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Abstract Over the past half-century, Optimal Power Flow (OPF) has become one
of the most important and widely studied nonlinear optimization problems. In gen-
eral, OPF seeks to optimize the operation of electric power generation, transmission,
and distribution networks subject to system constraints and control limits. Within
this framework, however, there is an extremely wide variety of OPF formulations
and solution methods. Moreover, the nature of OPF continues to evolve due to mod-
ern electricity markets and renewable resource integration. In this two-part survey,
we survey both the classical and recent OPF literature in order to provide a sound
context for the state of the art in OPF formulation and solution methods. The sur-
vey contributes a comprehensive discussion of specific optimization techniques that
have been applied to OPF, with an emphasis on the advantages, disadvantages, and
computational characteristics of each. Part I of the survey (this article) provides an
introduction and surveys the deterministic optimization methods that have been ap-
plied to OPF. Part II of the survey examines the recent trend towards stochastic, or
non-deterministic, search techniques and hybrid methods for OPF.
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Abbreviations

The following summarizes the meanings of abbreviations and acronyms used
throughout the paper:
AC Alternating Current
ASP Active Set and Penalty
BFGS Broyden-Fletcher-Goldfarb-Shanno (quasi-Newton method)
CG Conjugate Gradient
DC Direct Current
DFP Davidon-Fletcher-Powell (quasi-Newton method)
ECQ Extended Conic-Quadratic
HVDC High-Voltage Direct Current
FACTS Flexible AC Transmission Systems
GRG Generalized Reduced Gradient
IPM Interior Point Method
KKT Karush-Kuhn-Tucker (conditions for optimality)
LP Linear Programming
MBAL Modified Barrier-Augmented Lagrangian
MCC Multiple Centrality Corrections
MILP Mixed Integer Linear Programming
MINLP Mixed Integer-Nonlinear Programming
MW Megawatt
NC Nonlinear Complementarity
NLP Nonlinear Programming
OPF Optimal Power Flow
ORPF Optimal Reactive Power Flow
PC Predictor-Corrector
PD Primal-Dual
PDIPM Primal-Dual Interior Point Method
PDLB Primal-Dual Logarithmic Barrier
QP Quadratic Programming
RG Reduced Gradient
SCED Security-Constrained Economic Dispatch
SCIPM Step-Controlled Interior Point Method
SCUC Security-Constrained Unit Commitment
SDP Semi-Definite Programming
SLP Sequential Linear Programming
SQP Sequential Quadratic Programming
TRIPM Trust Region Interior Point Method
UPFC Unified Power Flow Controller
VAR Volt-Ampere Reactive
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1 Introduction

Worldwide, the electric power industry has witnessed significant changes over the
course of the past two decades. Deregulated electricity markets, first introduced in
Chile in 1990, are now commonplace. These competitive markets reduce costs, but
they also bring uncertainty to generation forecasting as power producers compete
to sell electricity. Meanwhile, in many places, consumer demand has outpaced in-
frastructure development, placing pressure on aging equipment. In addition, the in-
creased penetration of non-dispatchable renewable sources, such as wind and solar,
adds another degree of complexity to the scheduling of power flows. All these factors
contribute to the increasing need for fast and reliable optimization methods, tools,
and software that can address both security and economic issues simultaneously in
support of power system operation and control [149]. Optimal Power Flow (OPF) has
been the predominant method for such analysis since its introduction by Carpentier
in 1962 [26]. Optimization methods have been widely used in power system oper-
ation, analysis, and planning [48, 158]. However, existing OPF solution methods a
often prove inadequate for the increased complexity of modern OPF problems.

OPF seeks to optimize a given cost, planning, or reliability objective by control-
ling power flow within an electrical network without violating network power flow
constraints or system and equipment operating limits. Like conventional power flow
analysis, OPF determines voltage, current, and injected power throughout an electri-
cal power system, that is, the system’s state of operation. However, unlike conven-
tional power flow, OPF works with an underconstrained system: multiple solutions
are possible. OPF therefore performs multiple power flow iterations, modifying the
underconstrained variables in order to advance the objective.

The general OPF problem is a nonlinear, non-convex, large-scale optimization
problem which may contain both continuous and discrete control variables [16].
Many different OPF formulations have been developed to address specific instances
of the problem, using varying assumptions and selecting different objective func-
tions, controls, and system constraints. The resulting optimization problems go by
many names depending on the particular objective function being addressed and the
constraints under consideration. Regardless of the name, however, any power systems
optimization problem that includes a set of power flow equations in the constraints
may be classified as a form of OPF.

Many OPF solution methods have also been developed, each with distinct mathe-
matical characteristics and computational requirements. Almost every mathematical
programming approach that can be applied to OPF has been attempted and it has
taken developers many decades to develop software capable of solving OPF prob-
lems reliably [164]. Today, OPF studies and methods present flexible and powerful
tools which are widely used in industry applications, such as constrained economic
dispatch and voltage control problems [147]. However, real-life OPF problems are
often significantly more challenging than the classically considered problems and
OPF methods vary considerably in their adaptability to the modeling and solution
requirements of different engineering applications. Therefore, to date, there has been
no single formulation and solution approach suitable for all the various forms of OPF
problems.
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The difficulty of solving OPF problems increases significantly with increasing net-
work size and complexity. Recent industry developments have greatly increased elec-
tric power system complexity, pushing this issue to the forefront of OPF research. In
prior decades, utilities typically had relatively few generators compared to the num-
bers introduced today by the advent of independent power producers and large-scale
integration of distributed and renewable generation. Meanwhile, demand response
programs add variables to the load side of OPF problems. In addition, network power
flow constraints must incorporate advanced controls such as Flexible AC Transmis-
sion Systems (FACTS) devices. Unfortunately, these developments have discouraged
the use of OPF in many real-world applications [10, 123].

In this survey, we examine OPF formulations and their solution techniques from
an operations research perspective. There is a wide variety of OPF formulations and
optimization methods available in the literature with respect to these modern chal-
lenges, and the huge body of literature published in the past four decades precludes
the inclusion of an exhaustive list of publications within this survey. Instead, this
survey attempts a comprehensive overview of the optimization techniques applied to
OPF problems, illustrating each technique with a few key publications. In this way,
this survey is an extension of the book chapter [120] by way of the variety of methods
surveyed.

Several review papers of OPF were published in the 1990s: [34, 46, 67, 102,
103]. Zhang and Tolbert [180] surveyed a number of OPF methods, describing the
methodology of each in detail. More recently, Zhang [184] summarized the common
deterministic OPF methods while Xia and Elaiw [167] reviewed the optimal power
dynamic dispatch problem, including discussion of random search methods. Pandya
and Joshi [113] and Qiu et al. [119] have also surveyed several of the key algorithms
used to solve OPF problems. This survey differs from previous work in that it focuses
more specifically on cataloging and discussing the literature associated with the var-
ious solution methods. To the best knowledge of the authors, this survey is the most
comprehensive review of OPF algorithms for electric power systems available in the
literature to date, both in the number of referenced articles as well as in the number
of methods surveyed. (Although the concept of OPF has also been extended beyond
electric power systems [52], this survey does not examine such work.)

In writing this survey, our aim has been to provide a starting reference and a rich
resource for the operations researcher who may be unfamiliar with OPF. While bib-
liographic search engines provide a similar listing of references, they do not provide
context to aid the reader in locating the best articles to read first. In this survey, we
summarize the contributions of each article cited so that the reader may readily dis-
cern whether a given article is relevant to his or her research needs. For the reader
interested in finding more articles on OPF beyond those referenced here, we suggest
searching the following journals:

– IEEE Transactions on Power Systems (formerly IEEE Transactions on Power Ap-
paratus and Systems),

– International Journal of Electrical Power & Energy Systems,
– Electric Power Systems Research, and
– Energy Conversion and Management.
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These journals have the largest volume of OPF literature among the publications
surveyed.

Part I of the survey (this article) provides a general introduction to the OPF prob-
lem, describes the key requirements for OPF methods, and surveys deterministic op-
timization methods that have been applied to OPF. Part II of the survey examines the
trend towards stochastic, or non-deterministic, search techniques and hybrid methods
(including combinations of deterministic methods) that has occurred in the last two
decades and gives the survey conclusions [49].

The remainder of this article is organized as follows: In Sect. 2, we briefly discuss
the general mathematical programming framework and characteristics of OPF prob-
lems. In Sect. 3, we describe desirable characteristics of OPF methods, especially in
relation to recent industry developments. In Sect. 4, we focus on deterministic (clas-
sical) optimization methods which have been applied to OPF. We first describe the
applied methodology and, second, we survey the relevant literature. While some para-
graphs discuss the papers in chronological order, others highlight streams of research.
We summarize the deterministic methods with Sect. 5, however, we refer readers to
part II of the survey for conclusions [49]. Various abbreviations used throughout this
article are summarized above.

2 Formulations of OPF problems

2.1 Notation

We use the following notation in the discussion of OPF formulations and power flow
equations:

u controllable system variables
x dependent or state variables
f (u, x) objective function
g(u, x) vector function of equality constraints
h(u, x) vector function of inequality constraints
N total number of system buses
i, k indices corresponding to system buses
j the imaginary unit or 90◦ operator,

√−1
Pi real power injected at bus i (generation − load)
Qi reactive power injected at bus i (generation − load)
Vi voltage phasor at bus i

δi voltage angle at bus i

Ei real component of complex voltage at bus i

Fi imaginary component of complex voltage at bus i

Note: |V |∠δ = E + jF

Yik ikth element of the bus admittance matrix
θik angle of ikth element of the bus admittance matrix
Gik conductance (real component) of Yik

Bik susceptance (imaginary component) of Yik

Note: |Y |∠θ = G + jB
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2.2 General structure

The majority of OPF formulations may be represented using the following standard
form [81, 181]:

minf (u, x)

s.t. g(u, x) = 0

h(u, x) ≤ 0

The objective function f (u, x) represents the system’s optimization goal. f is usu-
ally a scalar function, but in multi-objective OPF it may be interpreted as a vector
function. Vector functions g(u, x) and h(u, x) represent system equality and inequal-
ity constraints, respectively. Depending on the selection of f , g, and h, the OPF
problem may become a linear, mixed integer-linear, nonlinear (likely non-convex),
or mixed integer-nonlinear programming problem; these cases are discussed in more
detail in Sect. 2.6.

In general, the computational challenge of solving an OPF formulation increases
substantially with the accuracy of the system representation. The presence of non-
convexity in the objective(s) and constraints make OPF problems especially chal-
lenging, both computationally and theoretically [5]. In addition, structurally “compli-
cated” constraints are difficult to handle in random or stochastic search techniques.
As a workaround, such constraints are often applied as penalties to the objective func-
tion.

2.3 Variables

All OPF formulations require variables to represent the electrical state of the sys-
tem. These electrical state variables are continuous. Most often, the state variables
of choice are bus voltage magnitude, bus voltage angle, and real and reactive power
injections at each bus. This representation is used in most early OPF formulations
and is also the most common representation found in recent papers [6, 18, 19, 26,
45, 145]. Alternative choices of state variables include current injections instead of
power injections or the representation of voltages in rectangular coordinates [76]. The
choice of state variables is dictated by the form of the power flow equations used.

Controllable variables typically include a subset of the state variables (for exam-
ple, real and reactive power injections at generation buses) as well as variables repre-
senting control device settings, such as transformer tap ratios. Control variables may
be continuous or discrete; in the case of switched devices or lines they are binary.
Control variables differ widely among OPF formulations based on the nature of the
particular problem under consideration. Table 1 summarizes the variables found in
the literature together with representative references.

2.4 Objective function

The most common OPF objective is the minimization of generation costs, with or
without consideration of system losses. In this way, OPF extends the classic eco-
nomic dispatch problem: classic economic dispatch controls only which generation
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Table 1 OPF problem variables
with selected references Variable Type(s) References

Control variables

Real/reactive power
generation

Continuous [54]

Regulated bus voltage
magnitude

Continuous [54]

Transformer tap settings Discrete [54, 128]

Transformer phase shifters Continuous, Discrete [32, 72]

Switched shunt reactive
devices

Binary [72]

Load to shed Continuous, Discrete [75]

MW interchange
transactions

Continuous [42, 186]

HVDC link MW controls Continuous [186]

FACTS controls Continuous, Discrete [2, 9]

Generator voltage control
settings

Continuous [186]

Standby start-up units Binary [42]

Line switching Binary [42]

State variables

Bus voltage magnitude Continuous [54, 188]

Bus voltage phase angle Continuous [32]

Bus voltage real &
imaginary parts

Continuous [76, 150]

Network power flow Continuous [85]

Branch currents Continuous [76]

Slack bus power Continuous [85]

Generator reactive power
output

Continuous [85]

units to dispatch while OPF controls all power flows within the system [18, 184]. (In
recent papers, the term “economic dispatch” is sometimes applied to OPF which has
the same objective function as the classic economic dispatch problem.) Generation
cost functions are often approximated using quadratic cost curves [76, 112], or with
piecewise linear sections [7].

However, many other OPF objectives are possible [184]. Besides minimization
of generation costs, the more common objectives include minimization of system
losses, maximization of power quality (often by minimizing voltage deviation), and
minimization of capital costs during system planning. Table 2 summarizes the ob-
jective functions found in the literature together with representative references. In
nearly all cases, the objectives are functions of the system real and reactive power
generation.
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Table 2 OPF problem
objectives with selected
references

Objective References

Total generation cost [18, 45]

Total network loss [98, 128]

Active/reactive power loss [54, 121]

Power transfer capability [32]

Number of controls rescheduled [42, 186]

Number of controls shifted [42, 186]

Cost of VAR investment [121]

Shift of control [188]

Optimal voltage profile [121, 188]

Load shedding [42, 130]

Environmental impact [42, 110]

System loadability [129]

Table 3 OPF problem
constraints with selected
references

Constraint References

Equality constraints

Full AC power flow [50, 129]

Decoupled AC power flow [18, 37]

DC power flow [12, 124]

Net active power export [42]

Steady-state security [6]

Other balance constraints [186]

Inequality constraints

Active/reactive power generation limits [31, 50]

Demand constraints [98]

Bus voltage limits [45, 50]

Branch flow limits [32, 72]

Control limits [8, 188]

Transmission interface limits [89, 107]

Active/reactive power reserve limits [107, 186]

Spinning reserve requirements [170]

Active/reactive power flow in a corridor [42, 186]

Transient security [43, 135]

Transient stability [32, 177]

Transient contingencies [42, 177]

Environmental constraints [42]

2.5 Constraints

OPF constraints may be categorized into equality constraints and inequality con-
straints, summarized in Table 3. Equality constraints g(u, x) include the power flow
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network equations and any other balance constraints. Several variations of the power
flow equations are present in the literature. The full version of the power flow equa-
tions is the alternating current (AC) power flow. OPF formulations incorporating the
AC power flow equations are both nonlinear and non-convex.

The majority of OPF formulations use the polar form of AC power flow:

Pi =
N∑

k=1

|Vi | |Vk| |Yik| cos (δi − δk − θik), (1)

Qi =
N∑

k=1

|Vi | |Vk| |Yik| sin (δi − δk − θik). (2)

The polar form is associated with the choice of voltage magnitude |V | and voltage
phase angle δ as state variables. A few recent papers use the rectangular form of AC
power flow instead [76, 131, 150]:

Pi =
N∑

k=1

Gik (EiEk + FiFk) + Bik (FiEk − EiFk), (3)

Qi =
N∑

k=1

Gik (FiEk − EiFk) − Bik (EiEk + FiFk). (4)

In the rectangular form, bus voltages are represented by their real and imaginary
components E and F rather than by magnitude and phase angle. The rectangular form
has the advantage of eliminating trigonometric functions from the constraint set and
of having constant second partial derivatives. Control elements, such as phase shifters
or variable transformer tap ratios, are often incorporated into (1)–(4) via appropriate
modifications to the admittance matrix elements. The power flow equations for OPF
are discussed in more detail in several textbooks [124, 164, 189].

In practical transmission systems, (1)–(2) exhibit an interesting and useful prop-
erty: changes in real power P are strongly coupled to changes in voltage angle δ while
changes in reactive power Q are strongly coupled to changes in changes in voltage
magnitude |V | [184]. This is true because the angles θ of admittance matrix elements
are typically near 90◦ (or −90◦) and adjacent bus voltage angles are typically close
together. As a result, the flow of system real power may be “decoupled” from the flow
of reactive power: real power becomes a function of δ and reactive power a function
of |V |. The OPF problem may then be decomposed into subproblems for the real and
reactive power flows [18]. Many OPF algorithms take advantage of this decomposi-
tion because it provides significant algorithm simplification while introducing only
a small amount of error. In particular, the reactive subproblem, called optimal reac-
tive power flow (ORPF), is often analyzed as a standalone problem. However, the
decoupled approach to OPF is not typically accurate when complex control devices
are present in the system [184].

Direct current (DC) power flow extends the decoupling principle to form a lin-
ear OPF constraint set.1 The DC power flow equations are obtained by applying two

1DC power flow is so named because the resulting equations resemble the behavior of direct current
systems. However, it still represents the operation of an AC electrical network.
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assumptions: (i) the elements of the admittance matrix Y are purely imaginary and
(ii) the difference between adjacent bus voltage angles is small. Under these assump-
tions, Yik = jBik , sin (δi − δk) ≈ δi − δk , and cos (δi − δk) ≈ 1. The resulting net-
work equations are bilinear in terms of voltage magnitude and angle:

Pi =
N∑

k=1

|Vi | |Vk| (Bik) (δi − δk), (5)

Qi =
N∑

k=1

|Vi | |Vk| (−Bik). (6)

In most cases, only the real power flow is considered and all bus voltage magnitudes
in (5) are approximated as 1.0. This results in the fully linearized DC power flow
equation:

Pi =
N∑

k=1

(Bik) (δi − δk). (7)

Use of DC power flow is attractive because it allows the development of a fully linear
constraint set. Many commercial and industry OPF formulations use the DC power
flow equations instead of AC power flow [12, 123, 124]. However, the simplifying
assumptions both neglect network losses and prevent accurate cost accounting for
reactive power [123]. Neglecting network losses introduces unacceptable levels of
error in large power system models [143].

Several methods are available to enhance the DC power flow equations to provide
an estimate of system losses [35, 143]. The majority of these techniques require the
use of AC power flow to provide a reference point at which to fix the system losses
for use in the DC power flow. With such enhancements, the overall performance of
DC power flow can be very good for accurately modeling MW flows. However, even
if the average error is minimal, very large errors in the model can occur for certain
branches in the power system [143].

The inequality constraints h(u, x) include minimum and maximum limits on con-
trol and state variables, such as bus voltage and line current magnitudes. Steady-state
stability constraints may be included as additional sets of power flow equations where
the admittance matrix has been modified to reflect specific contingency cases [6]. This
adds both equality and inequality constraints to the formulation. Other work has fo-
cused on incorporating transient stability constraints, often using iterative techniques
[95, 104, 142]. However, many transient security constraints may now be incorpo-
rated directly into h analytically, eliminating the need for external security monitor-
ing or additional iterations during the optimization process [32, 50].

2.6 Classification of OPF formulations

As previously noted, OPF formulations differ greatly depending on the particular
selection of variables, objective(s), and constraints. Because of the specialized nature
of OPF, the formulation selected often has implications for both solution method
design and solution accuracy. Here we identify and discuss the classes of formulations
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found in the literature in order to provide context for the solution methods discussed
in Sect. 4.

2.6.1 Nonlinear programming

The classic OPF formulation introduced by Carpentier [26] and used in the earli-
est papers discussing OPF solution methods is a continuous nonlinear programming
(NLP) formulation [45]. Discrete variables such as transformer tap settings are ap-
proximated as continuous for algorithmic simplicity. The variables are often divided
into a set of decision variables and a set of state variables, with the two sets related by
the power flow equations [164]. This approach reduces the set of variables on which
the optimization algorithm must operate and may improve the convexity characteris-
tics of the problem.

The main advantage of NLP formulations for OPF is that they accurately capture
power system behavior. However, the computational and theoretical challenges asso-
ciated with NLP motivated the development of simplified formulations, as discussed
below. In addition, certain NLP formulations redefine the problem variables to re-
duce the degree of nonlinearity, thereby improving the computational aspects of the
problem, [9, 71, 90].

Recently, Lavaei and co-workers published a series of papers, where a globally
optimal solution for the OPF problem (under some mild conditions) can be obtained
by solving the dual problem. The dual problems are (convex) semidefinite program-
ming problems. The clue is that a zero duality gap can be proven under the condition
that the dual posses a solution that a certain semidefinite matrix has a zero eigenvalue
of multiplicity two. It turns out that this condition is satisfied for the IEEE benchmark
systems when a small resistance is added to all transformers that originally possess a
zero resistance [82, 83, 137].

2.6.2 Linear programming

Although the OPF problem is natively nonlinear and non-convex, linear programming
(LP) formulations for OPF are attractive because they allow the use of well-developed
LP solution methods, such as the Simplex Method. Such methods are highly desir-
able for many reasons: efficient handling of inequality constraints, quick recogni-
tion of problem infeasibility, speed, reliability, and (especially) excellent convergence
properties. In addition, LP formulations are convex, and therefore guarantee a global
optimal solution.

Any LP formulation for OPF involves simplifying assumptions and linearization.
The simplest and most direct application of LP to OPF is the use of the DC power
flow formulation discussed in Sect. 2.5 with a linear (or linearized) objective function
[124]. Since the DC power flow constraint set is fully linear, no further constraint
linearization is needed. In contrast to other linearization techniques, DC-OPF is non-
iterative; only a single solve is required to yield the optimal solution. Because of
its simplicity, speed, and robust nature, DC-OPF is widely used in industry [123].
Another common technique is to linearize the power system equations around the
current operating point [143, 164]; this forms the basis for many OPF algorithms that
employ sequential linear programming (SLP).



232 S. Frank et al.

While simplified formulations are adequate for some OPF problems, in many cases
the simplifications seriously compromise the accuracy of the solution. LP approaches
work quite well in case of separable and convex objective functions, such as the min-
imization of the total generation costs. However, in case of non-separable objective
function—for instance, the minimization of the transmission losses—LP based OPF
formulations are not as effective, producing significant inaccuracy. In such cases, the
implementation of the algorithm must be done carefully to obtain a meaningful solu-
tion [42].

Additionally, the global optimal solution of the LP formulation is not guaranteed
to be the global optimum of the original NLP problem, and may not even be a feasible
solution at all. It is also difficult to model complex power systems controls using LP.
These limitations restrict the applicability of LP methods for many OPF applications
[101, 180]. Nevertheless, through careful formulation and algorithm development,
LP methods have been widely applied to OPF with success.

2.6.3 Quadratic programming

Quadratic programming (QP) is a special form of nonlinear programming in which
the objective function is quadratic of the form 1

2xT Qx + qT x and all constraints
are linear. In general, if matrix Q is positive semidefinite, then the corresponding
quadratic program is convex and its optimal solutions are completely characterized by
the Karush-Kuhn-Tucker (KKT) conditions. However, if the matrix Q is not positive
semidefinite, the quadratic program may have many local minima and algorithms
typically cannot guarantee global optimality [65].

QP-based OPF was introduced as alternative to LP for cases where LP formu-
lations perform poorly, such as for loss minimization. Like LP, QP requires a local
linearization of the power system constraints, and therefore suffers from many of the
same accuracy issues. However, QP can directly represent quadratic objective func-
tions, such as generator cost functions. Besides more accurately representing the true
objective function, this also allows QP-based algorithms to converge in some cases
where LP-based methods would diverge.

Glavitsch and Spoerry [53] demonstrated a non-sparse QP OPF formulation based
on incremental power flow, using the rectangular power flow formulation, while
Burchett et al. [19] presented a sparse implementation for large-scale power systems
suitable for use with sequential quadratic programming (SQP). Contaxis et al. [37]
implemented a decoupled QP formulation. The decoupled subproblems are suitable
for SQP or, if linearized cost curves are used, for SLP. The decoupled formulation is
similar to that described in [19], but Contaxis et al. discuss the functional form of the
constraints in detail.

2.6.4 Mixed integer linear programming

Continuous LP, QP, and NLP formulations cannot accurately model discrete control
elements, such as transformer tap ratios or switched capacitor banks. Discrete vari-
ables present one of the most challenging aspects of OPF. Capitanescu and Wehenkel
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[21] discuss some heuristic techniques that have been used to deal with discrete vari-
ables. However, none of these methods is entirely satisfactory. For example, the com-
mon technique of approximating discrete variables as continuous and then rounding
them to the nearest discrete value may lead to suboptimal or even infeasible solutions
[21].

Another option is to linearize the system and applied mixed integer linear pro-
gramming (MILP) techniques. These MILP formulations are often solved with se-
quential approach similar to SLP. MILP retains many of the benefits of LP while
also accommodating discrete variables. However, like LP, MILP formulations cannot
fully represent the nonlinearity of the power system, and therefore suffer some inher-
ent inaccuracy. Lobato et al. [92] presented an MILP formulation for capacitor control
action suitable for an SLP-type approach, while Zhang and Ren [88] demonstrated a
MILP formulation for optimal phase shifter placement based on the DC power flow
equations.

2.6.5 Mixed integer nonlinear programming

It is mixed integer nonlinear programming (MINLP), however, that provides the most
accurate, and most complex, way to represent power systems with discrete control el-
ements. Unfortunately, mixed integer nonlinear programs are by far the most difficult
type of optimization problem. Therefore, there is a strong tradeoff between system
accuracy and problem tractability. MINLP formulations are commonly used with the
nondeterministic (heuristic) solution approaches discussed in Part II of this survey,
but are much less commonly used with deterministic methods.

Unfortunately, few papers give clear, complete MINLP formulations for the OPF
problems described and solved. However, we refer the interested reader to Rashidi
and El-Hawary [122] and Subbaraj and Rajnarayanan [144] for reasonable exam-
ples of MINLP OPF formulations. Additionally, security-constrained unit commit-
ment (SCUC) is a special case of MINLP OPF where future generation is committed
(scheduled) subject to power system constraints and generator operating constraints.
Committed units (generators) are modeled using integer variables, hence the need for
an MINLP formulation. The SCUC problem is one of the most important for power
systems operators as well as one of the most difficult to solve. Bai and Wei [11]
provide a thorough discussion of SCUC, including a detailed formulation.

3 Requirements for OPF methods

As electric power systems migrate from vertically integrated utilities to competitive
market structures, they place increasingly complex demands on OPF algorithms. The
presence of bottlenecks in the grid affects the total supply cost, limiting production
of the least expensive plants and forcing the dispatch of more costly generation. In
response, utilities have introduced FACTS devices and other sophisticated controls
to alleviate bottlenecks and maximize line utilization [184]. These controls must be
accounted for within OPF formulations. Simultaneously, utilities are using more com-
plex models for generation and distribution equipment. These models are often em-
pirical, and may not have derivatives or explicit formulations. Incorporation of such
models also greatly increases OPF complexity.
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Competitive markets and the rise of renewable generation have also greatly in-
creased system complexity through the introduction of more generators and intercon-
nections. Distributed generation is particularly problematic because it requires that
portions of the distribution system be modeled in addition to the transmission net-
work. The resulting system models can have many more variables than in previous
decades, but are nevertheless more tightly constrained as demand outpaces growth in
transmission capacity.

This increase in power system size and complexity has prevented full AC-OPF
from being widely adopted in real-time operation. Instead, system operators often
use simplified DC-OPF tools [123]. Originally, AC-OPF was not used due to a lack
of efficient AC-OPF algorithms and sufficiently powerful computer hardware. Now,
however, the primary concern is algorithm robustness [5], especially when used as a
dispatch tool for competitive markets. In addition, the decentralized nature of com-
petitive markets presents unique concerns for the use of OPF (which is by nature a
centralized planning tool) [60].

Previous work has identified a number of desirable features for OPF programs
[101, 160]. Here, we discuss these features in relation to recent industry develop-
ments:

– High computational speed: Speed has always been a key need for practical OPF
algorithms, especially in real-time applications and when dealing with very large
power systems. However, competitive markets and renewable generation have re-
duced scheduling intervals from day-ahead blocks to hourly or sub-hourly win-
dows. Accordingly, OPF software must now yield robust solutions in a matter
of minutes. In addition, computational efficiency is necessary in order to address
complex requirements such as in probabilistic OPF and security-constrained OPF,
to perform iterative optimization, and to rapidly compute necessary system ad-
justments under emergency conditions. Finally, greater computational efficiency is
required in order to incorporate the more extensive and complex models now used
in the utility industry.

– Reliability of solution: For an OPF algorithm to be used in market applications, it
must be able to reliably achieve a solution for ill-conditioned problems, in outage
studies, and for real-time applications.

– Robustness of solution: OPF solutions must be insensitive to initial points and sta-
ble with respect to changes in the power system operating constraints. In particular,
the algorithm must be able to handle small parameter changes that cause local in-
feasibility or large changes in the optimal solution point [5]. This is especially crit-
ical for real-time OPF, as it must return solutions that may be immediately applied
to functioning power systems.

– Flexibility/versatility: The algorithm must have the ability to handle both conven-
tional and special features and must be suitable for incorporation into more com-
plex control processes, such as energy management systems.

– Incorporation of security constraints: The move of the electric power industry to-
ward competitive markets has created systems where security and economic issues
are more tightly interconnected than before. Because competitive markets com-
plicate utilities’ ability to evaluate system security using pre-evaluated studies, it
is vital to monitor OPF solutions for system security. The inclusion of security
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constraints directly within the OPF formulation therefore presents a significant ad-
vantage.

– Discrete modeling: Modern power systems use a large number of discrete controls,
such as transformer tap settings, switched capacitor banks, and branch switching.
In order to assist system operators in achieving optimal use of these controls, OPF
algorithms must model discrete devices in an efficient but realistic manner.

– Incorporation of multiple objectives: Although cost is the primary objective for
dispatch of generation, environmental factors now play an increasing role in choice
of electricity source. The ability to simultaneously optimize multiple objectives is
therefore highly desirable (for instance, minimization of both operating costs and
carbon emissions).

– Incorporation of multiple time periods: As scheduling horizons become shorter, it
is desirable to optimally schedule generation across multiple time periods. Multi-
period OPF requires incorporation of generator start-up and shut-down costs, ramp
rates for thermal generation, forecasting for renewable generation, and changing
load conditions [4].

– Probabilistic modeling: The use of probabilistic OPF enables analysis of the uncer-
tainties inherent in generation price bids in competitive markets [86, 157], renew-
able generation, and uncertainty in future load, such as the energy consumption of
plug-in hybrid electric vehicles.

– Low storage requirements: Although computer storage is now cheap and plentiful,
low storage requirements are still desirable for OPF with very large systems and
in the use of computers with small core storage availability, for instance personal
computers in online applications or microcomputers for distributed control.

– Simplicity: In order to be commercially viable, OPF algorithms must be easy to
understand and simple enough for rapid incorporation into energy management
software.

It is very difficult to include all these features in a single algorithm, so OPF al-
gorithms continue to be tailored for specific applications. Of these features, Wang
et al. [160] state that future OPF research should emphasize algorithm robustness,
accuracy, and scalability in light of the changing roles of OPF in market-oriented
applications.

4 Deterministic optimization methods

In this section, we discuss the deterministic (classical) optimization methods which
have been applied to OPF problems. The majority of the classical techniques dis-
cussed in the literature use one of the following methods: gradient methods, Newton’s
method, the Simplex Method, Sequential Linear Programming (SLP), Sequential
Quadratic Programming (SQP), and Interior Point Methods (IPMs). Here, we briefly
summarize the merits of each method and discuss representative articles demonstrat-
ing how the method has been applied to OPF. In some cases, there is significant
overlap among the methods. Where this is the case, we state the nature of the overlap
for the reader’s reference.
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4.1 Gradient methods

Gradient methods were among the first attempts to solve practical OPF problems at
the end of the 1960s. Gradient methods can be divided into three lines of research:
the Reduced Gradient (RG) method, Conjugate Gradient (CG) method, and General-
ized Reduced Gradient (GRG) method. Gradient methods use the 1st order derivative
vector ∇f (xk) of the objective function of an NLP (that is, the gradient) to determine
improving directions for the solution in iterative steps. Gradient methods are reliable,
easy to implement, and guaranteed to converge for well-behaved functions. However,
gradient methods are slow compared to higher-order methods. Moreover, because
they do not evaluate the 2nd order derivative, they are guaranteed to find a stationary
point only (which may not be a true local optimum). Global optimality can only be
proven for convex optimization problems, which excludes most OPF formulations.

4.1.1 Reduced gradient method

The RG method was proposed by Wolf [163] to solve NLP problems with linear con-
straints. The linear constraints allow the partition of the variables into basic variables
(or dependent variables) and non-basic variables (or independent variables)—a tech-
nique commonly used in LP. This allows expressing the basic variables as a linear
function of the non-basic variables. The basic variables in the objective function can
then be substituted by this linear relation. Maintaining feasibility of the non-basic
variables is straightforward, but bounds on the basic variables and other inequality
constraints must be enforced by adding indirect penalty terms to the objective func-
tion. The first derivative of this modified objective function is called the reduced
gradient.

Like all gradient methods, the RG method improves the solution iteratively by
moving along the direction of the reduced gradient while ensuring feasibility of the
variables. Convergence is reached when the gradient becomes zero. If the KKT con-
ditions are satisfied at this point, then it is a local optimum [46]. Although the RG
method is guaranteed to converge as long as a local stationary point exists, it exhibits
a well-known “zig-zag” search characteristic that slows convergence near the optimal
solution.

Dommel and Tinney [45] were the first to apply the RG method to OPF, using
penalty techniques to enforce the limits on the dependent variables and the functional
constraints. This original work relied on 1st order information of the (nonlinear) ob-
jective and the constraints derived from the Jacobian matrix computed from a con-
ventional power flow.

Dommel and Tinney’s work was highly influential in subsequent OPF research and
foundational to the development of commercial OPF algorithms [27, 102]. Alsac and
Stott [6] extended the work of Dommel and Tinney to N − 1 security-constrained
OPF by adding predetermined contingency cases to the power flow equations and
penalizing security violations of these cases in the objective function. Fernandes et
al. [47] successfully applied the RG method with penalty factors to reactive OPF.
Wang et al. [161] later parallelized the RG method to make it more applicable to
multi-area systems.
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More recently, Jamoulle and Dupont [74] provided an overview of the historic de-
velopment of RG and GRG methods for OPF in a technical report. Furthermore, the
authors applied an RG method using a two-level optimization procedure that guar-
antees feasibility, ensures a monotonically decreasing objective, and enables near-
Newton type convergence. Their method is similar to the GRG methods in that they
allow variable base.

4.1.2 Conjugate gradient method

The CG method is an improvement of the RG method and is one of the most well-
known iterative methods for solving NLP problems with sparse systems of linear
equations. Instead of using the negative reduced gradient as the direction of steepest
descent, the CG method chooses the descent direction vector as a conjugate version of
successive gradients by adding the current negative gradient vector to a scaled, linear
combination of previous search directions. This scalar value can be computed, for
instance, with the Fletcher-Reeves method or the Polak-Ribiere method [46]. The CG
method presents several advantages over the RG method. First, the search direction
is always nonzero and linearly independent of all previous directions vectors, that
is, the search directions are non-interfering. This helps avoid the “zig-zag” search
characteristic inherent to the RG method. Furthermore, the number of steps until a
solution is attained is bounded by the number of variables in the problem.

Burchett et al. demonstrated several advantages of CG for OPF, particularly the
improvement in search characteristic over the RG method [18]. The authors also
found that CG can be a favorable alternative to quasi-Newton approaches for prob-
lems with large reduced Hessians. The CG method has also been widely applied as
the search mechanism for other, more general algorithms, such as SQP and the GRG
method [19].

4.1.3 Generalized reduced gradient method

The RG method was extended by Abadie and Carpentier [1] to the GRG method to
enable direct treatment of inequality and nonlinear constraints. Like the RG method,
the GRG method partitions the variables into basic and non-basic variable sets. How-
ever, rather than use penalty functions, the GRG method modifies the constraints such
that the required change in the basic variables can be computed directly from the non-
basic variables. To accomplish this, slack variables are introduced for all inequality
constraints and the constraints are linearized about the current operating point. Then,
a generalized reduced gradient may be defined from the objective function that com-
putes the total incremental change in the objective function considering both basic
and non-basic variables.

The result of this operation is a series of subproblems with linear constraints; these
subproblems are solved using the RG or CG method [28]. Since the linearization
introduces error in the constraints, an additional step is required to modify the basic
variables at the end of each iteration to recovery feasibility. In OPF, this feasibility
recovery is performed by (for example) solving a conventional power flow [117]. At
the final optimal solution, the approximated problem possesses the same solution as
the original NLP. Vanderplaats [154] provides a good overview of the GRG method.
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Peschon et al. [117] first described the application of the GRG method to OPF,
clearly documenting the procedure and presenting the benefits of the GRG method.
These benefits include the avoidance of penalty terms and the straightforward com-
putation of sensitivities. Yu et al. [175] extended the GRG method to address OPF
problems with tap-changing transformers and several different objective functions.
Recently, de Carvalho et al. [28] combined aspects of GRG with the augmented La-
grangian and log-barrier techniques. This approach contrasts with standard GRG,
where slack variables are used to eliminate the inequality constraints.

4.2 Newton’s method

Newton’s method is a 2nd order method for unconstrained optimization based on
the application of a 2nd order Taylor series expansion about the current candidate
solution. For a given objective function f (x), Newton’s method defines the search
direction sk = −H(xk)

−1∇f (xk), where H(xk) is the Hessian matrix of f (x) at xk .
The algorithm then computes a step size αk in direction sk that yields the greatest
improvement in the objective function. (For classical Newton’s method, the step is
size is fixed at αk = 1; this yields the exact optimum of the quadratic approximation
of the objective function about xk .) Newton’s method is well-known for its quadratic
convergence properties under some mild assumptions in the neighborhood of the so-
lution [44]. However, the method is not guaranteed to converge to a local minimum
unless the Hessian matrix is positive semidefinite in the vicinity of the minimum point
[154].

When applied to constrained optimization (such as OPF), Newton’s method re-
quires the use of the Lagrangian function, which includes penalty terms for the con-
straints. As with the gradient methods, the variables may be divided into dependent
and independent variable sets to reduce the possible search directions. Limits on the
independent variables are enforced directly during each move. Appropriate penalty
factors for the equality constraints may be evaluated directly as part of the solution
search process [164]. Inequality constraints must either be treated as equality con-
straints or omitted, depending on whether they are binding at the optimal solution.
The active inequalities are not known prior to the solution; identification of the active
inequality constraints is a major challenge for Newton-based OPF [63].

Although Dommel and Tinney recognized that the Newton’s method could be ap-
plied to OPF, they did not use it because the computational requirements were ex-
cessive at the time [45]. However, Sasson et al. [134] presented an early version of
Newton-based OPF. The authors’ formulation did not use the Lagrangian but rather
a series of heuristically computed penalty factors. Sun et al. [145] presented a more
efficient algorithm employing the Lagrangian. The authors’ major contribution was a
heuristic scheme for inequality constraint relaxation and enforcement, with the con-
straints enforced at their limits based on engineering judgment. This method is known
as an active set and penalty (ASP) method. Hong [64] discussed the algorithmic im-
plementation of Newton-based OPF, including numerical efficiency and ensuring al-
gorithm stability.

A significant body of work has focused on identifying and enforcing the active in-
equality constraints. Maria and Findlay [94] proposed an LP approach to efficiently
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identify the active constraint set and also discussed methods for ensuring local con-
vexity by modifying the Hessian matrix. Santos et al. [133] and later da Costa [38]
discussed primal-dual (PD) methods which augment the Lagrangian with quadratic
penalty factors. Such methods perform better in the case on non-convexity in the
original Lagrangian. The challenge lies in appropriate selection and adjustment of the
penalty multipliers. Crisan and Mohtadi [40] proposed an ASP technique to identify
and enforce only the inequality constraints with the worst violations, thus avoiding
oscillations and slow progress toward the optimal solution. However, at the optimal
solution, all binding inequality constraints are enforced. da Costa et al. [39] sum-
marized and compared three constraint enforcement methods: ASP, PD, and primal-
dual logarithmic-barrier (PDLB) (an IPM). In the authors’ numerical tests, the ASP
method consistently performed faster and with fewer iterations, but the solutions were
usually infeasible until the local optimum is obtained.

The difficulty of enforcing inequality constraints was a motivating factor in the ap-
plication of IPMs to OPF; see Sect. 4.6. However, Tognola and Bacher [148] proposed
an “unlimited point” algorithm for OPF based on a penalty-factor formulation similar
to that employed by IPMs, but which uses a variable transformation to eliminate the
nonnegativity restrictions on the dual and slack variables. The resulting KKT condi-
tions can be solved directly with Newton’s method without checking variable bounds.
Taking a different approach, Adibi et al. [3] applied a modified, barrier-augmented
Lagrangian (MBAL) method to the problem of optimizing transformer tap settings,
arguing that the MBAL method is more robust than IPMs.

4.2.1 Quasi-Newton methods

A major disadvantage of Newton’s method is that the calculation and inversion of
the Hessian matrix is very computationally intensive. This has inspired the devel-
opment of various quasi-Newton methods: methods which approximate the Hessian
matrix using various efficient algorithms. In some cases, quasi-Newton methods can
be significantly faster than the full Newton’s method; in others the performance is
poor because the approximate Hessian matrix fails to indicate efficient search direc-
tions. Nocedal and Wright [108] contains additional information on quasi-Newton
methods.

Housos and Irisarri [66] discussed the performance the two most common
quasi-Newton methods—the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method
and Davidon-Fletcher-Powell (DFP) method—with respect to OPF. The authors con-
cluded that, if combined with appropriate heuristic controls, these methods can ef-
fectively solve the classical OPF problem. Additionally, quasi-Newton methods were
used as the local solver in some early SQP algorithms for OPF [19]. However, in
recent years quasi-Newton methods have not received much attention because the
Hessian matrix of most OPF formulations is not difficult to develop analytically and
matrix manipulation techniques have reduced the computational difficulties associ-
ated with matrix inversion.

4.3 Simplex method

The Simplex Method is perhaps the oldest and most robust formal optimization
method for LP. The Simplex Method exploits the convexity of linear programs (both
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in the objective and the constraint set) by systematically exploring the vertices of
the feasible region until no further improvement to the objective function is possible.
Although in theory the Simplex Method is (in the worst case) an exponential time
algorithm [80], in practice, the Simplex Method performs extremely well for most
LP problems [136].

The Simplex Method may be applied directly to DC-OPF formulations, and has
also been applied to incremental linear models of power systems. Incremental models
seek to optimize operation via small changes around a base point, and are therefore
well suited for online OPF. The simplest of these algorithms apply a single lineariza-
tion only and seek a local optimal solution. Stott and Hobson [140] provide an ex-
cellent discussion of DC-OPF vs. OPF using incremental linear models. Stott and
Marinho [141] is a useful example: the authors used incremental LP models to alle-
viate line overloads and perform security-constrained economic dispatch (SCED) of
generation. The Simplex Method is also the solver used for many SLP algorithms for
OPF.

4.4 Sequential linear programming

The majority of LP-based OPF algorithms in the published literature do not use a sin-
gle linearization. Rather, they implement a form of Sequential Linear Programming
(SLP), also known as Successive Linear Programming. SLP is an extension of LP
introduced by Griffith and Stewart [58] that allows the optimization of problems with
nonlinear characteristics via a series of linear approximations. The original NLP is re-
duced to an LP using a linear approximation of the objective function and constraints
about an initial estimate of the optimal solution. The resulting LP is then solved, a
new linearization is performed about the new solution point, and the process repeats
until convergence [17, 179]. The solver selected is typically a variant of the Simplex
Method or an IPM; papers combining SLP with IPM are discussed in Sect. 4.6.

SLP handles all types of continuous constraints easily and provides speed, flexi-
bility, and accuracy for specific applications. SLP methods with only a few binding
constraints in the solution have simple, rapid initialization and can detect infeasibility
at an early stage of the optimization process [42]. A major weakness of SLP is that it
cannot find an optimum for NLPs in which the linearization yields an unconstrained
search direction. This can be overcome by using the concept of a “trust region” to
which the LP search is restricted [13].

In SLP as applied to OPF, an optimal solution is obtained by iterating between
conventional power flow and linearized LP subproblems [187]. Specifically, at each
iteration the linearization is performed by generating a 1st order Taylor series ex-
pansion about the solution of a conventional power flow. SLP is desirable for OPF
because it retains the speed of LP but approaches the accuracy of NLP methods. In
addition, SLP can guarantee improvement in the objective function at every iteration
[7]. However, because the linear program is constructed around a current operating
point, these methods find local optima only. In addition, the linearization process can
lead to oscillation as the algorithm approaches the optimum [127], or to slow conver-
gence and even divergence in the case of highly nonlinear objective functions [62].

Mota-Palomino and Quintana [105] applied SLP to reactive power dispatch us-
ing a penalty-factor LP technique, placing an emphasis on algorithm performance.
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Kirschen and Meeteren [79] presented a novel SLP technique allowing the reschedul-
ing of active power controls to correct voltage magnitude problems even when using
a decoupled optimization approach. Alsac et al. [7] describe a general framework for
applying SLP to a wide variety of OPF problems. The authors report that their ap-
proach has been successfully implemented in commercial OPF software and yields
the same results as Newton and gradient methods for power systems of any size and
type.

SLP has also been used for reactive power planning. Iba et al. [68] discussed con-
vergence and numerical performance issues related to using SLP for reactive power
planning. Thomas et al. [146] applied a heuristic method for optimizing security-
constrained reactive power planning by solving a series of single state reactive power
cost minimization problems with SLP. Yehia et al. [174] proposed a trade-off method-
ology for solving reactive power compensation problems considering both technical
and economic objectives. The authors used SLP to solve the individual optimization
problems, linearizing the system with respect to the current voltage magnitudes.

More recently, Zehar and Sayah [178] used SLP to solve a multi-objective OPF,
minimizing generation costs and emissions. The authors used a variable weighting
factor to accommodate the two objectives in a single function. The authors’ use a
fixed size trust region limiting the maximum deviation of the decision variables from
the current operating points. This approach reduces error between the LP subproblem
and the original NLP, but also slows solution progress.

4.5 Sequential quadratic programming

Sequential Quadratic Programming (SQP), also known as Successive Quadratic Pro-
gramming, is the solution of an NLP problem by solving a series of QP problems that
converge to the optimal solution of the original problem [13, 14]. In this way, SQP is
similar to SLP. At each iteration, the algorithm generates a quadratic program that ap-
proximates the behavior of the NLP problem about a particular operating point (typi-
cally, the optimal solution from the previous QP iteration). Next, the QP subproblem
is solved to optimality. The optimal solution of the QP subproblem then forms the
starting point for the next SQP iteration, and the process is iterated to convergence.
SQP can be significantly more efficient than general NLP approaches and has been
successfully applied in a number of research and commercial OPF algorithms. How-
ever, like SLP, SQP can suffer from oscillations when nearing the optimal solution
[127].

In nearly all SQP implementations for OPF, conventional power flow is used to
linearize the constraints at each iteration, then a deterministic optimization method
is used to solve the resulting QP. The use of conventional power flow to perform the
linearization increases computational efficiency. In the implementation of Burchett et
al. [19, 20], a gradient method combined with Simplex Method-like iterations pro-
vides the solution for the QP subproblems. The SQP procedure described in Contaxis
et al. [37] is similar, but the authors do not specify with NLP optimization method is
used to solve the QP subproblems. For loss minimization, Chang et al. [30] presented
a practical application of SQP using Newton’s method, introducing several heuristic
techniques to improve algorithm performance.
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Grudinin extended earlier SQP work by formulating a quadratic-separable algo-
rithm for SCED and a QP algorithm for reactive power optimization [61, 62]. Both
papers discuss the use of multiple objectives via proportional weighting of objective
functions. Lehmköster [84] applied SQP to cost minimization, incorporating control
of FACTS devices and market constraints. Lin et al. [91] applied SQP to a reactive
power cost minimization problem while incorporating a minimum voltage stability
margin constraint. The main contribution of these papers is the description and de-
velopment of new OPF constraints and objectives suitable for use with SQP.

Other authors have proposed modifications to SQP to accommodate specific OPF
problem characteristics, specifically nonconvexity. Granelli and Montagna [56] intro-
duced two modifications to an SCED SQP algorithm: the use of a diagonal approx-
imation of the Hessian matrix of the QP subproblems in order to ensure convexity
and the addition of algorithmic steps designed to rapidly detect infeasibility. In order
to ensure convexity in the QP subproblems, Berizzi et al. [15] used the Han-Powell
method (a modification of SQP) to solve an SCED problem incorporating the control
of FACTS devices.

4.6 Interior point methods

Interior Point Methods (IPMs) are a family of projective scaling algorithms for solv-
ing linear and nonlinear optimization problems that constrain the search to the fea-
sible region by introducing barrier terms to the objective function. In general, IPMs
attempt to determine and follow a central path through the feasible region to the op-
timal solution. The first IPM was introduced by Karmarkar [77] as a replacement
for the Simplex Method for LP. Karmarkar’s work was later refined by many other
researchers, and IPMs have been shown to be highly competitive with the Simplex
Method, especially for large problems, degenerate linear programs, and stochastic
programs. For linear programs, IPMs approach the boundary (and therefore the opti-
mal solution) only in the limit and require significantly more complex computations
at each iteration than the Simplex Method [108]. However, IPMs also achieve supe-
rior progress at each iteration, greatly reducing the number of iterations and often
reducing the total solution time as well. IPMs have a pseudo-polynomial bound on
the worse-case running time that is better than ellipsoid algorithms [59]; such a bound
is not known for the Simplex Method.

Spurred by the success of IPMs for LP, researchers have extended IPMs to NLP
problems. When applied to NLP, IPMs use a variant of Newton’s method to simul-
taneously solve for the decision variables, slack variables, and appropriate values of
the Lagrange multipliers to ensure that the KKT conditions are met at the optimal
solution point [108]. A key feature of IPMs is the enforcement of feasibility, either
using (typically logarithmic) barrier terms in the augmented objective function or
by directly manipulating the required KKT conditions. (If an algorithm starts at an
infeasible point, artificial variables may be used to regain feasibility until a strictly
feasible point for the original constraint set is found.) Modern IPMs present three
appealing characteristics: ease of handling inequality constraints through the use of
barrier functions, rapid convergence, and the ability to solve a problem without start-
ing from a strictly feasible initial point [23, 57, 166].
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The earliest application of IPMs to OPF was the use of linear IPMs to replace the
Simplex Method as the optimization algorithm used for SLP-based OPF. Motivated
by Karmarkar’s work, both Vargas et al. [156] and Lu and Unum [93] solved an
SCED problem using SLP and the dual affine IPM for linear programming. Momoh
et al. [100] extended Karmarkar’s algorithm to SQP and applied it to reactive power
planning. Later, Momoh and Zhu [99] further improved the same algorithm; Zhu
[189] provides an excellent summary of the resulting method.

In the OPF literature, several enhancements over earlier IPMs have now achieved
popularity, including Primal-Dual Interior Point Methods (PDIPMs) [57], Mehrotra’s
predictor-corrector (PC) techniques [70, 150, 162], Gondizio’s multiple-centrality
corrections (MCC) PDIPM [23, 152], and trust region techniques [78, 97]. Castron-
uovo et al. [29] compared the numerical performance of several of these methods.

4.6.1 Primal-Dual interior point methods

Primal-Dual Interior Point Methods (PDIPMs) are a class of IPMs that directly solve
for the primal, dual, and slack variables of a linear or nonlinear program as it ap-
proaches optimality. To relate the variables, PDIPMs formulate a set of nonlinear
equations representing the KKT conditions of the barrier augmented Lagrangian
function for the optimization problem given a heuristic barrier parameter μ, or (equiv-
alently) a set of “perturbed” KKT conditions for the unaugmented Lagrangian given a
heuristic complementarity parameter μ [108]. μ may be fixed or updated dynamically
as the algorithm progresses, yielding a wide variety of PDIPM algorithms. In prac-
tice, μ governs the balance between algorithmic progress toward a reduced objective
function value and adherence to the central path of the feasible region. By proper
selection of μ, PDIPMs can ensure that long steps toward optimality are possible at
each iteration, reducing the total number of required iterations. However, finding the
proper selection and update procedure for μ is a key challenge. Since the solution
at each iteration must remain feasible with respect to the problem dual variables and
slacks, an improperly selected μ can yield a search direction which drastically short-
ens Newton step lengths [22]. Further technical discussion of PDIPMs may be found
in Wright [165] and Nocedal and Wright [108].

PDIPMs have demonstrated excellent performance in solving many OPF prob-
lem variants, including SCED, reactive power dispatch, determination of the stability
margin, and reactive power planning. PDIPMs are perhaps the most popular deter-
ministic algorithm discussed in recent OPF research. Granville [57] pioneered the
application of PDIPMs to the OPF problem, extending earlier PDIPMs for LP and
QP to the NLP case of the reactive power dispatch problem. Granville observed that
the PDIPM offered several key advantages over earlier Newton approaches, includ-
ing no requirement to identify the active constraint set and no requirement to have an
initial feasible solution.

Granville’s work inspired a great deal of research, some of which has focused on
improving the performance of PDIPMs with respect to the unique nature of power
flow constraints. Vanti et al. [155] proposed a modified PDIPM which uses a merit
function to enhance the convergence properties of earlier PDIPMs for OPF. The merit
function allows a modification of search direction when progress from the Newton
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steps is poor. Zhang et al. [183] contributed a simplified OPF formulation using rect-
angular coordinates and current mismatches. The authors report that the resulting
simplifications to the Hessian matrix reduce computational effort and yield simpler
computer code. Qiu et al. [118] parallelized a PDIPM for security-constrained OPF
by using a transformed problem structure with a block diagonal matrix representation
of the Newton update equations, allowing considerable speedup. Bai and Wei [11]
proposed an MINLP model for SCUC by using semi-definite programming (SDP)
and solved it using a specialized PDIPM. The primary advantage of using SDP is that
a solution can be obtained in polynomial run time.

Other research has focused on the application of PDIPMs to various types of OPF
problems. Several authors have used PDIPMs to address power system loadability.
Parker et al. [115] applied a PDIPM with a fixed 1/x type barrier parameter to deter-
mine the reactive power margin of a transmission system, reporting that the PDIPM
was more reliable than active-set methods. Both Irisarri et al. [69] and Dai et al. [41]
applied PDIPMs to calculate the maximum loadability of a power system. A key con-
tribution of Dai et al. is the discussion of the impact of barrier parameter selection on
algorithmic oscillations near the boundary of the feasible region.

PDIPM approaches have been extended to include complex control elements. For
instance, Zhang et al. used PDIPM as the solution algorithm for a general OPF formu-
lation that incorporates models for Unified Power Flow Controllers (UPFCs) [182,
185]. de Oliveira et al. [111] used a PDIPM as the local solver within an iterative
method to determine optimal switch states for a radial distribution system.

4.6.2 Predictor-Corrector PDIPM

Mehrotra introduced predictor-corrector (PC) techniques for PDIPMs as a method
for improving the search direction at each iteration [96]. Mehrotra’s 2nd order PC-
PDIPM uses a two-step process at each iteration: a prediction and a correction. The
prediction step searches in the affine-scaling direction, that is, the Newton direc-
tion that (neglecting the bounds on the decision variables) provides the greatest im-
provement to optimality. Subsequently, the correction step dynamically estimates the
proper value for the barrier parameter μ and restores centrality to the solution. This
approach is often more efficient both computationally and in number of iterations
than conventional PDIPMs [132].

Mehrotra’s technique was developed for LP, and both Yan and Quintana [173] and
Xiao et al. [169] employed PC-PDIPMs for LP as the solver for SLP-based OPF;
Xiao et al. also introduced an OPF model for FACTS devices. However, much more
research has been dedicated to extending Mehrotra’s technique to NLP. PC-PDIPM
has been implemented with considerable success for nonlinear OPF, including for
large scale problems.

Wu et al. [166], Irisarri et al. [69], and Torres and Quintana [150] all compared
conventional PDIPM with PC-PDIPM. The work of Wu et al. established the at-
tractive convergence and speed characteristics of PC-PDIPM over PDIPM and also
discussed a number of practical considerations. Irisarri et al. calculated maximum
system loadability while Torres and Quintana optimized transmission losses; both
sets of authors concluded that PC-PDIPM has considerable potential to improve the
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performance of practical OPF algorithms. Similarly, Garzillo et al.[51] reported ap-
proximately 20 % savings in calculation time through use of PC-PDIPM over con-
ventional PDIPM for several active and reactive power dispatch test cases. Wei et al.
[162] reported a 15 % improvement in CPU time and a 50 % improvement in storage
requirements over conventional PDIPM via the use of a PC-PDIPM with an efficient,
novel data structure.

Most recent papers on PC-PDIPMs for OPF focus on improvements to increase
algorithmic efficiency and the development of effective models for complex system
controls. Jabr et al. [73] described a step length filter to improve convergence. Jabr
[70] then compared a symmetric PC-PDIPM with the earlier asymmetric approaches
of Torres and Quintana and Wei et al. In particular, Jabr investigated practical perfor-
mance issues, such as stopping criteria, the selection of a good starting point, and how
to ensure local convexity at the solution. In the area of controls modeling, Yan et al.
[172] introduced a tap-changing transformer model that retains the quadratic nature
of OPF in rectangular coordinates, hence retaining constant Hessian matrices. Thus,
the Hessian needs to be calculated only once, increasing the efficiency of PC-PDIPM
iterations. Jabr [71] used a variable transformation to model the OPF problem in ex-
tended conic-quadratic (ECQ) format, which linearizes some of the power injection
equations and simplifies several constraints. The resulting problem is solved via a
PC-PDIPM. Jabr reported that the ECQ-OPF also allows efficient representation of
both regulating transformers (including phase shifters) and UPFC devices.

Lin et al. [90] reformulated the OPF problem using a hybrid equivalent current
injection approach, reporting that the resulting problem has smaller storage require-
ments and may be solved faster by PC-PDIPM. Azevedo et al. [9] took a different
approach, using a network flow model instead of OPF in polar or rectangular coordi-
nates. The authors reported that FACTS devices can be included in the model without
significantly increasing computational requirements and that PC-PDIPM was able to
solve the formulation quickly and reliably for several large test cases.

Two papers have addressed cases where infeasibility or poor starting conditions
can cause PC-PDIPM to diverge. Chiang et al. [33] developed a two-step algorithm:
the first step finds a feasible solution as a starting point, and the second step applies
PC-PDIPM to find a local optimum. The authors reported that their algorithm con-
verges in several cases where PC-PDIPM alone diverges. Moyano and Salgado [106]
observed that in some cases, PC-PDIPM based OPF fails to converge because there is
no feasible solution. They describe a procedure for relaxing the demand constraints
such that the PC-PDIPM algorithm can still converge even in the case of infeasibility.
The relaxation technique has little effect on algorithm efficiency and does not alter
the optimal solution if the original problem is feasible.

4.6.3 Multiple centrality corrections PDIPM

The success of PC-PDIPM led to research into the use of multiple corrections dur-
ing each PC-PDIPM iteration in order to achieve the best possible step direction
[25]. Among multiple correction methods, Gondzio’s Multiple Centrality Corrections
(MCC) approach is one of the most efficient and widely implemented [55]. Gondzio
observed that in practice Mehrotra’s PC-PDIPM method fails to make significant
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progress in cases when some of the complementarity products of the primal and dual
variables differ by several orders of magnitude. In such cases, the iteration is badly
centered. To address these cases, Gondzio proposed a heuristic method which first
solves for the affine scaling direction, and then subsequently modifies this direction
repeatedly to reduce the difference in complementarity products after the proposed
step (thereby improving the centrality of the next iteration). The correction procedure
makes use of the same Jacobian matrix as the prediction procedure, and therefore
adds minimal computational burden. The correction may be repeated any number of
times, but in practice is terminated after a set number of corrections or when the in-
cremental improvement to centrality becomes small. Use of the MCC method at each
iteration ensures that step lengths remain long, accelerating algorithm convergence.

As with PC-PDIPM, MCC-PDIPM was originally developed for LP but has been
extended to NLP-based OPF. Torres and Quintana [152] describe in detail the appli-
cation of MCC-PDIPM to NLP in general and a complex OPF formulation in partic-
ular. The authors observe that the PC-PDIPM and MCC-PDIPM algorithms are able
to solve some difficult cases where regular PDIPM fails and also that MCC-PDIPM
consistently performs more efficiently than PC-PDIPM. Similarly, Capitanescu et al.
evaluated MCC-PDIPM for OPF and compared it to other PDIPM methods [22, 23].
The authors’ results show that MCC-PDIPM typically reduces total iterations com-
pared to PC-PDIPM and is competitive in overall computation time as well, especially
for highly nonlinear formulations.

Rider et al. [126] proposed an efficient method for computing the optimal step size
for the primal and dual variables as part of each MCC-PDIPM iteration. Later, Rider
et al. [125] made some further modifications to MCC-PDIPM by combining cer-
tain aspects of previous PC-PDIPM and MCC-PDIPM algorithms, reporting slightly
improved performance compared to Gondzio’s original approach. Capitanescu et al.
[24] applied MCC-PDIPM to an MINLP OPF problem where integrality constraints
are enforced via the use of nonlinear equilibrium constraints. The authors compared
various methods of constraint enforcement and their impact on the algorithm’s nu-
merical stability.

4.6.4 Trust region interior point methods

Deterministic optimization methods in general perform an iterative search of the so-
lution space by forming an approximation of the problem at each iteration and using
it to define both a search direction and a new trial point. Trust region methods in-
troduce the concept of quality to the local approximation: the approximate model at
each iteration is only trusted within a locally bounded region, called the trust region.
Thus, trust region methods limit the search at each iteration. By dynamically restrict-
ing the search to the region where the approximation is good, trust region methods
can mitigate the effects of problem nonlinearity, nonconvexity, and ill-conditioning
[176].

Trust region interior point methods (TRIPMs) consist of a trust region method
combined with any of the IPM techniques discussed above. As applied to OPF,
TRIPMs have been primarily used in combination with SLP and SQP. Min and
Shengsong [97] applied a trust region MCC-PDIPM to SLP-based OPF by using a
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ratio test between predicted and actual merit function improvement. Sousa et al. [138,
139] demonstrated a two-part, SQP-based TRIPM designed to facilitate convergence
for very difficult OPF problem cases, demonstrating that the TRIPM converged in
cases where other PDIPM algorithms failed. The papers document a practical illus-
tration of the global convergence properties of the TRIPM, rather than a formal proof.
Karoui et al. [78] applied the KNITRO IPM software to an SCED problem, noting its
use of a trust region to control direction and step length.

Step-controlled IPM (SCIPM) is another convergence-enhancing method similar
to TRIPM. SCIPMs restrict step length not based on an explicit trust region but rather
by monitoring solution accuracy along the search vector. Wang et al. [159, 160] com-
pared a TRIPM to SCIPM for the case of discrete market price points. Such pricing
jumps cause convergence difficulties for standard PDIPMs, but the authors found that
both a TRIPM and a SCIPM were able to solve the OPF. The authors concluded that
in practice, the SCIPM is superior due to its computational efficiency.

4.7 Additional methods

Benders’ decomposition Yamin et al. [171] applied Benders’ decomposition to-
wards a dynamic OPF problem. The transmission security constraints are checked
by solving Bender’s subproblems; a Benders’ cut is passed to the Master Problem
when the transmission security constraints are violated. A linearized model for the
transmission security constraints is proposed. This leads to a globally convergent al-
gorithm because the subproblems are LPs.

Li and McCalley [87] proposed a risk-based optimal power flow problem, which
minimizes operational cost considering the system’s reliability. A risk index is used to
quantify the risk associated with system’s operation decisions. The authors proposed
a Benders’ Decomposition algorithm where the Master Problem is an OPF problem
and the subproblems implement the risk exposure following three different stages:
(1) for each contingency scenario, a feasibility problem is solved to check for the
possibility of a corrective control; for each non-satisfiable contingency, a Benders’
feasibility cut is generated, (2) for each contingency scenario, a Benders’ feasibility
cut is generated if there is a possibility for a collapse or cascading overload, and
(3) a risk minimization model passes Benders’ optimality cuts to the Master Problem.

Generalized Benders’ decomposition Alguacil and Conejo [4] proposed a Gener-
alized Benders’ Decomposition technique to solve a unit commitment problem with
DC-power flow equations. The unit commitment decisions are decoupled from the
OPF problem, resulting in MILP master problems and continuous, nonlinear sub-
problems. Feasibility and optimality cuts are iteratively generated and convergence
of the algorithm is established.

General decomposition Conejo et al. [36] developed a general decomposition
method tailored to large-scale linear and nonlinear programming problems where
complicating constraints are treated by a modified Lagrangian relaxation technique.
The idea of Lagrangian relaxation is to move troublesome constraints into the ob-
jective function by penalizing their violation via so-called Lagrangian multipliers;
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this leads to a decomposition of easier to solve problems. In contrast to standard La-
grangian relaxation, the procedure of Conejo et al. allows for automatic updates of the
Lagrangian multipliers. Furthermore, approximate Newton direction in combination
with the conjugate gradient method ensure local convergence under mild conditions.
The authors apply their algorithm towards a multi-area OPF problem, where the cou-
pling constraints of flow between different areas are the complicating constraints;
more details can be found in [109].

Nonlinear complementarity Nonlinear complementarity (NC) algorithms use a
penalty formulation very similar to IPMs but modify the system of equations such
that the variables are not sign restricted. As a result, there is no need to enforce non-
negativity during the iterative search process. Torres and Quintana [151] presented
an NC algorithm for OPF and compared its performance with several PDIPM vari-
ants. Because of the similarity of the NC algorithm to IPM, the authors note that
both could be incorporated into the same OPF software. The authors later improved
their algorithm by introducing a Jacobian smoothing technique to improve the search
directions [153]. Building upon Torres and Quintana’s work, Patra and Goswamib
[116] presented a predictor-corrector NC algorithm where the smoothing parameter
is included as a variable and updated in each iteration.

Semi-infinite programming Xia and Chan [168] modeled a dynamic constrained
OPF problem using semi-infinite programming techniques; i.e., finiteness in the num-
ber of decision variables is maintained while a continuum of (infinitely many) con-
straints are required. The dynamic component is added to ensure reachability of a
steady-state operation even after specific contingencies are observed. The authors
transformed the semi-infinite programming problem to a regular NLP using a local
reduction method.

Tie-line decomposition Bakirtzis and Biskas [12] considered a DC-OPF problem
with quadratic cost function, proposing a decomposition of the linearly constrained
QP by different utility control areas. The decomposed problem is solved iteratively
by passing dual information on the tie-line power flows. Their algorithm converges
to an optimal solution of the original QP.

Sequential MILP Lobato et al. [92] proposed a sequential piece-wise linear MILP
algorithm for a linearized OPF problem with convex quadratic cost functions. The au-
thors modeled shunt reactors and capacitors with integer variables while the quadratic
costs are given by the generator reactive margins. Their algorithm generates itera-
tively linear underestimator functions on the true quadratic cost function by solving
MILP problems.

5 Summary of deterministic optimization methods

As part I of a two-part survey of optimization methods for OPF, this article has ex-
amined the various deterministic optimization methods that have been applied to the
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OPF problem. Significant progress has been made in solving the OPF problem, both
in theoretical terms and in practical algorithms. The seminal works by Carpentier [26]
and Dommel and Tinney [45] introduced both the classic NLP formulation for OPF
and gradient methods by which to solve it. Important contributions since that time
include incremental linearization techniques and the use of SLP methods [140]; the
application of SQP techniques to improve solution speed of the classic NLP formu-
lation [19]; the development of ASP techniques to enforce nonlinear constraints and
the accompanying use of Newton’s method [145]; and the application of nonlinear
IPMs to the OPF problem [57]. In general, key developments in the OPF formula-
tion have been accompanied by developments in solution techniques. Moreover, the
application of new solution techniques has paralleled increases in computing ability
such that recent OPF algorithms are much more computationally intensive than the
original gradient methods.

Table 4 summarizes the major deterministic methods discussed in this survey. The
first table column lists the methods while the second column gives the types of formu-
lations that have been used with the method. The third table column provides one or
two references which we consider as a good starting point for novices to this method-
ology. In selecting these references, we have attempted to choose papers that provide
a clear and concise explanation of the method and its application to OPF. The fourth
column indicates whether the method is globally convergent for OPF problems; this
is discussed in more detail below. Finally, the last column provides commentary that
allows a brief comparison of the advantages and disadvantages of the various meth-
ods.

In the fourth table column, we indicate whether the algorithm is globally conver-
gent with respect to typical OPF formulations of the type indicated in the second
table column, that is, whether the algorithm is known to always find a solution for
well-behaved OPF formulations regardless of the initial starting point. (Problem fea-
sibility and appropriate parameter selection are assumed.) While we feel that this
column provides useful information, there are several important caveats:

1. The applicability of the global convergence pronouncement is limited to OPF for-
mulations, which are non-convex. Thus, several methods which are globally con-
vergent for convex formulations only (notably, Newton-type methods) are marked
with a “no” in the table.

2. A “yes” does not indicate that solution found will be globally optimal; none of the
deterministic methods described in the table can guarantee global optimality for
OPF problems.

3. Many of the methods discussed in the table may be made globally convergent
through the use of trust-region techniques or other algorithmic modifications
[108]. However, the use of such techniques often undermines the efficiency of
the underlying algorithms.

We refer the interested reader to Nocedal and Wright [108] for additional discus-
sion and references regarding the convergence of these methods, including proofs of
convergence for those algorithms marked “yes” for global convergence.

At present, the most powerful deterministic algorithms for OPF are active-set SLP
and SQP methods and variants of PDIPMs. These methods exhibit both the fastest
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execution times and most accurate handling of nonlinearity. However, each determin-
istic approach has its own advantages and disadvantages. The early gradient methods
accurately represented the NLP problem structure, but their computational perfor-
mance is poor compared to newer methods. LP and SLP methods are fast and highly
reliable, but require linearization of the underlying OPF formulation. Inaccuracies
introduced by this linearization can sometimes cause the problem to become un-
bounded or to converge to a suboptimal solution, and the successive linearization
process can itself be time consuming. SQP methods improve on SLP by allowing a
more accurate representation of the objective function, but still suffer from lineariza-
tion issues for the constraints. In addition, SLP, SQP, and early Newton methods
are all active-set methods, that is, they require the identification of the active set of
inequality constraints at each iteration. This is a key challenge which reduces the
efficiency of active-set methods for tightly constrained problems. PDIPMs variants,
including PC-PDIPM and MCC-PDIPM, are the fastest deterministic OPF methods
currently known. However, they suffer from reliability concerns, particularly algo-
rithm divergence in certain difficult cases. Moreover, all the NLP methods have diffi-
culty recognizing problem infeasibility.

Finally, the deterministic methods surveyed suffer from two common shortcom-
ings:

– All are local solvers only: they cannot guarantee global optimality except in the
case of a convex problem; this is because the KKT conditions are not sufficient
for a global optimum in general. Since the OPF problem is inherently non-convex,
multiple local optima may exist. This issue has long been recognized, although in
practice the various deterministic methods tend to converge to the same optimal
solution in any given problem [114].

– The majority are continuous solvers: they cannot readily handle binary or integer
variables. As a result, switching controls in the power system cannot be accurately
modeled. This limits the scope of OPF problems that may be effectively solved
with deterministic solvers.

These two shortcomings have motivated significant work in the area of non-deter-
ministic, that is, heuristic, optimization methods for OPF, including methods that
hybridize multiple approaches. We refer the reader to part II of this survey, Frank et
al. [49], for a discussion of these heuristic and hybrid optimization methods and for
the survey conclusions.
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