
energy is kept in storage in each hour in the backup-energy case as opposed to only
6.6 kWh in the arbitrage-only case. This higher storage level in the backup-energy
case translates into a very slight reduction in arbitrage profits of about a cent, since the
battery does less arbitrage. The energy in the battery provides about $0.20 of expected
benefit in averting the cost of a system outage (there are no outages during the week
that we simulate, thus we report the expected benefit based on the expected cost of

123



496 X. Xi et al.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

2

4

6

8

10

12

Hour

B
eg

in
ni

ng
 S

to
ra

ge
 L

ev
el

 (
kW

h)

10

20

30

40

50

60

70

80

90

A
ct

ua
l E

ne
rg

y 
P

ric
e 

($
/M

W
h)

Arbitrage−Only
Arbitrage and Backup

Energy Price

Fig. 2 Starting storage level of battery in arbitrage-only and arbitrage and backup-energy cases

lost load in each hour). If the optimized policy from the arbitrage-only case is used in
a system in which outages can occur, the energy in storage provides a benefit of about
$0.18 in averting expected lost load. Thus optimized battery use in the backup energy
case forgoes less than a cent of arbitrage profit to gain about two cents of expected
backup energy value.

6.3 Regulation services

In this case we allow the battery to provide regulation, by relaxing the constraint that
ku

t , kd
t = 0 ∀ t , as well as arbitrage and backup-energy services. When the battery can

provide regulation it almost exclusively provides this service and very little arbitrage.
This is because regulation is primarily a capacity service with little net charging of
energy, meaning that providing this service incurs very little cost and comparably high
revenue. Although the dispatch-to-contract ratio in a particular hour can be high—we
find cases of up to 0.35 in the historical PJM data—the regulation-up and -down
signals tend to cancel out in the long run. Our simulation has high ratios of up to 0.30,
but the average ratio over the week is much lower at −0.06, which is consistent with
the historical PJM data. Thus, on average, providing regulation results in small net
charging of the battery. This use of the battery reduces arbitrage profits even further
compared to the other two cases—the battery earns $1.25 over the course of the week
when regulation services are allowed—but the regulation profits of $23.90 more than
compensate for this.
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6.4 Distribution relief

In this case we assume that an added plug-in hybrid electric vehicle (PHEV) charging

load can overload the P
h = 10 kW power constraint of the electric circuit connected

to the home. We assume that the on-board PHEV battery has an energy capacity of
14 kWh and is charged using a 7.2 kW appliance circuit when parked at home. The
PHEV driving and charging patterns are assumed to be fixed and deterministic, and are
based on actual vehicle use data taken from an empirical fleet study [38]. The amount
of battery energy used when the PHEV is driven, which determines the overnight
charging load, is estimated using a dynamic vehicle simulator [39].

Figure 3 shows the hourly load profile of the home with and without the PHEV. The
loads are shown for two days on which the total load of the home exceeds the 10 kW
capacity with the addition of the PHEV. Figure 3 also shows the starting storage level
of the battery in each hour with and without the PHEV. When the PHEV is added,
extra energy is stored in the battery to relieve the building power constraint, which is
violated in hours 22 and 44. This use of the battery allows the home to avoid $18.81 in
costs associated with loads that would otherwise not be served due to the distribution
constraint during the week. As with the backup energy case, this reduces the market
value of the battery due to reduced arbitrage and regulation profits. For instance, to
keep a high SOC the battery buys an additional 2.7 kWh of energy during the two
days shown when the PHEV load is added. Moreover, the battery provides 2 kW-h
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Fig. 3 Total load of home and starting storage level of battery with and without PEV
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Table 3 Upper and lower bounds on optimized value of week-long SDP

Arbitrage-only Backup energy Regulation Distribution relief

B I F
L

Mean 1.77 1.76 25.14 24.47

SE 0.0034 0.0034 0.0065 0.0077

B BC
L

Mean 0.86 0.86 24.87 23.33

SE 0.0864 0.0864 0.2876 0.6419

BS AA
U

Mean 1.82 1.82 25.42 24.73

SE 0.128 0.128 0.342 0.407

B DET
U

Mean 1.82 1.82 25.42 24.73

SE 0.0021 0.0021 0.0075 0.0069

Gap (%) 2.6 3.1 1.1 1.0

less regulation capacity in hours 22 and 44, since the higher net load of the home may
prevent it from providing regulation down in real-time.

6.5 Solution quality

Table 3 summarizes the mean upper and lower bounds on the optimal value of the
SDP for the four storage application cases that we consider. It also provides standard
errors for the bounds and an average optimality gap bound. The optimality gap bound is
defined as the difference between the mean upper and lower bounds, as a percent of the
lower bound. Since the expected averted cost savings from providing backup energy
and distribution relief is not included in the objective function (rather, these costs are
subtracted if incurred), the objective function values decrease between the arbitrage-
only and backup energy and the regulation and distribution relief cases. The optimality
gaps are relatively small, showing that our approximation algorithm provides relatively
good near-optimal policies. Moreover, the gaps tend to be smaller in the cases in which
regulation service is provided. This is because the high profits from regulation imply
that an optimal policy is relatively insensitive to accurately forecasting future prices.
The gaps are higher in the arbitrage-only and backup energy cases since arbitrage
profits are more sensitive to accurately estimating energy price patterns. On the other
hand, the arbitrage-only and backup energy cases are less complex than the regulation
models, thus a finer discretization could be used which could provide better policies
with little incremental computational cost.

The results also show that the backcasting heuristic performs worse than our approx-
imation algorithm. In cases with regulation, the optimality gaps are reasonable, ranging
between 2 and 6 %. In the other cases, however, the optimality gaps are greater than
100 %. This suggests that the backcasting heuristic is considerably less reliable in
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cases involving energy arbitrage only. Nevertheless, the backcasting heuristic is sig-
nificantly less computationally expensive than our approximation algorithm, since the
method requires only solving a deterministic linear program. Thus the method may
be valuable, even in cases involving energy arbitrage only, due to the simplicity of
implementing it.

7 Conclusions

This paper introduces an SDP model that co-optimizes the use of a storage device that
is put to multiple uses, such as energy arbitrage, AS, backup energy, and distribution
relief. The model is applied to a case study in which a battery is installed in a residential
home. Although our example assumes a small battery used as distributed storage, the
model we develop can be applied to other settings and applications that we do not
consider. This can include large utility-scale storage that can charge and discharge
multiple consecutive hours on a MW scale.

Our results demonstrate that putting storage to multiple applications can introduce
tradeoffs between the uses. Some storage applications can interfere with others giving
subadditive values. In other cases, however, one application may increase the value
of another use. Table 4 summarizes the value of the battery over the week that we
simulate, and also annualizes this value on a $/kWh-year basis. This annualized value
computes the total value of the battery over a year, assuming that the week we examine
is representative of the year, and normalizes the value based on the 11.2 kWh storage
capacity of the battery. Table 4 also shows that distributed energy storage can be
valuable, provided the value can be captured. Some of the value streams, for instance
arbitrage and regulation, are easy to capture and quantify since these services are priced
in wholesale markets. Avoided outage and curtailment costs can be more difficult to
quantify, however, since they are averted costs that the customer does not bear. The
value of these applications is also sensitive to the value of lost load, which may vary
between customers. Avoided outages and curtailments can also provide value to the
utility, which we do not consider. Using a battery to avoid a customer outage can help a
utility meet its reliability requirements, while distribution relief can reduce loading on
distribution-level transformers, potentially extending their lives. These value streams
could further increase the value of distributed storage. While the design of contracts
and incentive mechanisms that capture such value and allocate it to the owner is an
important issue, it is beyond the scope of our work.
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Appendix A: Formulation of MIP

The formulation of the MIP, with the piecewise-linear approximation of the SDP value
function, is given by:

max
a,x,n,q,y

Ct (St , at )+ γ
∑

j∈Jt+1

Prob
{

W̃ j
t+1|Wt

}
·

Mt+1−1∑
m=1

σ̃m
t+1(W̃ j

t+1) · qm, j
t+1 ;

s.t. x j
t+1 = xt + ηc

(
ec

t + δ̃
d, j
t+1kd

t − nd, j
t+1

)
−

(
ed

t + el
t + δ̃

u, j
t+1ku

t − nu, j
t+1

)
/ηd ,

∀ j ∈ Jt+1; (15)

R ≤ x j
t+1 ≤ R, ∀ j ∈ Jt+1; (16)

0 ≤ ec
t + kd

t ≤ P
b; (17)

0 ≤ ed
t + el

t + ku
t ≤ P

b; (18)

−P
h
(1− It ) ≤ lt − el

t + ec
t − ed

t − ku
t ; (19)

lt − el
t + ec

t − ed
t + kd

t ≤ P
h
(1− It ); (20)

nu, j
t+1 = max

{
0, δ̃

u, j
t+1ku

t − ηd(xt − R)+ ed
t + el

t − ec
t

}
, ∀ j ∈ Jt+1;

(21)

nd, j
t+1 = max

{
0, δ̃

d, j
t+1kd

t − (R − xt )/η
c − ed

t − el
t + ec

t

}
, ∀ j ∈ Jt+1;

(22)

lt ≤ Dt ; (23)

ed
t , ec

t , kd
t , ku

t = 0, if It = 1; (24)

ed
t , ec

t , el
t , lt , ku

t , kd
t ≥ 0; (25)

nu, j
t+1, nd, j

t+1 ≥ 0, ∀ j ∈ Jt+1; (26)

Mt+1−1∑
m=1

qm, j
t+1 = x j

t+1, ∀ j ∈ Jt+1; (27)

0 ≤ qm, j
t+1 ≤ ym, j

t+1 · (x̃m+1
t − x̃m

t ), ∀ j ∈ Jt+1, m = 1, . . . , Mt+1 − 1;
(28)

ym, j
t+1 ≤ ym+1, j

t+1 ∈ {0, 1}, ∀ j ∈ Jt+1, m = 1, . . . , Mt+1 − 1. (29)
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Constraints (15) through (26) are the same set of constraints in the original SDP,
except that (15), (16), (21), (22), and (26) must hold for each possible realization of
W j

t+1. This is also why the hour-(t + 1) storage level is indexed by j , even though we

do not restrict it to any discretization. Rather, x j
t+1 represents the hour-(t + 1) storage

level resulting from the decisions chosen if the exogenous state, W̃ j
t+1, is realized, as

defined by (15).
We linearize the max operators in constraints (21) and (22) by representing the right-

hand-side of the equalities as piecewise-linear functions. Specifically, define ϒ
j
t+1 and

ϒ
j
t+1 as the minimum and maximum value that the term δ̃

u, j
t+1ku

t − ηd(xt − R)+ ed
t +

el
t − ec

t can take. We can then define two sets of auxiliary variables, zζ, j
t+1 and v

ζ, j
t+1,

where ζ ∈ {1, 2} and replace constraints (21) with:

nu, j
t+1 = ϒ

j
t+1z2, j

t+1,

and add the constraints:

2∑
ζ=1

zζ, j
t+1 = δ̃

u, j
t+1ku

t − ηd(xt − R)+ ed
t + el

t − ec
t , ∀ j ∈ Jt+1;

0 ≤ z1, j
t+1 ≤ −v

1, j
t+1 ·ϒ j

t+1, ∀ j ∈ Jt+1;
0 ≤ z2, j

t+1 ≤ v
2, j
t+1 · ϒ j

t+1, ∀ j ∈ Jt+1;
v

1, j
t+1 ≤ v

2, j
t+1 ∈ {0, 1}, ∀ j ∈ Jt+1.

Constraints (22) are linearized in the same manner. Constraints (27) through (29)
define the piecewise-linear approximation of the cost-to-go function.

Appendix B: Formulation of deterministic linear program

The formulation of the deterministic linear program, which is used for the backcasting
heuristic and the sample path average upper bound, is given by:

max
a,x

T∑
τ=t

γ τ−t Cτ (Sτ , aτ );

s.t. xτ+1 = xτ + ηc(ec
τ + δd

τ+1kd
τ − nd

τ+1)− (ed
τ + el

τ + δu
τ+1ku

τ − nu
τ+1)/η

d ,

∀ τ = t, . . . , T ;
R ≤ xτ ≤ R, ∀ τ = t, . . . , T ;
0 ≤ ec

τ + kd
τ ≤ P

b
, ∀ τ = t, . . . , T ;

0 ≤ ed
τ + el

τ + ku
τ ≤ P

b
, ∀ τ = t, . . . , T ;

−P
h
(1− Iτ ) ≤ lτ − el

τ + ec
τ − ed

τ − ku
τ , ∀ τ = t, . . . , T ;
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lτ − el
τ + ec

τ − ed
τ + kd

τ ≤ P
h
(1− Iτ ), ∀ τ = t, . . . , T ; (30)

nu
τ+1 = max

{
0, δu

τ+1ku
τ − ηd(xτ − R)+ ed

τ + el
τ − ec

τ

}
, ∀ τ = t, . . . , T ;

(31)

nd
τ+1 = max

{
0, δd

τ+1kd
τ − (R − xτ )/η

c − ed
τ − el

τ + ec
τ

}
, ∀ τ = t, . . . , T ;

(32)

lτ ≤ Dτ , ∀ τ = t, . . . , T ;
ed
τ , ec

τ , kd
τ , ku

τ = 0, if Iτ = 1, ∀ τ = t, . . . , T ;
ed
τ , ec

τ , el
τ , lτ , ku

τ , kd
τ , nu

τ+1, nd
τ+1 ≥ 0, ∀ τ = t, . . . , T .

The constraints of the LP are the same as those of the SDP, except that they are only
enforced for a single sample path of exogenous random variable realizations, since
the LP is deterministic. The max operators in constraints (31) and (32) are linearized
in the same manner used for the MIP outlined in Appendix A.

Appendix C: Formulation of two-stage stochastic program

We present the deterministic equivalent of the two-stage stochastic program used to
generate the SAA upper bounds. We define J as the number of leaves in the two-stage
scenario tree underlying the problem. A state variable with the superscript j and the
subscript t denotes the value of that variable in hour t if the sample path leading to
the j th leaf of the scenario tree is realized. Similarly, a decision variable with the
superscript j and the subscript t denotes the hour-t action taken if the sample path
leading to the j th leaf of the scenario tree is realized. The formulation of the stochastic
program is given by:

max
a,x

1

J

J∑
j=1

T∑
t=1

γ t−1Ct

(
S j

t , a j
t

)
;

s.t. x j
t+1 = x j

t + ηc
(

ec, j
t + δ

d, j
t+1kd, j

t − nd, j
t+1

)

−
(

ed, j
t + el, j

t + δ
u, j
t+1ku, j

t − nu, j
t+1

)
/ηd , ∀ j = 1, . . . , J, t = 1, . . . , T ;

R ≤ x j
t ≤ R, ∀ j = 1, . . . , J, t = 1, . . . , T ;

0 ≤ ec, j
t + kd, j

t ≤ P
b
, ∀ j = 1, . . . , J, t = 1, . . . , T ;

0 ≤ ed, j
t + el, j

t + ku, j
t ≤ P

b
, ∀ j = 1, . . . , J, t = 1, . . . , T ;

−P
h
(1− I j

t ) ≤ l j
t −el, j

t +ec, j
t − ed, j

t − ku, j
t ,∀ j=1, . . . , J, t=1, . . . , T ;

l j
t −el, j

t +ec, j
t −ed, j

t +kd, j
t ≤ P

h
(1− I j

t ),∀ j=1, . . . , J, t=1, . . . , T ;
nu, j

t+1 = max
{

0, δ
u, j
t+1ku, j

t − ηd(x j
t − R)+ ed, j

t + el, j
t − ec, j

t

}
, (33)

∀ j = 1, . . . , J, t = 1, . . . , T ;
nd, j

t+1 = max
{

0, δ
d, j
t+1kd, j

t − (R − x j
t )/ηc − ed, j

t − el, j
t + ec, j

t

}
, (34)

123



Stochastic dynamic program for optimization of energy storage 503

∀ j = 1, . . . , J, t = 1, . . . , T ;
l j
t ≤ D j

t , ∀ j = 1, . . . , J, t = 1, . . . , T ;
ed, j

t , ec, j
t , kd, j

t , ku, j
t = 0, if I j

t = 1, ∀ j = 1, . . . , J, t = 1, . . . , T ;
ed, j

t , ec, j
t , el, j

t , l j
t , ku, j

t , kd, j
t , nu, j

t+1, nd, j
t+1 ≥ 0, ∀ j=1, . . . , J, t=1, . . . , T ;

ed, j
1 = ed, j ′

1 , ∀ j, j ′ = 1, . . . , J ; (35)

ec, j
1 = ec, j ′

1 , ∀ j, j ′ = 1, . . . , J ; (36)

el, j
1 = el, j ′

1 , ∀ j, j ′ = 1, . . . , J ; (37)

l j
1 = l j ′

1 , ∀ j, j ′ = 1, . . . , J ; (38)

ku, j
1 = ku, j ′

1 , ∀ j, j ′ = 1, . . . , J ; (39)

kd, j
1 = kd, j ′

1 , ∀ j, j ′ = 1, . . . , J ; (40)

x j
1 = R, ∀ j = 1, . . . , J. (41)

The stochastic program includes the same set of constraints in the original SDP. The
max operators in constraints (33) and (34) are represented as piecewise-linear func-
tions in the same manner used for the MIP outlined in Appendix A. Constraints (35)
through (40) are nonanticipativity constraints, which force the stage-1 decisions in
hour 1 to be the same for all J leaves of the scenario tree. Constraints (41) initialize
the battery’s starting storage level to be empty.
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