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1 Introduction

The process of additive manufacturing (AM) involves mate-
rial arrangement layer upon layer under computer control 
to build a three-dimensional object [1]. AM is carefully 
governed by process controls that have minimised the 
dependency on skilled labour and human intervention as 
envisioned in Industry 4.0. Due to the unique capabilities 
of fused deposition modelling (FDM), like low cost, high 
speed, and simplicity of the process, it is one of the highly 
demanded techniques in AM [2]. However, its application 
to build a functioning part is restricted due to irregular sur-
faces, weak mechanical properties, layer–layer appearance, 
and inadequate accuracy [3]. Thus, experimental techniques 
were employed to investigate the effects of FDM process 
variables on the geometrical properties of the manufactured 
parts [4]. The benchmark geometry establishes a common 
baseline for comparing and fine-tuning various procedures. 
It has certain characteristics and dimensions that ensure that 
the operating capabilities are thoroughly assessed [5, 6]. The 
benchmark part was developed to study the in-plane con-
sistency of FDM machines and to showcase the impact of 
shrinkage, nozzle temperature, and build speed on the accu-
racy of prototyped components during the process [7]. Iden-
tifying important factors and determining optimum process 
parameters improve the quality of the fabricated components 
in terms of dimensional deviation. Machine learning (ML) 
involves building and studying systems that can automati-
cally learn patterns from data. Machine learning (ML) aided 
models, according to research, are capable computational 
technologies that allows AM processes to attain high-qual-
ity standards, prediction, performance optimisation, prod-
uct consistency, optimum process response, classification, 
regression, or forecasting [8]. Building an ML model leads 
to a statistical regression equation that predicts the output 
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based on the input values. Hence, the data utilised to train 
the ML model are the most important aspect in determining 
its effectiveness [9].

This paper focuses on a framework for using machine 
learning to forecast geometrical dimensions and dimensional 
variation of the parts fabricated by FDM. The benchmark 
part was fabricated by varying FDM process parameters 
based on L9 orthogonal, and the dimensional deviation of 
individual features was evaluated with CMM. Further ML 
algorithms were employed to predict the dimensional devia-
tion of the individual features.

2  Experiment

2.1  Design

To generate input data set for the proposed ML, parts with 
multiple geometric features and with different dimensions 
must be fabricated. For this purpose, the NIST Benchmark 
[10] was taken, and an altered version was designed in 
SOLIDWORKS, as given in Fig. 1. A description of fea-
tures incorporated in the benchmark component is listed in 
Table 1.

2.2  Fabrication

Using acrylonitrile butadiene styrene (ABS) material, all the 
benchmark components were fabricated in an FDM machine 
(Accucraft i250 +). Other parameters such as infill, extrusion 
width, bed temperature, filament diameter, and style of infill 
were set as 100%, 0.5 mm, 80 °C, 1.75 mm, and straight 
respectively. Nozzle temperature, layer thickness, and noz-
zle speed were taken as variable factors, and the Taguchi 
L9 orthogonal array (Table 2) was chosen to provide a non-
redundant combination of factor levels.

A contact type coordinate measuring machine (CMM) 
was used to determine the dimensions of each geometrical 
feature of the fabricated benchmark components (Fig. 2). 
Thus, each experimental run had 79 measurements evaluated 
with three repetitive readings, and the average dimensions 
served as an input dataset of size 79 X 9 (in.csv format) for 
ML.

2.3  Machine Learning

With wider access to open-source libraries like NumPy, 
SciPy, Scikit-Learn, and Matplotlib, Python 3.8 was chosen 
as a programming language. Jupiter notebook was leveraged 
as the development environment to build the regression algo-
rithm. It involves feature selection of independent variables 
as X’s from the input files to arrive at a transformation func-
tion (Regression Equation) to estimate the dependent vari-
able as Y (Prediction value) [11].

The steps carried out to build the ML model are as 
follows:

• Data Exploration—Measured data from CMM were 
investigated and comprehended. Based on the type of 
dimensional accuracy to be measured, the geometrical 
feature dimensions were divided into six categories: 
length, width, height, diameter, angle, and thin slots. 
Understanding the data fields (features) and their inter-
actions is essential in managing data that goes into the 
model as they form the input KPIs (Key Performance 
Indicators) representing the data. Analysis and the graph-
ical plot of various fields help to understand if the data 
are homogeneous or correlated with considering drop-
ping some fields to make the datasets optimal for the 
analysis. Primary details like data type, shape, and basic 
statistical details such as percentile, mean, and standard 
deviation were studied. Error percentage boxplot was 

Fig. 1  Benchmark components 
designed in CAD software
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used to find the outliers for the corresponding features 
in the components by the length of the whisker’s plots.

• Data Processing—Data were prepared after analysis, and 
it was noticed that some of the measured values were 
over the range. These data were considered outliers and 
dropped. Feature scaling prevented the machine learn-
ing algorithm from assigning larger weights to higher 
values intuitively. The value of independent variables 
was rescaled within a preset range of 0 to 1. Of the two 
predominant techniques, min–max and standardization, 
the min–max technique performed normalisation. The 

complete dataset was separated into the training and test 
dataset in a ratio of 7:3.

• Baseline Modelling, Solution Modelling, and Refine-
ment—The standard was set for testing machine learning 
models by employing a baseline linear regression model, 

Table 1  Benchmark model features description

Annotation Geometric Shape Features Illustration (All dimensions in mm unless specified)

A Boss- Square A1, A2 A1 is 15 X 15 X 7, A2 is 5 × 5 × 5
B Boss- Rectangular B1, B2, B3,B4 B1 is 7 X 3 X 2, B2 is 7 X 3 X 3,

B3 is 7 X 2 X 4, B4 is 7 X 2 X 5
C Boss- Concentric Cylindrical C1, C2 Outer diameter of C1 is 20, inner diameter is 14, and the height is 5;

Outer diameter of C2 is 14, inner diameter is 10, and the height is 7
D Pins D1, D2, D3, D4, D5 D1 is 4, D2 is 3.5, D3 is 3, D4 is 2.5, D5 is 2, H is 5
E Inclines E1, E2, E3, E4 Angle along E1 is 15°, E2 is 45°, E3 is 75°, E4 is 90°
F Notches- Square F1, F2, F3, F4, F5, F6 Width along

F1 is 1.5, F2 is 2, F3 is 2.5, F4 is 3, F5 is 3.5 and F6 is 4
G Holes-Cylindrical G1, G2, G3, G4 Diameter of G1 is 5, G2 is 10, G3 = 15, G4 = 10
H Hole H1, H2, H3 Diameter of H1 is 4, H2 is 3.5, H3 is 3, and depth is 5
I Boss-Cylindrical I1, I2, I3, I4, I5, I6 Diameter of I1 & I4 are 4;

I2 & I5 are 6;
I3 & I6 are 10; and I7 is 7

J Thin walls J1, J2, J3, J4 Wall thickness along J1 is 3, J2 is 2.5, J3 is 2, and J4 is 1.5
K Positive-Staircase K1, K2, K3, K4, K5 Height of K1 is 2, K2 is 4, K3 is 5, K4 is 6, K5is 7, L is 10, and W is 

10
L Negative-Staircase L1,L2, L3,L4,L5 Depth of L1 is 2, L2 is 4, L3 is 5, L4 is 6, L5 is 7, L is 10, and W is 10
M Lateral Feature M1, M2, M3, M4, M5, M6 M1 of radius 3M2 is 3X3

M3 is 3X3 M4 of radius 6
M5 is 6X6 M6 is 6X6 Depth is 5

N Hemi-sphere N1 Radius is 8
O Outer-Dimension X Y Z 90X90X10

Table 2  L9 Orthogonal array, 3^3

Part ID Nozzle Tempera-
ture (°C)

Layer thickness 
(μm)

Nozzle 
speed 
(mm/s)

1 235 100 25
2 235 150 50
3 235 200 75
4 240 100 50
5 240 150 75
6 240 200 25
7 245 100 75
8 245 150 25
9 245 200 50

Fig. 2  Fabricated benchmark components
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and improved regression models like Lasso, Ridge, ran-
dom forest, and Extreme Gradient Boost (XGBoost) 
were built. Then, using the voting regression model, an 
ensemble meta-estimator, various base regressors were 
fit to create a final prediction by averaging the individual 
predictions. Optimised solution model was finally built 
by using hyperparameters to improve the performance.

• Model evaluation and validation—There are ready librar-
ies available to instantly leverage complex model com-
ponents at ease, with minor modifications, to suit the 
requirement. However, preparing the datasets to fulfil the 
needs, running the model, and interpreting the results 
further iterating/refining the models rely on the choice of 
algorithm, the computational power of the machine used, 
and the user’s expertise. The outcomes were interpreted 
and evaluated by determining accuracy, root-mean-
square error, Pearson’s coefficients, and intercept.

Considering the data to be linear, the first preference 
would be to apply the linear regression technique for its 
comprehensiveness and simple application, using the Train 
dataset. The model was then run on the Test dataset to com-
pare the prediction vs actuals to summarise. The following 
regression Eq. (1) depicted how well a function relates input 
parameters to output parameters

where a1, a2, a3, and a4 are the regression coefficients, and 
b is the intercept.

The built algorithm solves for the data set with the input 
parameters, design dimension of the features (X), nozzle 
temperature (T), layer thickness (L), and nozzle speed (S) 
used during the printing of the benchmarking component. 
These input parameters are related to the output parameter, 
i.e. measured dimensions of the features (Y). Linear regres-
sion, LASSO, Ridge, random forest, XGBoost, and voting 
regression were used to create models and compare perfor-
mance metrics (accuracy, Pearson coefficient, intercept) to 
find the optimal predicted dependent variable.

3  Results and Discussion

Table 1 is used to segregate and group the values based on 
the features, and the summarised CMM measurements are 
tabulated as shown in Table 3.

The deviation along the X-axis (Length) ranges from 0.05 
to 0.19 mm, along the Y-axis (Width), it ranges from 0.005 
to 0.23 mm, and along the Z-axis (Height), the deviation is 
about 0.007–0.43 mm. Due to the incremental movement of 
the stepper motor or the shrinkage in the ABS material, the 
irregularity in the dimensions occurs along the three axes 
[12]. In the X–Y axes, maximum deviation occurs for the 

(1)Y = a1X + a2 T + a3 L + a4 S + b

largest designed dimension of the benchmark, which could 
be attributed to the warpage and shrinkage of the ABS. The 
lateral features contribute to the maximum dimensional dif-
ference in the Z-axis due to swaging in unsupported areas. 
Thin walls lesser than or equal to 3 mm resulted in increased 
size.

Table 3  Summarized CMM measurement of features listed in 
Table 1

Feature Nominal 
value 
(mm)

Measured value

Average (mm) Standard 
Deviation

Length
(Along X-axis)
A1, A2, B1, B2, B3, B4
M1, M2, M3, M5, O

3 2.808 0.241
5 4.935 0.190
6 5.918 0.056
7 7.008 0.135
15 14.929 0.035
90 89.759 0.164

Width
(Along Y-axis)
A1, A2, B1, B2, B3, B4, O

2 2.084 0.073
3 3.041 0.048
5 4.970 0.052
15 15.010 0.052
90 89.863 0.215

Height
(Along Z-axis)
C1, C2, D1, D2, D3, D4, 

D5,
G1, G2, G3, G4, H1, H2, 

H3, I1, I2, I3, I4, I5, I6

2 1.962 0.147
3 2.854 0.152
4 3.971 0.151
5 4.910 0.135
6 5.81 0.29
7 6.909 0.188
8 7.909 0.041
10 10.377 0.093

Diameter
A1, A2
B1, B2, B3, B4
C1, C2
K1–K5
L1–L5
M2, M3, M4, M5
N1
O

2 2.015 0.080
2.5 2.464 0.150
3 2.682 0.362
3.5 3.455 0.162
4 3.919 0.198
5 4.896 0.133
6 5.938 0.050
10 9.91 0.07
14 13.923 0.148
15 14.738 0.223
20 19.805 0.024

Thin walls/slots
F1–F6
J1–J4

1.5 1.499 0.140
2 2.079 0.101
2.5 2.600 0.100
3 3.063 0.092
3.5 3.542 0.073

Angles
E1, E2, E3, E4

15° 15.097° 0.639
45° 44.845° 0.215
75° 75.134° 0.245
90° 89.716° 0.469
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ML code was executed individually for each of the 
prediction parameters, and the regression equations are 
established as shown in Table 4.

The predictive model’s performance was evalu-
ated using RMSE (Root-mean-square-error) and R2 
(R-squared). The prediction models are trained on 70% of 
the entire data and evaluated on the remaining data (30%). 
From the result (Table 4), the accuracy of the predicted 
parameters is above 97%, and the RMSE of the predicted 
parameters is as shown in Fig. 3, which indicates that the 
predicted value is close to the actual value (Fig. 4).

With the above equations (Table 4), output dimensions 
can be predicted without printing the components based on 
the past data collected. From Fig. 3, we can conclude that 
the linear regression model give a better-predicted value.

4  Conclusion

A benchmark component consisting of various geomet-
ric shapes such as bosses (Square, rectangular, cylindri-
cal, concentric cylindrical), holes, inclines, and staircase 

(positive, negative) was designed. A set of benchmark 
components were created with varied process settings on 
the FDM machine. ML techniques were utilised to esti-
mate the dimensional deviation and tolerance of the geo-
metrical features based on the dimensions of these fabri-
cated features.

• Most of the measured dimensions were within 0.3 mm of 
the nominal dimensions.

• The deviation along the X-axis and Y-axis ranged about 
0.05–0.19 mm, and 0.005–0.23 mm, respectively.

• Unsupported geometric features on the lateral faces con-
tributed to deviation along the Z-axis.

• A trained ML model could predict the dimension and 
deviations of a given geometric feature with an accuracy 
of + 97% without printing the components.

The future scope of this work extends to accommodate 
more parameters and surface conformity through computer 
vision.

Table 4  Regression equation 
tabulation

Prediction parameter Regression equation

L-Length y = 0.068 + 0.99 X−0.0014 T + 0.0013 L + 0.000013 S
W-Width y = −10.18 + 0.99 X + 0.042 T + 0.00055 L + 0.0028 S
H-Height y = 2.196 + 1.01 X – 0.01 T−0.00053 L + 0.000052 S
D-Diameter y = 1.767 + 0.996 X – 0.008 T + 0.00045 L−0.0004 S
A-Angle y = −2.19 + 0.99 X + 0.011 T + 0.0004 L−0.00312 S
T-Thin Slots y =−0.433 + 0.99 X + 0.002 T−0.0005 L + 0.00125 S
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Fig. 3  R-squared and RMSE value of the predicted parameters
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