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Abstract This work attempts to optimize the multi-ob-

jective characteristics of wire electrical discharge

machining (WEDM) in SLM-fabricated AlSi10Mg through

a hybrid artificial neural network (ANN) coupled genetic

algorithm approach. The SLM is unambiguously one of the

most effective commercially viable successful additive

manufacturing (AM) technologies that have the potential to

replace many traditional methods of manufacturing.

However, the highly intricate metallic support structures

created in SLM are too strong to be eliminated by hands for

which precision machining operations such as WEDM are

widely employed for post-processing of SLM–AlSi10Mg.

The Taguchi experimental design, considering the three

most influencing factors, is performed to obtain micro-

hardness and surface roughness results. The input factors

for optimization are discharge current, discharge voltage,

and pulse time-on in the WEDM process. The multi-ob-

jective optimization is performed using the ANN coupled

GA approach where the ANN model has been generated

first and the results of the best model are fed to GA for

optimization. For this, five variants of three-layered, multi-

perceptron models with feed-forward (BP) neural struc-

tures are also developed. The current model is supple-

mented with a Levenberg–Marquardt algorithm that uses

logarithmic sigmoid (logsig) and linear (purelin) transfer

functions. Finally, the response values from the best ANN

model (3–10–2) are employed for multi-objective opti-

mization using GA. The present study establishes the fol-

lowing optimized process parameters: 12 A discharge

current, 42 V discharge voltage, and 12 ls time-on for

maximized micro-hardness of 478 VHN and minimized

surface roughness of 4.3 lm, both with greater than 98%

confidence level. The present study reports briefly phase

characterization such as the presence of Si particles, a-Al,
and Mg2Si phases on the recast surface. The surface quality

of the optimized specimen exhibits superior surface quality

than its other experimental counterparts.

Keywords WEDM � GA-ANN �
Multi-objective optimization � Surface quality � AlSi10Mg

1 Introduction

The usage of additive manufacturing technologies has

gained attention in the past 30 years due to its high progress

in manufacturing products with high complexity in design

which is practically difficult to manufacture by traditional

manufacturing methods [1–4]. This is because AM focuses

on manufacturing products in a layer-by-layer fashion

[4–6]. In the recent AM practices, laser melting of the

layers of powdered metals, often referred to as selective

laser melting (SLM), formed in rapid prototyping deserves

greater effectiveness in the manufacture of metals and

alloys [6]. The SLM involves the melting of powdered

metals of diameter 10–100 lm selectively by laser in every

layer of the process [3, 4].

The parts produced by SLM are, in fact, superior to their

traditional counterparts (casting) in terms of static strength,

stiffness, and fatigue strength while maintaining high
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precision in the complex design [3]. Among several Si- and

Mg-alloyed Al alloys, the SLM–AlSi10Mg outpaced its

traditional counterparts in the aspects of ductility and

strength as it evolves an ultrafine hierarchical grain struc-

ture in the part [5–15]. The AlSi10Mg alloy is known for

high specific strength, stiffness, hardness, and corrosion

resistance and is ideal for applications that require a

combination of good mechanical properties and low weight

such as the aerospace and automotive industry. SLM is one

of the proven successful technologies that produce parts

with high dimensional accuracy and surface finish than any

other AM techniques. In the case of complex part fabri-

cation, it is often needed high strength, support structures

to support overhanging features that need to be ‘subtracted’

in post-processing [16]. These support structures need

careful removal to avoid any mechanical damage or inad-

vertent defects left on the actual part. The wire EDM is an

ideal choice to cut the support structures of SLM–

AlSi10Mg with greater precision and without leaving any

dent on the actual part.

Wire cut electrical discharging machining (WEDM) is a

thermal material removal process that makes use of a wire

electrode made of thin copper, brass, or molybdenum

material by which electrically conductive materials can be

cut precisely without the need for cutting force and further

finishing process [17–21]. The material removal mecha-

nism of WEDM is similar to the EDM which causes ero-

sion by the series of sparks that arise between workpiece

and wire electrode as the tool advances its way [17, 18].

These sparks provide a greater quantum of heat in the

temperature range of 8000–12,000 �C initializing signifi-

cant heating and melting of material at the work–tool

interface [17, 18, 21]. The WEDM process is carried out by

immersing the workpiece and tool in a continuous supply

of dielectric fluid (deionized water) to carry the eroded

metal away [17, 20].

The high thermal conductivity of the dielectric fluid

results in the rapid cooling of the nascent machined surface

resulting in a completely different material microstructure

than the parent metal called the recast layer [17]. More-

over, due to the effect of heat, a small portion of the

workpiece at about 5 to 25 lm in the vicinity of the

machined surface is annealed creating the heat-affected

(HA) layer.

The recast layer and the HA layer thickness play a vital

role in deciding the property characteristics (such as

hardness, fatigue, surface roughness, and corrosion resis-

tance) [18, 22]. Since the micro-hardness depends upon the

discharge parameters, an increase in discharge parameters

increases micro-hardness. Eventually, these parameters’

setting results in a poor surface finish [22]. Even though the

material removal mechanism of WEDM and EDM is

similar, their functional characteristics differ. WEDM uses

a microprocessor to control the path of the wire electrode

which accounts for the remarkable accuracy in the

machining of complex parts [17]. Amidst the available

machining process on the production floor, WEDM is the

most preferable machining process for die making, preci-

sion machining, manufacturing of prototypes, aircraft, and

dental parts [17]. In addition to that, WEDM is one of the

very few metal cutting techniques employed in the post-

processing of metal additive manufacturing [16].

It is obvious that either the hardness or surface finish of

the product comes out with the compromise of the other.

Hence, a particular set of process parameters may fail to

obtain high micro-hardness with a good surface finish. This

urges a need for mathematical models that relate input

parameters with output responses to arrive at an optimum

set of process parameters to minimize the surface rough-

ness and maximize the micro-hardness at the least com-

promise of each other [22].

The hybrid model of the artificial neural network (ANN)

coupled genetic algorithm (GA) is one of the recent and

widely accepted techniques to find optimal parameters for

machining. ANN is a sophisticated mathematical tool

inspired by biological phenomena that are recognized for

their insane ability to learn and classify data. A neural

network is a processing model whose layered structure

takes after the organized structure of neurons in the cere-

brum, with layers of associated nodes [23]. The ANN

models proved to be more robust and accurate in evaluating

the value of dependent parameters when compared with

RSM models [24]. Many studies concluded that ANN

models are more efficient and effective than RSM [23, 24].

The precision of ANN results can be greatly improved by

using GA as the optimization tool.

Genetic algorithm (GA) is an optimization tool based on

an adaptive heuristic search algorithm inspired by the

concept of genetic evolution proposed by Charles Darwin

stating ‘survival of the fittest.’ It uses genetic principles

such as selection, mutation, and crossover to arrive at the

optimum results [23]. The hybrid model ANN-GA employs

ANN as a modeling tool to develop predictive models to

predict the relationships between the experimental data sets

and GA as an optimization tool to minimize (or maximize)

the global population using a fitness function [19, 23].

Additionally, this method is considered both time- and

cost-effective since it requires a significantly lesser number

of experiments for optimization [23].

The application of hybrid statistical tools (such as GA-

ANN, GA-RSM, GA-ANFIS, etc.) in optimization gains

importance in recent years due to increased reliability and

accuracy in prediction. Since it is a novel approach, there is

only limited research carried out in this domain. Deshwal

et al. made a comparative analysis on GA-ANN, GA-RSM,

and GA-ANFIS in optimizing the process parameters of
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FDM and concluded that GA-ANN is the best optimization

tool than the other two [24]. Adding to that, the investi-

gations of Yahya et al. and Venkatesh et al. concluded that

the ANN model optimized through GA is a potential tool to

replace RSM in modeling, optimization, and predicting the

results [23, 25].

The primary objective of this research is to develop an

effective GA-ANN model to obtain an optimum combi-

nation of input parameters of WEDM to cut the support

structures of SLM–AlSi10Mg with minimal surface

roughness and maximal hardness. This study also provides

a detailed analysis of the effect of recast and white cast

layers and analyzes the surface morphology through AFM

study. Furthermore, an XRD characterization on the

machined surface of SLM–AlSi10Mg is carried out to

investigate the effect of WEDM on the phase formation

after the machining process.

2 Experimental Procedures

2.1 Material and SLM

A cuboidal specimen (100 9 100x 10 mm) was fabricated

using the SLM technique with a square print bed of

280 9 280 mm using powdered AlSi10Mg. The powder

composition of AlSi10Mg is presented in Table 1.

The test specimens were fabricated in the horizontal

direction (parallel to powder bed x–y plane) under the

following (Table 2) standard SLM print parameters.

2.2 WEDM

A five-axis CNC-WEDM machine SODICK AG400L was

used to carry out the experimental runs with the SLM-

printed AlSi10Mg alloy. A brass (copper 60%, zinc 40%)

wire electrode of diameter 0.25 mm was used in the

WEDM process immersed in deionized water (dielectric

fluid). The SLM–AlSi10Mg was cut into nine cuboidal

pieces of dimension 12 9 8 9 7 mm. To analyze the

impact of the discharge characteristics and pulse duration

on the machined specimen, various combinations of input

parameters were used according to the L9 orthogonal array

DOE scheme. A pulse-off duration and wire feed rate were

kept constant as 14 ls and 3 mm/s, respectively.

2.3 Vickers Hardness Test

The micro-hardness test was conducted on the recast sur-

face of the post-WEDM-processed specimen as per the

ASTM E384 standard. The Vickers hardness tester (Model

VH150) with a standard diamond indenter (rectangular

base pyramid profile) was used for applying a load of 5 kgf

for 10 s. Averages of three measurements were considered

as the typical hardness of the specimen.

2.4 Surface Roughness Test

The post-WEDM recast surface was tested for surface

roughness (Ra) in the Mitutoyo surface roughness tester

(Model SJ 210) with a diamond stylus of 10 lm diameter

and 0.01 lm accuracy. The surface roughness (Ra) was

measured in the direction perpendicular to the tool path

according to ISO 1997 standard (sample length: 4 mm).

The average value of three experiments was taken as the

surface roughness (Ra) of the specimen.

2.5 Metallographic Studies

Samples for microstructure characterization were prepared

using the standard metallographic technique. A scanning

electron microscope (model: EVO 18 scanning electron

microscope) was used to characterize the surface topogra-

phy of both the white cast and the recast surfaces in the

hardest, roughest, and optimum samples. The recast surface

of the optimum specimen was examined in the automated

high-resolution h–h multipurpose X-ray diffractome-

ter (Model: Smart Lab SE, 3 kW X-ray tube, radiation: Cu

Ka) with silicon strip detector and vertical-type geometry.

The diffraction angle (2h) was varied between 25 and 95�
to obtain XRD spectra to identify the phases present.

2.6 Surface Morphology Studies

The surface morphology of the recast surface (optimum

specimen) was analyzed by the atomic force microscope

(Model: Park XE7) based on surface observations in the

optical microscope. The AFM with SMENA measuring

head and vibration isolating system for measuring sample

sizes in the nano-scale was used. The measurements were

taken with the air contact model using the Si probe of

radius 10 nm. The sampling areas of investigation were

taken as 15 lm 9 15 lm in three locations on the opti-

mum specimen.

Table 1 AlSi10Mg chemical composition

Material Elements (wt.%)

Si Mg Fe Cu Ni Al

AlSi10Mg 10.8 0.35 0.55 0.05 0.05 Bal
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3 DOE and Modeling of Hybrid ANN Coupled GA
Method

3.1 Taguchi Design of Experiments (DOE)

Taguchi is one of the most profound DOE methods which

make use of orthogonal arrays (OAs) to arrive at optimal

solutions for a large number of process variables with

relatively few numbers of experiments [26–33]. OAs are

unique collections (or sets) of arrays which reduces the

number of experimental trials to be carried out in a study

when compared to conventional DOEs [26–28].

An OA is chosen based on the number of process

parameters and their corresponding levels in the experi-

ments [27]. In the present work, three factors—three levels,

L9 orthogonal array is taken which reduces the experi-

mental runs from 27 to 9 to find out the best experiment.

Signal-to-noise ratio (S/N ratio) is one of the performance

functions used in the Taguchi method which is broadly

divided into three categories: smaller the better, larger the

better, and nominal the better. In this study, the smaller the

better and larger the better characteristics are used for

responses of micro-hardness and surface roughness (Ra),

respectively.

S/N ratio for larger the better characteristic:

S=N ratio ðgÞ ¼ � 10 log10
1

n

Xn

i¼1

1

y2ij

 !
: ð1Þ

S/N ratio for smaller the better characteristic:

S=N ratio ðgÞ ¼ �10 log10
1

n

Xn

i¼1

y2ij

 !
ð2Þ

where n corresponds to the number of experiments and yij

refers to the response value for the corresponding

experiment.

The parameters and levels of parameters are presented in

Table 3. The experimental outcomes for the L9 orthogonal

array along with the S/N ratio are reported in Table 4.

3.2 ANN Modeling

The key factors that are responsible for the development of

an accurate and reliable ANN model are the selection of

the best neural architecture, the type of learning algorithm,

and the transferring function applied in the hidden and

output layers. Adding to that, the number of hidden neu-

rons also plays a vital role in the prediction of results. The

ANN model developed for this work is based on a multi-

layered perceptron (MLP) which is widely used across

investigators to approximate nonlinear relationships among

the existing input (independent) and output (dependent)

variables [23, 24]. In this research, a feed-forward neural

network of backpropagation (BP) is the learning algorithm

applied to train the experimental data to develop a pre-

dictive model with a three-layer (input, hidden, and output)

architecture.

The general design of the MLP neural network is shown

in Fig. 1. The training function used in this work is the

Levenberg–Marquardt (trainlm) or LM algorithm which is

considered the best training algorithm of optimization

using the GA-ANN technique [25]. The BP technique is

extensively used by researchers because of its high relia-

bility in modeling and optimizing the functions

[23, 34–36]. The selection of transfer functions used in the

input and output layers is important as they affect the

learning rate and overall performance of the ANN model

[23, 35]. The transfer function used in this work is loga-

rithmic sigmoid in the hidden layer and linear (purelin) in

the input and output layers. The number of neurons in the

input and output layers is fixed by the number of input

process parameters and the number of output responses,

respectively [24, 37].

The general form of neural architecture is labeled as

3-x-2 (three input neurons representing the WEDM process

parameters (discharge voltage, current, and time-on) and

two output neurons (micro-hardness and surface rough-

ness)), where x is the total number of neurons in the hidden

layer used in ANN modeling. Firstly, the number of hidden

layers used in this investigation is chosen as one, since it is

considered effective in solving the majority of the prob-

lems to avoid issues like overfitting as a result of the

application of multiple hidden layers [23, 38]. Secondly, it

is important to select the number of neurons in the hidden

layer. This is because if the number of hidden neurons is

too low to cope up with the complexity of the problem it

forms an under-fitted model. On the other hand, the

redundant number of hidden neurons results in the degra-

dation of the network capability when it is trained based on

Table 2 SLM parameters

Specification/process parameter Unit Type/value

Laser beam spot size mm 30

Atmosphere – Nitrogen (99.98%

pure)

Laser power (P) W 370

Layer scan speed (v) mm/s 1300

Layer thickness (h) lm 80

Energy density J/mm3 49.93

Scanning strategy – Rotating stripe

Particle size lm 90

Volume rate mm3/s 5.1

Pre-heat temperature of the base

plate

�C 200
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training data alone [23, 39]. The number of neurons in the

hidden layer is usually obtained by the hit-and-trial

method, and the optimized number of hidden neurons is

achieved by iteration.

The optimum number of neurons in the hidden layer is

obtained by analyzing the performance of the neural

architecture based on the regression value. For this pur-

pose, five neural architectures are developed to train, test,

and validate the test data with the number of neurons in the

hidden layer varying from 8 to 12. The objective is to find

out the best neural architecture (the one with an optimum

number of hidden neurons) with the highest regression rate

among the available variants (neural architectures varying

from 8 to 12 hidden neurons). For this purpose, the neural

network tool (nntool) available in MATLAB R2018a is

used to train the network model to model and analyze the

neural networks [24]. Mean relative error (MRE), root

mean square error (RMSE), and regression coefficient (R2)

are computed for every ANN model to evaluate their per-

formance based on which the best model is selected [40].

The following are equations of MRE, RMSE, and R2.

MRE %ð Þ ¼ 1

n

Xn

i¼1

100
ti � oi

ti

����

����: ð3Þ

RMSE ¼
ffiffiffi
1

n

r Xn

i¼1

ti � oið Þ2: ð4Þ

R2 ¼ 1�
Pn

i¼1 ti � oið Þ2
Pn

i¼1 oið Þ2

 !
: ð5Þ

Here, n is the number of experimental data, ‘o’ is the

predicted response data, and ‘t’ is the actual response.

3.3 Optimization using Evolutionary Genetic

Algorithm

The evolutionary genetic algorithm can be used to optimize

the ANN model which has the best neural architecture

obtained from the previous steps. For this, the GA solver in

the optimization toolbox of MATLAB R2018a is used in

this research. Instead of working on the decision variables,

GA works on the chromosomes of the existing population.

Every chromosome consists of all decision variables in the

form of an objective function [28].

GA begins by creating an initial population of chro-

mosomes whose fitness function is determined by the

objective function of the problem (multi-objective opti-

mization). Then, the chromosome with the best fitness

function is propagated as a parent to form the next gener-

ation. This is called the ‘selection.’ The crossover is a

Table 3 WEDM process parameters and their levels

Level Discharge current

(Amps)

Discharge voltage

(Volts)

Pulse on-time

(ls)

1 12 42 10

2 13 44 11

3 14 46 12

Table 4 L9 Orthogonal array with responses

Experiment

no.

Discharge

current

Discharge

voltage

Pulse on-

time

Surface

roughness

S/N ratio (smaller the

better)

Micro-

hardness

S/N ratio (larger the

better)

(Amps) (Volts) (ls) (Ra) (dB) (VHN) (dB)

1 12 42 10 4.65 - 13.33 416 52.38

2 12 44 11 4.47 - 13.01 441 52.89

3 12 46 12 4.44 - 12.95 472 53.48

4 13 42 11 4.55 - 13.16 438 52.83

5 13 44 12 4.67 - 13.39 518 54.29

6 13 46 10 4.39 - 12.85 486 53.73

7 14 42 12 5.18 - 14.29 442 52.91

8 14 44 10 4.84 - 13.70 435 52.77

9 14 46 11 4.52 - 13.10 428 52.63

Fig. 1 ANN network diagram
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principle of GA by which an opportunity is created to

facilitate the selected chromosomes to produce a new one.

The offspring is ‘mutated’ by changing some of their

genes. The optimal solution is brought out by creating

versatility in the new generation by applying mutation

while moving from the existing population [28]. GA can

optimize non-differentiable, discontinuous, and highly

nonlinear objective functions in several iterations until it

reaches the value of predefined maximum generation (i.e.,

500 in this study) [28, 41].

4 Results and Discussion

4.1 Analysis of Statistical Significance

Analysis of variance (ANOVA) is a method widely used by

investigators [23, 26, 27] to evaluate the statistical signif-

icance of the decision variable in any process. In this work,

ANOVA is performed to determine how significant are the

process parameters (discharge current, discharge voltage,

and pulse time-on) of the WEDM process influencing the

responses of micro-hardness (VHN) and surface roughness

(Ra). Here, the ANOVA is performed based on the S/N

value obtained in the previous section. In ANOVA, Fis-

cher’s test (F test) is the ratio of the mean sum of squares

due to regression to mean sum of squares due to error.

The F value plays a major role in determining the ade-

quacy of the parameter. Tables 5 and 6 depict the ANOVA

for micro-hardness and surface roughness along with the

individual parameter contribution.

The ANOVA of the WEDM process parameters clearly

illustrates that all the process parameters are statistically

significant at 95% of confidence for multi-objective

responses of micro-hardness and surface roughness.

4.2 Multi-Objective Optimization using Hybrid GA-

ANN Method

4.2.1 Training of ANN Model

The modeling of the ANN architecture in MATLAB

R2018a (MathWorks Inc.) is briefly discussed in the pre-

vious section. The neural networks from 8 to 12 hidden

neurons in the hidden layer are tested for their accuracy in

predicting the responses of micro-hardness (VHN) and

surface roughness (Ra) of the SLM–AlSi10Mg specimen.

The ANN parameters for training data are depicted in

Table 7.

The best neural architecture needs to have the least

MRE, RMSE, and the highest regression coefficient (R2) to

provide the best prediction results among other neural

networks [23]. Table 8 shows the MRE, RMSE, and R2 for

neural architectures ranging from 8 to 10 hidden neurons.

Figure 2a–c illustrates graphical values of MRE, RMSE,

and regression values obtained from all the five ANN

models.

It is evident that the ten hidden neuron structures

show balance in the results of all the performance metrics

(MRE, RMSE, R2). So, it is obvious that the neural net-

work with ten hidden neurons in the hidden layer is the

‘best fit’ for the complexity of the optimization problem

without any under-fitting and overfitting issues. Hence, the

neural architecture 3–10–2 (three neurons in the input

layer, ten neurons in the hidden layer, two neurons in the

output layer) is used for further optimization using a

genetic algorithm (GA). Figures 3, 4, and 5 represent the

complete configuration and performance of 3–10–2 ANN

architecture with training, testing, and validation results.

4.2.2 Configuring GA to Optimize the Best ANN Model

The predicted results are fed to the GA solver called ‘ga-

multiobj’ available in the Optimization toolbox in

MATLAB-R2018a in the form of a fitness function. Fitness

functions are nothing but mathematical models in terms of

coded factors to predict responses. This fitness function is

generated by fitting general linear model in Minitab

R19 using the results of the 3–10–2 ANN model.

The fitness function of micro-hardness is:

y 1ð Þ ¼ 137� 2:36� x 1ð Þ þ 0:53� x 2ð Þ þ 28:95� x 3ð Þ
ð6Þ

The fitness function of surface roughness is:

y 2ð Þ ¼ 3:20þ 0:0632� x 1ð Þ þ 00:0233� x 2ð Þ � 0:0380
� x 3ð Þ

ð7Þ

where y(1) and y(2) refer to the responses of micro-hard-

ness and surface roughness, respectively. x(1), x(2), and

x(3) correspond to process parameters of discharge current,

discharge voltage, and pulse time-on.

The multi-objective criterion for GA is chosen as VHN

(micro-hardness) to maximize and surface roughness (Ra)

to minimize. The ranges for experiments are fixed as (12

42 10) for minimum and (14 46 12) for maximum. For this

optimization problem, the tournament is applied as a

selection method to designate how GA selects parent

chromosomes for successive generations. The computa-

tional parameters listed in Table 9 provide the values used

in GA optimization and the corresponding values used in

this optimization problem.

In a population of 50, two of them are fixed as elite

counts that pass from the initial population to the next

generation and 0.8 and 0.2 are the crossover fraction and
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rate of mutation, respectively. The results of the genetic

algorithm show that the optimum conditions for WEDM

with minimized surface roughness (Ra) of 4.44 lm and

maximized micro-hardness (VHN) value of 478 VHN are

discharge current of 12 A and discharge voltage of 42 V

and pulse time-on of 12 ls. A confirmation test was con-

ducted based on the optimized process parameters, and the

experimental outcomes are 4.39 lm and 492 VHN, which

shows that they closely agree with the predicted results

from the GA-ANN model.

4.2.3 Microstructural Analysis

The magnitude of temperature at the workpiece—tool

(wire) interface during the WEDM process is typically

above the melting point of Al alloys [22, 42]. The dielectric

fluid is supplied at a rate so that it should ideally wash the

molten metal away from reaching the machined surface to

avoid re-solidification of molten metal to the parent metal.

But practically, the dielectric fluid cannot wash away all

molten material from reaching the machined surface. The

unwashed molten metal then rapidly solidifies as a result of

a high-temperature gradient existing between the machin-

ing interface and dielectric fluid (room temperature)

forming a ‘recast’ layer over the machined surface which is

comparatively harder than the un-machined surface

[43, 44]. The increase in micro-hardness is because of the

ultrafine grain structure formed in the recast layer due to

the drastic solidification rate at the machined surface

[43, 44]. To gain an understanding of this layer, the hard-

est, roughest, and optimum specimens were selected and

compared for the microstructure. The SEM micrographs of

the white cast layer and recast layer of SLMed AlSi10Mg

are presented in Figs. 6, 7, 8, 9, 10, and 11.

Table 5 ANOVA for micro-hardness

Factor Process parameters Degrees of freedom Sum of squares Mean square F-test Contribution in %

A Discharge current 2 1.229 0.615 36.12 41.63

B Voltage 2 0.701 0.350 20.58 23.72

C Pulse time-on 2 0.989 0.495 29.07 33.50

Error Error 2 0.034 0.017 1.15

Total Total 8 2.953 100

Table 6 ANOVA for surface roughness

Factor Process parameters Degrees of freedom Sum of squares Mean square F-test Contribution in %

A Discharge current 2 0.680 0.340 28.06 42.20

B Voltage 2 0.601 0.301 24.83 37.34

C Pulse Time-on 2 0.305 0.153 12.61 18.96

Error Error 2 0.024 0.012 1.50

Total Total 8 1.611 100

Table 7 ANN parameters for training data

Sl. no. ANN parameters Values

1 Network configuration 03–10–02

2 Number of hidden layers 1

3 Number of hidden neurons 10

4 Transfer function used Logsig (sigmoid)

5 Number of epochs 500

6 Learning factor 1%

7 Momentum factor 90%

8 Training Trainlm

9 Max-fail 500

Table 8 ANN network outputs

Number of neurons in the hidden layer

8 9 10 11 12

MRE 4.964 4.244 3.635 3.049 3.965

RMSE 21.550 12.800 11.888 27.283 19.048

R2 0.9950 0.9970 0.9967 0.9936 0.9955
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The thermal energy discharged during the WEDM pro-

cess creates heat-affected zones (HAZ) in the specimen

proportional to the magnitude of the electric discharge

energy. The HAZ is the region underneath the white layer

(recast layer) affected by the heat transfer from the white

layer. The HAZ can be classified into a hardened layer,

followed by the annealed layer, and can be viewed

from the surface perpendicular to the recast layer. The

recast layer can be seen as a thick white line at the

machined edge called ‘white cast’ or ‘white layer,’ typi-

cally 4 lm in thickness [43]. The white layer consists of

ultrafine a-Al grains with fine Si particles decorated along

the grain boundary. Further, the XRD results confirm the

presence of fine Mg2Si precipitates in the white layer, as

shown in Fig. 12. Fine Mg2Si precipitates and refined

microstructure result in very high hardness (518 VHN).

The annealed regions experience significant a-Al grain

growth and Si particle coarsening due to the heat transfer,

whereas a thin layer just below the white layer, i.e., hard-

ened layer experiences little grain or particle coarsening

[43, 44]. This explains the hardness difference between the

hardened (435 VHN) and annealed (281 VHN) layers. The

explanation on how the hardened and annealed layers are

developed is given in detail by Hassan El-Hofy [44]. The

white layer thickness (WLT) and the HAZ (hardened and

annealed layers) are the direct function of discharge energy

emitted and the time for which it stays in the wire electrode

during the process. The zone below the machined surface

will be annealed to produce the white layer. The depth of

the annealed layer ranges from 50 to 200 lm for the finish

and rough cutting rates, respectively [22, 29–32, 45]. Fig-

ures 6, 7, and 8 show the SEM images of the white cast

layer. The representation of the white cast layer, followed

by the hardened and annealed layer on the recast surface, is

shown in Fig. 6a.

Figure 6b, c shows the hardest specimen (518 VHN)

with a surface roughness of 4.67 lm. It can be noticed that

the hardest specimen has thick bands of white (15.41 lm),

hardened (86.9 lm), and annealed (114.43 lm) layers as

compared to the least hard (soft) specimen. Hence, the

present study shows that micro-hardness is directly pro-

portional to the HAZ layer thickness near the white cas-

t layer. As the HAZ is a function of pulse time-on and

discharge variables, the hardest specimen has the highest

discharge voltage of 44 V and pulse time-on 12 ls gen-

erating more heat that affects more thickness of the parent

material and creates a wide HAZ. On the other hand,

Fig. 7a, b shows the roughest specimen (Ra = 5.18 lm)

with micro-hardness 442 VHN that uses the lowest dis-

charge current of 12 A, discharge voltage of 42 V, and

pulse time-on of 10 ls generating less heat when com-

pared to the hardest specimen. The average values of HAZ

are found to be 76.6 lm for the hardened layer and

104.5 lm for the annealed layer. Also, at constant pulse

time-off of 14 ls, the heat dissipation rate of the least

hard (soft) specimen is higher than the hardest specimen
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Fig. 2 Variation of a MRR, b RMS, and c regression values with number of neuron structures

Fig. 3 ANN architecture topography with the transfer function of the logarithmic sigmoid (logsig) for hidden layer and linear (purelin) for the

output layer
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resulting in less HAZ. This variation in heat generated

and heat dissipation rate have resulted in variation in the

micro-hardness of the specimens. Figure 8a, b shows the

SEM images of the optimum specimen. The average

thickness of the white layer is found to be 9.7 lm which is

lesser than the other specimens. The reduced white layer

thickness results in enhanced surface characteristics with a

lesser Ra value of 4.39 lm and a micro-hardness of 492

VHN. The HAZ of 53.47 lm of hardened layer and

87.3 lm of an annealed layer is obtained from discharge

current of 12 A, discharge voltage of 42 V, and pulse time-

on of 12 ls. The lowest discharge current and voltage

results in reduced HAZ and white layer thickness which is

accounted for a reduction in surface roughness and the

highest pulse time-on results in improved micro-hardness.

However, the micro-hardness of the optimum specimen

may not be of the highest value. The overall multi-objec-

tive function compromises only a 6% penalty in the micro-

hardness for surface quality (reduced surface roughness)

improvement of about 15%.

The recast SEM images (Figs. 9, 10, 11) reveal that the

post-machined surface is smooth with few surface defects

such as craters, asperities, spherical nodules, pockmarks,

debris, and cracks. These surface defects are usually caused

by thermal stresses generated due to the rapid cooling of

molten metal in the vicinity of the machined surface. The

micro-craters (Fig. 9a) are formed as a result of the impact

created by spark explosion. Due to this, the micro-melted

pool is eroded from the machined surface [43]. These

eroded micro-droplets of molten metal then rapidly solidify

above the recast surface, forming numerous irregular-

shaped microscale asperities, which are shown in Figs. 9b

and 10a.

The formation of micro-cracks (Fig. 10b) occurs during

the pulse time-on in the WEDM process. From the recast

surface analysis, it is clear that the surface defects are more

prominent in the specimen with the highest discharge

current and time-on with the lowest discharge voltage.

Micro-cracks are formed due to the high thermal stresses

induced by the high-temperature gradient at the interface.

Fig. 4 ANN regression

coefficient of experimented vs

predicted values for a training,

b testing, c validation, and d all

a–c together
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When the magnitude of the thermal stress surpasses the

maximum strength limit of AlSi10Mg, the crack develops

[46]. In the roughest specimen (Fig. 10a, b), the presence

of the micro-cracks and debris on the recast surface

increase the surface roughness (Ra). The micro-cracks

may cause premature failure of the specimen if they are

irregularly distributed in the recast surface, particularly

when machined at 14 A discharge current and 12 ls pulse
time. The cracks are not getting removed after post-pro-

cessing (such as polishing and finer finishing) of the

WEDM process. Micro-cracks are also responsible for the

reduction of fatigue resistance and tribological properties

such as wear resistance [22]. Debris is vertical projections

of re-solidified micro-droplets of molten AlSi10Mg found.

The optimum specimen (Fig. 11a, b) reports reduced

surface defects compared to others. The improvement in

the surface properties is because of reduced discharge

current and voltage of 12 A and 42 V, respectively.

Moreover, for the optimum specimen, the micro-cracks

are absent.

4.2.4 XRD

The recast surface of the optimum specimen was analyzed

using XRD to understand the phases formed. Figure 12

shows the XRD plot of the recast surface of post-machined

SLM–AlSi10Mg. The sharp peaks reveal the high crys-

talline nature of the AlSi10Mg alloy. The diffraction

angles of 39.82, 46.02, 66.3, 79.34, and 83.52 degrees

identify as a-Al. The smaller peaks corresponding to 2h
values of 48.65, 58.35, and 89.16 correspond to primary Si

particles in the alloy. Further, the peak at 30.57o diffraction

angle shows the presence of Mg2Si (magnesium silicide)

precipitate in the alloy. Since Mg2Si is the hardest phase,

its precipitation on the recast surface increases the micro-

hardness of the specimen.

It is noted that the deposition of wire electrode material

(Cu–Zn alloy) is not observed in the recast surface of post-

Fig. 5 ANN validation and

performance plot for the 3–10–2

model

Table 9 GA Computational parameter of multi-objective

optimization

GA computational

parameters

Values

Population size 50

Elite count 2

Crossover fraction 0.80

Fitness scaling function Rank fitness scaling

Direction for migration Forward with migration fraction set at

0.2

Mutation function Adaptive feasible

Creation function Feasible population

Selection function Tournament
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machined SLM–AlSi10Mg. Hence, it is proposed that the

optimum parameters provide not only a good surface finish

and higher micro-hardness but also a clean surface free

from any traces of the wire electrode material deposition.

4.2.5 Surface Topography

The surface topology of the optimum specimen was ana-

lyzed in three different locations in the recast surface to

study the effect of process parameters on surface integrity.

The location where the AFM analysis is done is depicted in

Fig.6 a White layer and HAZ, i.e., hardened and annealed layers representation; WEDM parameters: 13 A, 44 V, 12 ls, b HAZ of highest

hardness at 250x: 13 A, 44 V, 12 ls, c white cast layer of highest hardness at 1000x: 13 A, 44 V, 12 ls

Fig. 7 a HAZ of highest roughness at 250x: 14 A, 42 V, 12 ls, b white cast layer of highest roughness at 1500x: 14 A, 42 V, 12 ls
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Fig. 13. Figures 14, 15, and 16 illustrate the 2D AFM

micrographs and their corresponding 3D surface topology

taken at locations 1, 2, and 3, respectively. The contrast

variation in color denotes the variation in the altitude of the

surface where the darker is the deeper region and the

brighter is the elevated region. The AFM study shows that

surface integrity varies in different locations of the

WEDMed surface.

It can be noticed that the value of nano-surface rough-

ness (Ra) increases as it moves deeper into the recast layer

away from the periphery to the maximum value at its

center. The process parameters of the optimum specimen

Fig. 8 a HAZ of optimum by GA-ANN at 500x: 12 A, 42 V, 12 ls, b white cast layer of optimum by GA-ANN at 1500x: 12 A, 42 V, 12 ls

Fig. 9 a Recast layer of highest hardness at 250x: 13 A, 44 V, 12 ls, b recast layer of highest hardness at 1000x: 13 A, 44 V, 12 ls

Fig. 10 a Recast layer of highest roughness at 250x: 14 A, 42 V, 12 ls, b recast layer of highest roughness at 1000x: 14 A, 42 V, 12 ls
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are 13 A, 44 V, and 12 ls, respectively. At location 1, the

value of surface roughness (Ra) is 46 nm. This is because

the areas of heat dissipation are high, resulting in higher

heat dissipation when compared to other locations. A part

of the heat dissipates through the recast surface and another

part escapes through the surface perpendicular to the recast

surface (including white cast surface). But location 3,

which is at the center of the recast surface, has a very less

heat dissipation rate due to the less area of heat dissipation.

So, the effect of heat will be the highest in location 3 and

lowest in location 1. This resulted in poor surface quality

(highest surface roughness 93 nm) in location 3 and the

best surface quality in location 1. Location 2 which is

between locations 1 and 3 has a surface roughness of

61 nm which is an intermediate value between the highest

and lowest roughness. This indicates that the heat dissi-

pation rate is between the rates of locations 1 and 3. Even

though location 2 is not adjacent to the periphery, it is

relatively nearer to the periphery than location 3. Hence,

the heat dissipation through the periphery is higher than

location 3 and lower than location 1, resulting in inter-

mediate surface quality.

This study reveals that morphological characteristics

such as voids, debris, cracks, and other fractured compo-

nents are not observed and hence, showing excellent sur-

face characteristics. There is no significant change in

topology in three locations (Figs. 14b, 15b, 16b). As briefly

discussed in SEM analysis, the lesser the heat dissipation

rate, the longer the heat stays on the surface. The magni-

tude of thermal stresses directly varies with the exposure of

heat on the surface.

When the value of thermal stresses surpasses the

mechanical strength of the material, surface defects

(cracks, voids, debris, etc.) develop leading to an increase

in surface roughness [22, 46]. The variation in the heat

dissipation rate on different locations directly impacts the

surface morphology of the specimen. Hence, it is observed

Fig. 11 a Recast layer of optimum by GA-ANN at 100x: 13 A, 44 V, 12 ls, b recast layer of optimum by GA-ANN at 500x: 13 A, 44 V, 12 ls

Fig. 12 XRD analysis at the recast layer

Fig. 13 Location of AFM images in the optimum specimen: 13 A,

44 V, 12 ls
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that the surface roughness (in nm) decreases as it moves

away from the center of the recast surface towards the

periphery due to the increase in heat dissipation rate.

5 Conclusions

In the present research, the multi-objective optimization of

WEDM parameters for the responses of micro-hardness

and surface roughness is carried out through a hybrid ANN

coupled GA technique to use WEDM as a post-processing

technique in the SLM process. The process parameters

used to optimize the WEDM process are the discharge

current, discharge voltage, and pulse time-on. The key

findings from the optimization are:

1. From the statistical analysis by ANOVA at a 95%

confidence level, the discharge current is found to be

the most influential factor that affects the micro-

hardness and surface roughness.

2. From the five ANN models developed with the hidden

neurons varying from 8 to 12, the 3–10–2 model is

found to be the ‘best-fit’ neural architecture to be used

for optimization using GA.

Fig. 14 a Two-dimensional image of location 1 Ra = 46 nm, b topographic image of location 1

Fig. 15 a Two-dimensional image of location 2 Ra = 61 nm, b topographic image of location 2
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3. The optimized process parameters are discharge cur-

rent of 12 A, discharge voltage of 42 V, and pulse

time-on of 12 ls for the maximized micro-hardness of

478 VHN and minimized surface roughness of

4.33 lm for the fitness function derived based on the

results of the 3–10–2 ANN model.

4. A validation test results (micro-hardness: 492 VHN

and surface roughness: 4.39 lm) show that the

predicted results are in 98% agreement with the

experimental data.

5. The white layer analysis shows that the increase in

micro-hardness is proportional to the size of HAZ near

the machining zone. In the recast surface, the poor

surface quality (high Ra) is due to the presence of

surface defects (e.g., cracks, voids, debris) formed by

thermal stresses imposed by the drastic cooling rate

experienced in the machining surface. The surface

quality is improved (reduced Ra) up to 15.25% by the

optimization studies.

6. The XRD analysis on the recast surface confirms the

presence of Mg2Si precipitation on the recast surface

which increases the micro-hardness of the specimen.

Also, it is understood that optimum parameters provide

not only a better surface finish and higher micro-

hardness but also a clean surface free from the

deposition of the wire electrode material.

7. The AFM studies reveal that the surface integrity

varies in different locations of the WEDMed surface.

Voids, debris, cracks, and other fractured components

are not evident confirming good surface characteris-

tics. Further, the surface roughness (in nm) decreases

as it moves away from the center of the recast surface

toward the periphery due to the increase in the heat

dissipation rate.

Hence, the ANN coupled genetic algorithm suggested is

found to be an effective optimization tool to optimize

WEDM parameters for post-processing of SLM–AlSi10Mg

alloy resulting in maximum micro-hardness and minimum

surface roughness with defect-free surfaces.
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