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Abstract In this work, we study the mechanical response

of shape memory alloy (SMA) wire reinforced composites

using a recently developed novel discrete particle model. In

this model, the discrete particles interact through forces

specified by the continuum thermoelastic free energy of the

material. We study the formation and evolution of fine

microstructure in the SMA composites with different

matrix properties under thermal and mechanical loads. The

effect of phase transformation and detwinning in the SMA

on the overall mechanical response of the composite is

studied. The elastic modulus of the matrix has a significant

effect on the formation of the microstructure of the SMA.

This in turn affects the overall damping response of the

composite. Interestingly, in the case with high Young’s

modulus of the matrix, a retwinning process is observed

upon unloading a detwinned wire. These results provide

insights for the design and analysis of SMA composites.

Keywords Smart composites � Shape memory alloys �
Thermomechanical behavior

1 Introduction

In recent years, composites are being more widely used in

many applications in the aviation and automotive industries

due to their relatively high stiffness-to-weight ratios com-

pared to traditional materials [1, 2]. Some of the drawbacks

of composites for structural uses have been addressed by

metallic wire reinforcements [3–5]. Of the various metallic

wire reinforced composites, shape memory alloy (SMA)

wires are of particular interest due to their advantages

[6–8].

It is widely known that two interesting kinds of behavior

are observed in SMA upon mechanical and thermal loading

[9–11]. At relatively high temperatures (above the trans-

formation temperature), SMA possesses the ability to

recover from large deformations upon the application of

mechanical loading followed by unloading. This behavior,

referred to as pseudoelasticity, arises due to the stress-in-

duced transformation of the austenite phase to martensite.

However, upon unloading, the austenite phase and the

overall strain are completely recovered. At temperatures

lower than the transformation temperature, the material

undergoes an apparently plastic deformation which can be

completely recovered by heating above the transformation

temperature. This is due to the detwinning of the initially

twinned martensite phase, which does recover during

unloading. Upon heating above the transformation tem-

perature, a phase change to austenite allows recovery of the

strain. This behavior is referred to as the shape memory

effect. The most important feature of both these effects is

that, they involve the evolution of microstructural features,

which play a significant role in the overall response of the

material.

SMA wire reinforced composites are referred to as smart

composites due their ability to change qualitative and

quantitative aspects of their behavior with relatively small

changes in temperature [12]. Some of the aspects of SMA

composites which have been studied in detail are adaptive

shape change, self-healing, damping and vibrational prop-

erties and impact resistance [13–16]. These aspects have

been studied mainly through experiments and modeling

[17–19]. In order to understand the microscopic aspects of
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the interactions between the SMA and matrix as well as to

develop design procedures using these materials, it is

essential to develop high fidelity models of SMA com-

posites [20, 21]. It is important to understand the role of the

matrix stress distributions on the microstructure of the

SMA wires and conversely the effect of the microstructure

on the matrix in order to design and predict the overall

properties of the SMA composites.

Most of the studies heretofore have used one-dimen-

sional phenomenological models of SMA to model the

mechanical behavior of the composites [22–24]. However,

in order to understand the role of the microstructure for-

mation and evolution in the SMA, microstructural models

are necessary. Microstructural models of SMA are based

on phase field approaches or discrete particle models

[25–27]. Recently, SMA nanocomposites have been stud-

ied using the phase field model [28, 29]. However, such

models are restricted to extremely small length- and

timescales. On the other hand, discrete particle models can

be used for modeling bulk length- and timescales [30, 31].

In this work, we use a recently developed discrete par-

ticle model to study the formation and evolution of

microstructure in SMA reinforced composites. Discrete

particle approaches dispense with the continuum assump-

tion and treat the body as a set of discrete point masses.

The interactions between the point masses determine the

constitutive response of the overall material. If the point

masses are taken to be atoms, the interactions arise from

interatomic potentials and the resulting model is referred to

as molecular dynamics. While such an approach provides

fundamental insights, the length- and timescales accessible

to such models are too small for practical applications. On

the other hand, if the point masses are taken to be larger

than individual atoms, it is difficult to determine appro-

priate interaction potentials. In previous work, the inter-

actions have been taken to be simple harmonic pairwise

potentials. Such interactions cannot describe the complex

constitutive behavior of SMAs [32, 33].

We have recently developed an alternative approach in

which the interaction between the point masses is specified

through the continuum free energy of the material [31, 34].

Based on the reference and current configurations of the

particles, we calculate a discrete deformation tensor

describing the deformation of each connected triangle of

particles in the body. The total energy of the discrete

system is then taken to be the continuum free energy of

each of the triangles expressed as a function of the particle

positions. The interaction forces then arise as a gradient of

the total energy of the body. The dynamics of the particles

is specified by the interaction forces derived in this manner.

Using this approach, we study SMA wire reinforced

composites. The SMA wires are considered to be single

crystals and perfectly bonded to the matrix. We study the

nucleation and evolution of the twinned martensite upon

cooling as well as the stress-induced martensitic transfor-

mation upon mechanical loading. The role of the matrix

elastic modulus on the phase transformation and detwin-

ning is also considered.

In Sect. 2, we describe the continuum interactions-based

particle dynamics model (CPD) briefly following Uchimali

et al. [30, 31]. A specific free energy for a phase-trans-

forming materials is also described. In Sect. 3, we study the

temperature-induced phase transformation from austenite

to twinned martensite. This is followed by studies of

mechanical loading of stress-induced martensitic phase

transformations as well as detwinning.

2 Continuum Interaction Particle Dynamics
(CPD) Model

2.1 Governing Equations

In this section, we summarize the CPD discrete particle

approach following [30, 31]. The domain is discretized into

a set of randomly distributed particles as shown in Fig. 1.

The current positions of the particles are denoted by yiðtÞ.
The governing equations for the particles are given by

mi
d2yi
dt2

þ c
dyi
dt

¼ f i; i ¼ 1; 2; . . .;N; ð1Þ

where mi is the mass of the particle i, and c is a damping

coefficient. The net force on the particle i, f i arises from the

interactions due to the neighboring particles. The neigh-

boring particles are identified through Delaunay triangu-

lation of the particles in their reference, stress-free

Fig. 1 Discretized body in the reference and deformed configura-

tions. The inset shows the deformation of one triangle circled by a

dashed line
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configuration. The particle positions in the reference con-

figuration are denoted by xi. We note that the particle

neighbors do not change in the course of the deformation.

In order to derive the interaction forces f i we begin by

calculating a discrete deformation tensor Fd for each of the

Delaunay triangles T abc comprising the particles a; b and c.
Consider the reference and deformed configurations as

shown in the inset in Fig. 1. The deformation of the tri-

angle T abc is characterized by the relative position vectors

rca ¼ xc � xa, rba ¼ xb � xa and dca ¼ yc � ya, dba ¼ yb �
ya in reference and current configurations, respectively.

The discrete deformation tensor Fd for each Delaunay

triangle T abc is then defined by

dba ¼ Fdrba

dca ¼ Fdrca
ð2Þ

Solving Eqs. (2) for Fd in an rectilinear coordinate frame

with basis fe1; e2g; we obtain

Fd ¼ dba � e1 þ dca � e2
� �

rba � e1 þ rca � e2
� ��1

; ð3Þ

where a� b represents the dyadic product between the two

vectors a and b.

The next step of the development of the interactions

forces is to identify the discrete deformation tensor Fd with

the continuum deformation gradient tensor F. Using this

identification, we can then obtain an interaction energy of

the discrete model based on the continuum constitutive

behavior prescribed by a free energy density which is taken

to be a function of temperature h and the deformation

gradient F. Specifically the continuum free energy,

w ¼ ~wðE; hÞ; ð4Þ

where E ¼ 1
2
FTF� 1
� �

is the Lagrangian or Green strain

tensor is expressed as a function of discrete analogue of

Lagrangian strain tensor Ed ¼ 1
2
FT
dFd � 1

� �
and

temperature h in the form,

Wabc ¼ Vabc
~w Ed; hð Þ; ð5Þ

where Vabc ¼ jrba � rcaj is the volume of the triangular

prism of unit depth.

The total energy of the discrete model is then

W ¼
P

Wabc, where the sum is taken over all Delaunay

triangles in the domain. The interaction force on particle i

due to all its neighbors is then given by

f i ¼ �oW=oyi: ð6Þ

We note that the interactions specified by this process can

describe very general constitutive behavior. In the fol-

lowing section, we present a free energy appropriate for

shape memory alloys.

2.2 Free Energy for Shape Memory Alloys

Shape memory alloys are known to undergo diffusionless

phase transformations between austenite and martensite

phases. Following Vedantam and Abeyaratne [35], we take

the austenite phase to be a square lattice and the reference

configuration. The corresponding Lagrangian strain for

stress free austenite is E ¼ 0. The martensite phase is

obtained by stretching the reference square configuration

along the two sides of the square by stretches a and b. In a

two-dimensional setting, two such variants are obtained.

The corresponding Lagrangian strains of the stress-free

martensite variants are given by

E1 ¼
1

2

a2 � 1 0

0 b2 � 1

� �
; E2 ¼

1

2

b2 � 1 0

0 a2 � 1

" #

;

ð7Þ

For thermoelastic materials which undergo a martensitic

transformation, the presence of multiple phases arises from

a nonconvex free energy ~wðE; hÞ. The free energy function

has multiple minima corresponding to the various phases

and variants: a single minimum corresponding to austenite

phase above transformation temperature hT and minima

corresponding to two martensite variants below transfor-

mation temperatures.

This is expressed as ŵðE; hÞ[ ŵð0; hÞ for h[ hT ; 8E 6
¼ 0 and ŵðE; hÞ[ ŵðEi; hÞ for h\hT ; 8E 6¼ Ei; i ¼ 1; 2.

The variants of martensite have equal energy at all tem-

peratures ŵðE1; hÞ ¼ ŵðE2; hÞ.
As described by Vedantam and Abeyaratne [35], the

Helmholtz free energy w can be expressed as a polynomial

expansion of the strain invariants of the parent phase in

order to incorporate the symmetries of the phases. The

explicit form of the free energy in two dimensions is given

by

w ¼ ~wðI1; I2; hÞ; ð8Þ

where I1 ¼ E11 þ E22 and I2 ¼ E11E22 are the strain

invariants.

A simple Landau polynomial expansion of the free

energy with temperature-dependent coefficients is

considered

~wðI1; I2; hÞ ¼ d0ðhÞ þ d1ðhÞI21 þ d2ðhÞI41
þ d3ðhÞI2 þ d4ðhÞI22 þ d5ðhÞI42 :

ð9Þ

and the coefficients are obtained following the algorithm

given in [35].
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d1 ¼ 11:92; d2 ¼ 1558:33� 19:50ðh� hRÞ;
d3 ¼ 15:50� 0:40ðh� hRÞ;
d4 ¼ �8116:67� 41ðh� hRÞ;
d5 ¼ 2:67� 108;

where hR ¼ 300K is a reference temperature. The trans-

formation temperature is hT ¼ 310K for the parameters

chosen. The transformation temperature is the average of

martensite start and austenite finish temperatures following

the Ginzburg–Landau formalism [35]. The transformation

temperature is a typical value chosen from among the range

of compositions available reported for CuAlNi alloy [36].

2.3 Computational Aspects

We consider SMA wires of dimensions / 0.5 mm � 5 mm.

This domain is discretized into about 7:5� 103 particles.

Thus each Delaunay triangle is of side of about 80 lm.

Assuming that the simulations represent plane stress con-

ditions and that the specimen depth is 1 mm and the den-

sity1 is 7150 kg/m3, the mass of the particle is about

2� 10�8 kg. We load the specimen at constant displace-

ment rate in all the simulations by fixing the particles on

the left boundary and displacing the particles on the right

boundary by small increments for each time step. The

forces on the particles on the right surface are calculated at

each time step. The total force on all the particles on the

right surface divided by the area is the taken to be the

stress. The stress is plotted against the nominal strain

obtained by the displacement of the right surface divided

by the initial length of the wire. The strain rate is taken to

be _e ¼ 5� 10�4/s and the total loading strain is eT ¼ 0:05.

The total number of loading time steps is 106. Thus we take

the time step of the simulations to be 10�4 s. Equations (1)

are solved using the velocity-Verlet algorithm as described

in [30]. The temperature is taken as a control parameter and

specified uniformly throughout the domain. In this work,

all the high-temperature simulations of pseudoelastic

behavior are performed by setting h ¼ 340K and the low-

temperature simulations are performed by setting h ¼
225K in the free energy given by Eq. (9).

1 The free energy used in this study is based on the energy developed

for CuAlNi alloy by Vedantam and Abeyaratne [35]. Thus, we use the

density of CuAlNi SMA here.

Fig. 2 Uniaxial tension of an SMA wire: a initial nucleation occurs at e ¼ 0:028, b the transformation fronts propagate inward upon further

loading at strain e ¼ 0:05, c unloading occurs through four interfaces, d snapshot of the microstructure during an unloading strain of e ¼ 0:017.
The domain is colored according to the value of the strain component E11 as indicated in the color bar on the right-hand side (Color figure online)

123

2502 Trans Indian Inst Met (2021) 74(10):2499–2510



3 Results and Discussion

3.1 Phase Transformations in SMA Wire

We first simulate the behavior of an SMA wire to examine

the formation and evolution of the microstructure. The wire

is loaded at a temperature of 340 K. The transformation to

a single variant martensite and the corresponding evolution

of this microstructure are shown in Fig. 2 at various time

steps. As the wire is loaded, the strain-induced martensite

nucleates at the two ends of the wire due to the stress

concentration due to loading and grows inward during the

loading. Upon unloading, the parent austenite phase is

recovered completely.

Similarly, the microstructure at 225 K is shown in

Fig. 3. The two variants of martensite are represented by

the red- and blue-colored triangles for strain component

E11 ¼ þ0:05 and E11 ¼ �0:05, respectively. Upon load-

ing, the initially twinned microstructure is detwinned with

increasing strain and the entire domain is transformed into

a single variant. The twin boundaries are oriented at � 45�

with the austenite lattice satisfying the compatibility con-

ditions arising from the twinning equation [31].

3.2 SMA Composite: Single Wire

We next consider the mechanical behavior of a composite

material with a single SMA wire centrally placed inside the

matrix. We consider three composite materials with dif-

ferent Young’s moduli of the matrix. The three composites

Fig. 3 Detwinning of an SMA wire at h ¼ 225K: a initial twinned microstructure at e ¼ 0:006. Snapshot of detwinned microstructure at

b e ¼ 0:017, c e ¼ 0:028 and d e ¼ 0:039. The domain is colored according to the value of the strain component E11 as indicated in the color bar

on the right-hand side (Color figure online)

Fig. 4 Effective stress–strain curves for the wire and the three

composites
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are named C1, C2 and C3 and Young’s modulus of the

matrix is taken to be EC1 ¼ E=20, EC2 ¼ E and EC3 ¼ 2E,

respectively, where E is the Young’s modulus of the

austenite phase of the SMA wire. We consider the inter-

facial strength of the wire and matrix to be very high and

hence debonding is not considered.

3.2.1 Pseudoelasticity

We first consider the mechanical response of the composite

at a temperature greater than the transformation tempera-

ture hT . The wire is in an austenitic phase in the unstressed

state. The stress–strain curves for the SMA wire and the

three composites are compared in Fig. 4.

The evolution of the microstructure in the composites is

shown in Fig. 5. The left column comprising of Fig. 5a, d,

g, j shows the evolution of the microstructure in the

composite C1, whereas the middle and right columns show

evolution of the microstructure in the composites C2 and

C3, respectively. The top two rows show the microstructure

at two intermediate loading time steps, whereas the bottom

two rows show the microstructure at two intermediate

unloading time steps. Each of the rows represents the same

time step (equivalently the same strain) of loading and

unloading for all the composites.

It can be seen from Fig. 5a–c that the nucleation has

occurred earlier in C1, which has the lowest matrix

Young’s modulus. The presence of the stiffer matrix in the

Fig. 5 Microstructural evolution in the three composites at two intermediate stages of loading and unloading. The wire is initially in the

austenitic phase. The domain is colored according to the value of the strain component E11 as indicated in the color bar on the right-hand side

(Color figure online)
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composites C2 and C3 suppresses gradients in the strain

along the wire at the initial loading. However, at a higher

strain value of e ¼ 0:039, nucleation is seen in the com-

posites C2 and C3 as well. The nucleation occurs near the

ends of the wire (near the loading boundary) and propa-

gates inward. The strain gradient occurred due to marten-

sitic transformation in the wire is carried over to the

composite with softer matrix (C1). However, the composite

with stiffer matrix (C3) takes almost no strain from the

wire.

During unloading, nucleation of austenite occurs at the

ends and in the center of the wire in composite C1 similar

to the unloading microstructure observed in the wire

(Fig. 2c). In the composites C2 and C3, it is very interesting

to note that, during unloading, the nucleation of the

austenite occurs in a much more finely distributed manner.

Particularly, in Fig. 5i, the inhomogeneity in the strain

across the wire causes the formation of fine inclined bands.

The role of the matrix in suppressing the gradients in the

strain up to a later stage of unloading causes this significant

difference in the resultant microstructure.

3.2.2 Detwinning

We now examine the case in which the wire is placed in the

matrix and cooled to below the transformation temperature.

Fig. 6 Evolution of the microstructure in the three composites at two intermediate stages of loading and unloading. Initially the wire is in a

twinned martensite phase. The domain is colored according to the value of the strain component E11 as indicated in the color bar on the right-

hand side (Color figure online)
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The microstructure at various stages of loading is shown in

Fig. 6. As in the previous subsection, the columns show the

microstructure for each composite and the rows show the

microstructure at a particular strain with the top two rows

showing intermediate loading states and the bottom two

rows showing intermediate unloading states.

The microstructure at early stages of loading shows fine

twinned variants of martensite in all the three composites

(Fig. 6a–c). The variants are oriented at � 45� to the hor-

izontal as expected. A strain in the matrix can be observed

due to the twinning of the wire. Upon further loading,

detwinning occurs mostly from the boundaries. It is also

interesting to observe that the � 45� variants are more

susceptible to detwinning under this uniaxial loading. In

comparison, in the detwinning of the wire without the

confinement induced by the matrix, the bands oriented at

both � 45� seem to be approximately equally susceptible

to detwinning as seen in Fig. 3.

The corresponding stress–strain curves are shown in

Fig. 7. During unloading, we note from the stress–strain

curves that for the wire and C1 composite (with a low

Young’s modulus matrix), the detwinning strain is retained

upon unloading as expected. It is well known that the

recovery of the detwinning strain occurs only through a

heating step in which the material is heated above the

transformation temperature.

However, when the matrix is stiffer (as in composites C2

and C3), the detwinning process is itself reversible. Upon

unloading (as seen in Fig. 6h, i, k l), the martensite twins

reappear. We also show the microstructure in composite C1

under compression in Fig. 6g, j for the purpose of com-

parison. It is noted that this microstucture is obtained by

applying a compressive force to the composite. In the

composites C2 and C3, the twinned microstructure reap-

pears upon unloading with a tensile force. The martensite

variants appear throughout the domain and gradually

thicken upon further unloading.

3.3 SMA Composite: Wire Interaction Effects

We now examine the interaction between two wires. In this

work, we consider a particular geometry in which the

distance of the centers of the wires is 1.1 mm. The effect of

the volume fraction arising due to different separation

distances will be considered in the future work. The

pseudoelastic effect during mechanical loading above the

transformation temperature as well as the detwinning of the

twinned wire below the transformation temperature are

studied in the following sub-sections.

3.3.1 Pseudoelasticity

Figure 8 shows the microstructure at different stages of

loading and unloading. As before, the columns show the

microstructure in composites C1, C2 and C3 and the rows

represent the various stages of loading and unloading. The

composite C1 has a significant strain gradient in the matrix

and this results in early nucleation compared to C2 and C3.

The effect of the matrix in enhancing the interactions

between the wires appears in the form of increasing the

fineness of the resulting microstructure during loading as

well as unloading.

The effective stress–strain curves for the loading and

unloading of the two wire composites are shown in Fig. 9a.

It is clearly observed that the width of the hysteresis loops

is greater than that of the single wire case. This may be due

to the interaction effects between the two wires. In order to

examine this possibility, we also compare with simulations

on a composite with a single wire of diameter 1 mm. The

stress–strain curves are presented in Fig. 9b. It is seen that

the width of the hysteresis loops for the composites C2 and

C3 is approximately twice that of the single wire of

diameter 0.5 mm. From this, it appears that the larger

hysteresis width in a composite with two wires is due to the

interactions between the wires. This indicates that com-

posites with closely spaced wires may be more effective in

vibration damping applications.

3.3.2 Detwinning

Figure 10 shows the microstructure at different stages of

loading and unloading for the composite with two wires at

a temperature below the transformation temperature. The

0 0.02 0.04
0

0.02

0.04

0.06

0.08

0.1
W
C
1

C
2

C
3

Fig. 7 Effective stress–strain curves of the SMA wire and the three

types of composites. The temperature is taken to be lower than the

transformation temperature and the wire is initially in a twinned

martensite phase. The retained strain upon unloading the wire is

indicated by an arrow in the figure
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Fig. 8 Evolution of the microstructure in the three composites at two intermediate stages of loading and unloading. The effect of the interaction

between the SMA wires appears in the form of a strain gradient in the matrix. The wires are initially in the austenitic phase. The domain is

colored according to the value of the strain component E11 as indicated in the color bar on the right-hand side (Color figure online)
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wires are initially in the martensite phase. We note that the

microstructure is not symmetric in the two wires and this is

due to the presence of the matrix, which causes an inter-

action between the wires. At higher strain values, only very

thin laths of martensite are present. Both �45� orientations
of the martensite laths are present.

Upon unloading, the C1 composite remains in the det-

winned state and Fig. 10g, j and m shows the martensite

formation upon compressive loading. However, in the other

two composites, a reappearance of the twinned martensite

is observed due to the matrix stress. Upon unloading to

e ¼ 0:017 as shown in Fig. 10k, the second variant appears

from the ends of the wires and further unloading results in

the second variant forming thicker laths as shown in

Fig. 10n. The composite with a stiffer matrix (C3) shows a

more complete retwinning process compared to C2.

The effective stress–strain curves for the two-wire

composite are shown in Fig. 11. As discussed in

Sect. 3.3.1, the widths of the hysteresis loops are more than

twice those for the single-wire composites due to the wire

interaction effects.

4 Conclusions

In this work, we use a recently developed discrete particle

approach to study SMA composites. The model incorpo-

rates the continuum free energy into three-body interac-

tions between particles allowing for a very general

constitutive description. Using this approach, a detailed

description of the formation and evolution of microstruc-

ture in the SMA composite is presented under uniaxial

loading. Three cases of SMA composites are considered

with matrix having Young’s modulus less than, equal to

and greater than that of the SMA wire.

The following conclusions are obtained from this study:

1. The rich microstructure arising from both mechanical

and thermal loading is described to fine detail by the

discrete particle model.

2. The effect of the matrix Young’s modulus is quite

significant on the resulting microstructure of the wire.

A matrix with a higher Young’s modulus delays the

phase transformation in the wire.

3. In composites with a matrix with higher Young’s

modulus, detwinning of the martensite variants appears

reversible and twins reform upon unloading.

4. The interaction between two wires causes significant

differences in the stress–strain curves. Particularly, the

Fig. 9 Effective stress–strain curves of uniaxial loading of the wire compared to the three types of composites considered. a The composites are

reinforced with two wires of diameter 0.5 mm. b The composites are reinforced with one wire of diameter 1 mm
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Fig. 10 Evolution of the microstructure in the three composites (reinforced with two SMA wires) at two intermediate stages of loading and three

stages of unloading. Initially the wire is in a twinned martensitic phase. The domain is colored according to the value of the strain component E11

as indicated in the color bar on the right-hand side (Color figure online)
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width of the hysteresis loops in composite with two

wires is greater than that seen in composites with one

wire with twice the diameter.

These conclusions are expected to be important for

designing composites with optimal vibration dampening

and self-healing properties. Further studies on the role of

debonding of the wires are important to model the

mechanical response of SMA composites.
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Fig. 11 Effective stress–strain curves of uniaxial loading of the wire

compared to the three types of composites considered. The compos-

ites are reinforced with two wires. The temperature is taken to be

lower than the transformation temperature

123

2510 Trans Indian Inst Met (2021) 74(10):2499–2510

https://doi.org/10.1080/15376494.2021.1909787
https://doi.org/10.1080/15376494.2021.1909787

	Formation and Evolution of Microstructure in Shape Memory Alloy Wire Reinforced Composites
	Abstract
	Introduction
	Continuum Interaction Particle Dynamics (CPD) Model
	Governing Equations
	Free Energy for Shape Memory Alloys
	Computational Aspects

	Results and Discussion
	Phase Transformations in SMA Wire
	SMA Composite: Single Wire
	Pseudoelasticity
	Detwinning

	SMA Composite: Wire Interaction Effects
	Pseudoelasticity
	Detwinning


	Conclusions
	Acknowledgements
	References




