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Abstract This paper presents the efforts of joining dis-

similar aluminum alloys (AA6351-T6 and AA6061-T6) by

friction stir welding (FSW) process. FSW experiments are

conducted according to the three factors five level central

composite rotatable design method, and the response sur-

face methodology was used to establish the empirical

relationship between FSW process parameters such as tool

rotational speed (N), tool traverse speed (S) and axial force

(F), and the response variables such as ultimate tensile

strength, yield strength, and percentage of elongation. The

developed empirical models’ adequacies are estimated

using the analysis of variance technique. This paper also

presents the application of the artificial bee colony algo-

rithm to estimate the optimal process parameters to achieve

good mechanical properties of FS weld joints. Results

suggest that the estimations of the algorithm are in good

agreement with the experimental findings.

Keywords Friction stir welding � Design of experiments �
Response surface methodology � Optimization �
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1 Introduction

Friction stir welding (FSW), a solid state metal joining

process which eliminates the limitations of conventional

metal joining processes, such as cracks and porosity, is

gradually gaining popularity. FSW is a dynamically

continuous solid state joining process and is found to have

low welding temperature, very good joining characteristics

for aluminum alloys and requires less energy than fusion

joining processes [1, 2]. FSW process uses a non-con-

sumable rotating tool that re-circulates the molten metal

and contains the molten metal beneath the tool shoulder to

form a friction stir (FS) zone. Such FS zone is also affected

by the behavior of the molten material flow under the

influence of the rotating tool. Since the heat supplied in the

FSW process is less than the heat supplied during fusion

welding, heat distortions are at minimum and consequently

the residual stresses are also reduced, and this process also

provides homogenous and void free permanent joint and

thus this process is more attractive. Particularly in case of

joining heat treatable wrought aluminum alloys such as

AA6351-T6 and AA6061-T6, FSW can fabricate quality

weld joints when compared with conventional joining

process [3]. Comprehensive review suggests that FSW is a

potential joining process for similar and dissimilar alu-

minum alloys. Numbers of experimental studies indicate

that different metals such as Al–Mg–Si, Al 5083-H321,

Al2024 T4 and Commercial Al can be welded using FSW

to produce good joints with improved mechanical proper-

ties when compared to Tungsten Inert Gas (TIG) and Metal

Inert Gas (MIG) welding processes [4]. FSW has been used

to join A2198-T3 rolled plates with different rotational

speeds and welding speeds and to develop empirical

models of welding force and mechanical strength of the

welded joints using regression analysis [5]. Friction Stir

Spot-Welded (FSSW) process has been used to join

AA2024 plates, and achieve good lap shear strength of the

spot weld [6]. Tensile strength of FSW joined AA 6061

plates, initially increases with the increase in the values of

the process variables such as tool rotational speed, tool

traverse speed, axial force and decreases with further
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increase of the same process variables, after a certain level

[7]. The statistical techniques, such as analysis of variance

(ANOVA) and response surface methodology (RSM) have

been employed to study the interactions of the different

process variables of FSW process [8]. The effect of process

variables on FSW to join similar aluminum alloys such as of

AA6351-T6, AA 6061-T6 etc. have also been studied for

their good weldablity. Aluminum alloys AA6351-T6 and

AA 6061-T6 are widely used in building ships, marine

structures and aircrafts because they exhibit improved

metallic properties such as light weight, high strength,

resistance to seawater corrosion, good welding characteris-

tics over the high strength aluminum alloys [9, 10]. Different

metallurgical properties of dissimilar joints of AA6082–

AA6061 plates have also been experimentally studied [11].

The defect formation mechanism in FSW process has been

studied by the three dimensional visualization of material

flow around the rotating tool [12]. The gray-based Taguchi

method is proposed to find the optimum FSW process

parameters fabricate butt joint of AA5083 plates [13].

Recently, a fuzzy assisted grey Taguchi technique has been

proposed for optimizing the FSW process parameters with

multiple response variables such as ultimate tensile strength,

yield strength, % elongation and nugget zone hardness. The

fuzzy inference system has been applied to convert themulti-

objective optimization problem into a single objective opti-

mization problem [14].

Estimating optimal process variables to join different

aluminum alloys using FSW process is a challenging task.

And thus there is a need to study the modeling and opti-

mization strategies for FSW process. Therefore, this paper

presents the efforts to develop mathematical models of

response variables (ultimate tensile strength, yield strength

and % elongation) of FSW process to join dissimilar alu-

minium alloys using response surface methodology (RSM).

And further, this paper also attempts to explain the procedure

to estimate the optimal process variables (tool rotational

speed, tool traverse speed and axial force) for such empirical

models using a nature inspired algorithm, which mimics the

intelligent foraging behaviour of honey bees, namely artifi-

cial bee colony (ABC) algorithm. ABC algorithm is essen-

tially a swarm intelligence based stochastic search technique

that simulates the social interactions of honey bees. In this

swarm based optimization algorithm, artificial bees (em-

ployee, onlooker and scout bees) perform a specific function

and collectively search for quality solution in the given

search space [15]. This paper is further organized as follows.

In section two, the details of FSW experiments are presented

which are followed by a procedure to establish the mathe-

matical relationship between process variables and response

variables using response surface methodology (RSM) in

section three. In the following section four, the effects of

process parameters on different response variables are pre-

sented. In section five, the detailed working of ABC algo-

rithm and its application to the three mathematical models,

that were developed using RSM technique, is presented

along with experimental validation of the results of the ABC

algorithm.

2 Experimental Details

Aluminum alloys AA6061-T6 and AA6351-T6 plates have

been considered for this study. The chemical composition

and mechanical properties of the base metals are presented

in Tables 1 and 2 respectively. The test plates of 60 mm

length, 30 mm width and of 6.35 mm thickness are pre-

pared to produce square butt joints using FSW process in

one pass on a super max vertical milling machine which is

depicted in Fig. 1a. The weld joints are fabricated using a

non consumable cylindrical tool having a scroll with

0.75 mm taper at the tip of the pin, and it has 16 mm probe

diameter, 14 mm shoulder diameter, 5 mm pin length and

of 4 mm pin diameter, made of molybdenum (M42 with

HRC 63). The FSW tool is depicted in Fig. 1b. Based on

the preliminary trails, the independent process parameters

of FSW process that affect the dependent variables ultimate

tensile strength (UTS), yield strength (YS), and % elonga-

tion (%EL), are identified as tool rotational speed, tool

traverse speed and axial force.

Central composite design (CCD) is adopted in this study

for fitting a second order response surface. CCD contains set

of trail experiments, set of trail experiments at axial points

and set of trail experiments at centre points. In CCD, axial

points are used to provide estimation of curvature of response

Table 1 Chemical composition of specimen materials

Alloy Si Mg Mn Cu Fe Zn Ni Cr Ti Al

AA6061 0.7 1.0 0.1 0.4 0.7 0.04 0.007 0.1 0.02 96.93

AA6351 0.907 0.586 0.65 0.086 0.335 0.89 0 0 0.015 96.51

Table 2 Mechanical properties of specimen materials

Alloy UTS (MPa) YS (MPa) % El BHN

AA6061 320 260 16 95

AA6351 310 285 14 95
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surface while centre points (essentially random replicates of

experimental runs at centre point) are included to reduce the

model prediction error and provide the uniform precision,

which ensures the equal variance of prediction in the design

space or response surface. Such uniform precision in the

design space provides protection against bias because of the

Pin diameter 4 mm

Pin length 5 mm

Probe diameter 16 mm

Shoulder diameter 
14 mm

(a)

(b)

(c)

Fig. 1 a Super max vertical

milling machine, b FSW tool

and its dimensions, c UTM setup
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presence of the higher order terms in the response surface

[6, 16]. The centre points in CCD provide check for uniform

precision, process stability, variance of prediction and pro-

tection against bias. A uniform precision design offers more

protection against bias in the regression coefficients [16]. In

CCD the total number of experiments required to be con-

ducted is determined by a formula (2k ? 2k ? c) where k is

the number of factors in the study, 2k is the number of trail

experiments, 2k is the number of axial and c is the number of

central points. The suggested number of central points for

three factors varies from five to six [17]. Many researchers

have considered six random test trails at centre point, as a

trade-off between the suggested value of c and available

resources, in their experimental studies [18–20]. Accord-

ingly, in this study central composite design matrix with

three factors at three levels that consists of 20 sets of coded

experimental conditions (23 = 8 sets of trail experiments, 6

sets of experimental trails at axial or star points and 6 sets

experimental runs at centre points), are considered in order to

estimate the linear, quadratic two way interactions of the

FSW three process variables (tool rotational speed, tool

traverse speed and axial force) on the three response vari-

ables (ultimate tensile strength, yield strength and %

elongation).

Tensile test specimens have been prepared according to

the guidelines of the American Society of Testing Materials

(ASTM-E8) and tested on UTM machine presented in

Fig. 1c. For each welded plate, three specimens are prepared

and tested and the mean values are considered for this study.

Before subjecting the specimen to tensile test, two marks are

placed equidistant from the line joining the joint and thus the

initial length (Li) between the two marks is recorded. After

the fracture, the distance between the marks is re measured

and recorded as final length (Lf). The percentage elongation

is calculated using the formula % El = (Lf-Li)/Li 9 100.

The measurement error is found to be 0.02%. The experi-

ments have been conducted as per the design matrix to avoid

penetration of any systematic errors. Tensile test specimen

before and after fracture are presented in Fig. 2. The levels

and the coded values of FSWprocess parameters such as tool

rotation speed N (rev./min), tool traverse speed S (mm/min),

axial force F (KN) and the corresponding observed values of

response variables such as ultimate tensile strength UTS

(Mpa), YS (MPa) and % El levels are presented in Tables 3

and 4 respectively.

3 Empirical Model Development

The second order regression equation is used to analyze the

interactions of independent variables and to represent the

dependent response function Y which may be mathemati-

cally expressed as presented in the following Eq. (1).

Y ¼ b0 þ Rbixi þ Rbiix
2
i þ Rbijxixj þ er. . . ð1Þ

where b0 is the regression constant, bi is the linear

regression coefficient, bii is the quadratic coefficient bij is

the interaction coefficient and xi, x j are the independent

variables, Y is the dependent or response variable and er is

the experimental error. Since, our study is based on three

factors, the above equation may be expressed in the form of

the following polynomial.

Fig. 2 a Tensile test specimen—Before fracture, b Tensile test

specimen—After fracture

Table 3 FSW process parameters and their levels

Process variable Level

[-1]

Level

[0]

Level

[? 1]

Tool rotation speed N (Rev./

min)

600 900 1200

Tool traverse speed S (mm/min) 30 60 90

Axial force F (KN) 3 6 9
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r ¼ b0 þ b1 Nð Þ þ b2 Sð Þ þ b3 Fð Þ þ b11 N2
� �

þ b22 S2
� �

þ b33 F2
� �

þ b12 NSð Þ þ b13 NFð Þ þ b23 SFð Þ . . .
ð2Þ

where b0 is the regression constant, b1, b2, and b3 are linear

regression coefficients, b11, b22, and b33, are quadratic

coefficients, and, b12, b13, and b23, are interaction coeffi-

cients and N, S and F are the independent process variables

namely, tool rotational speed, tool traverse speed and axial

force respectively [21]. Regression analysis is performed

using the Design Expert 7.1 software [22] to compute the

regression constants and coefficients for the responses such

as UTS, YS and % El. Based on such computations,

empirical relationships between independent process vari-

ables of friction stir welding and dependent or response

variables, are developed. Results of ANOVA and the

regression coefficients are presented in tables 5 and 6

respectively.

The empirical models developed are verified for their

adequacy using analysis of variance technique, and found

that UTS, YS and % EL models may be considered to be

adequate since the calculated F ratios are larger than the

measured values at 95% confidence level. And, also because

the determined coefficient R2 and adjusted R2 values of the

empirical models developed, are above 90 and 80%, we may

consider that the regression equations are quite adequate.

Further, the normal probability plots, are also presented in

Fig. 3a, b and c, in which externally studentized (converted

to standard deviation scale) residuals are plotted on X axis

against the normal % probability on Y axis, to verify, whe-

ther the data is approximately normally distributed [23].

Although a few points may be spotted marginally distant

from the expected straight line, but all the points are within

the inter-quartile range (a normal range of observations)

[24]. And thus, the Fig. 3a, b and c indicate that the residuals

are approximately closely aligned to the straight line to

suggest that the errors are distributed normally [25].

The experimental data is plotted and compared against

the predicted data in the scatter diagrams Fig. 4a, b and c

for better visualization. These graphs indicate that observed

and the predicted values are in good correlation and the

points scattered close to the straight line suggest a good

fitness of the developed mathematical relations [26].

Empirical equations for UTS, YS and %EL are:

YS ¼ 232:5 � 0:1792N þ 0:589S� 6:35F þ 0:000119N2

� 0:00504S2 þ 0:573F2 � 0:000118NS� 0:00366NF

þ 0:0310SF. . . ð3Þ

UTS¼ 261:8� 0:1820N þ 0:540S� 7:78Fþ 0:000121N2

� 0:00546S2 þ 0:736F2 � 0:000014NS� 0:00427NF

þ 0:0307FS. . . ð4Þ

%EL ¼ 9:140� 0:01084N � 0:0204S� 0:296F

þ 0:000006N2 þ 0:000027S2 þ 0:0063F2

þ 0:000006NSþ 0:000081NF þ 0:002221FS. . .

ð5Þ

Table 4 Design matrix and observed values

Test

no

N (Rev./

min)

S (mm/

min)

F (KN) UTS

(MPa)

YS

(Mpa)

%EL

1 0 0 0 178.543 157.346 3.098

2 0 0 0 177.856 155.076 3.046

3 -1 1 -1 181.639 160.173 3.344

4 1 1 -1 198.918 170.501 3.85

5 1 -1 1 183.465 157.665 3.684

6 -1 1 1 194.573 170.585 3.582

7 0 0 0 176.981 152.476 3.074

8 0 0 0 175.934 152.714 3.064

9 -1 0 0 179.981 157.587 3.298

10 -1 -1 -1 189.513 163.8 3.984

11 0 1 1 178.639 153.648 3.468

12 1 1 1 186.441 161.521 3.996

13 1 0 0 189.093 163.692 3.922

14 1 -1 -1 197.276 172.168 3.892

15 -1 -1 1 181.054 156.252 3.098

16 0 0 1 177.543 152.998 3.152

17 0 -1 0 165.363 142.396 2.946

18 0 0 -1 183.612 158.344 2.992

19 0 0 0 176.689 151.213 3.078

20 0 0 0 178.067 152.272 3.126

Table 5 Results of ANOVA

Response Sum of squares Mean squares Degrees of Freedom F value R2 Adj R2

Rgna Rdlb Rgna Rdlb Rgna Rdlb

YS 943.49 91.97 104.832 9.197 9 10 11.40 0.91 0.83

UTS 1137.49 112.97 126.39 11.3 9 10 11.19 0.90 0.82

% El 2.48596 0.19436 0.276218 0.019436 9 10 14.21 0.92 0.86

a Rgn Regression, b Rdl Residual
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4 Results

The effects of the different independent process parameters

such as tool rotational speed, tool traverse speed and axial

force on the dependent mechanical properties of FS joints

of dissimilar aluminum alloys AA6061 and AA6351 plates

is presented in the following graphs that depict the com-

mon trends of interdependencies of FSW process variables

and its response variables.

4.1 Effect of Tool Rotational Speed (N) on UTS, YS

and %EL

The effect of tool rotational speed on response variables

such as ultimate tensile strength, yield strength and per-

centage of elongation is depicted in Fig. 5. It may be

observed that as the rotational speed increases, the ultimate

tensile strength, yield strength and percentage of elongation

of friction stir welded specimen initially increases and then

decreases. Such trend is observed because of the excessive

heat generated at the maximum rotational speed and the

results are in close agreement with the reported results

[27, 28]. A graph is plotted based on the mean of the

observed values of UTS, YS and % El against the three

levels of tool rotational speeds (600–900–1200 rev/min)

which is presented in Fig. 5. From the plot, it may be noted

that the near constant difference between YS and UTS

suggest that, the weld joints produced at different tool

rotational speeds exhibit sufficient ductility by offering

resistance to crack propagation and premature fracture of

weld specimen are prevented in the strain hardening region.

Such observations are in close concurrence to the published

reports [29–31].

4.2 Effect of Tool Traverse Speed (S) on UTS, YS

and %EL

The effect of welding speed on ultimate tensile strength,

yield strength and percentage of elongation is depicted in

Table 6 Predicted regression coefficients of the empirical models of

UTS, YS and %EL

Coefficients Model

UTS YS %EL

N -0.1820 -0.1792 -0.01084

S 0.540 0.589 -0.0204

F -7.78 -6.35 -0.296

N2 0.000121 0.000119 0.000006

F2 0.736 0.573 0.0063

S2 -0.00546 -0.00504 0.000027

NS -0.000014 -0.000118 0.000006

NF -0.00427 -0.00366 0.000081

SF 0.0307 0.0310 0.002221

Constant 261.8 232.5 9.140

Fig. 3 a Normal probability plots of UTS, b Normal probability plots

of YS, c Normal probability plots of %EL
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Fig. 6. The graph suggests that as the tool traverse speed

increases, values of response variables increases initially

and then decrease. At lowest tool traverse speed i.e. at

30 mm/min and highest tool traverse speed i.e. at 90 mm/

min, minimum tensile strength is observed, due to the

excessive frictional heat and insufficient frictional heat

produced respectively during the FS process [30]. Such

trend is observed because, at increased tool traverse speeds

plastic flow of the molten metal is poor and it causes poor

consolidation at the metal joining region [27].

4.3 Effects of Axial Force (F) on UTS, YS and %EL

In Fig. 7 the effect of axial force on mechanical properties

of the FSW specimen are presented. It is noted that the

increase of axial force initially increases the values of

response variables and then decreases. Such behavior may

be due to the insufficient coalescence of transferred mate-

rial. It is noted that maximum axial force causes increased

depth of plunge of the rotating tool into the workpiece that

causes lower tensile strength [27].

5 Optimization of FSW Process Using Artificial
Bee Colony (ABC) Algorithm

The ABC algorithm is a swarm based random search

algorithm that mimics the intelligent foraging behavior of

honey bees [15]. This ABC algorithm simulates the social

interactions of three artificial agents namely employee,

onlooker and scout bees that perform specific functions and

search quality honey source i.e. good solution. Accord-

ingly, in this algorithm there are three phases i.e. employee

bee phase, onlooker bee phase and scout bee phase.

Essentially, the size of the colony of bees is divided into

two equal sections. One half of the bees (employee bees)

leave the hive in search of quality nectar or good solution

while the other half of bees (onlooker bees) wait at the hive

for the former half. On successful return of the employee

Scatter diagrams of UTS for observed versus predicted values

Scatter diagrams of YS for observed versus predicted values

Scatter diagrams of %EL for observed versus predicted values
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bees at the hive, they share information (quality, quantity

and location) about the solutions with the onlooker bees.

Based on such information, onlooker bees leave the hive in

search of better solutions. During such process, if any

redundant solution is found, then it is replaced by a scout

bee, which will leave the hive in search of a better solution.

Such process of finding improved solution is continued till

a prefixed goal is reached [32]. The detail of working of the

ABC algorithm is presented also in the form a pseudo code

in the ‘‘Appendix’’. With respect to the empirical model

building, the number of test samples are chosen as per the

design of experiments, and such data is used develop

empirical relationship between the dependent process

variables and independent process variables of the FSW

process using response surface methodology. Further, the

ABC algorithm is applied on such mathematical models for

the estimation of optimal process parameters. Since the

increase of CS leads to the generation of more number of

random solutions and the ABC algorithm requires com-

puting more number of fitness evaluations to converge at a

solution. Number of fitness evaluations (is the product of

CS and MCN) is a standard performance metric that indi-

cate the rate of convergence of an algorithm, and therefore

more number of fitness evaluations suggests that the

algorithm is slow. And also, the increase of CS may also

cause convergence performance for local minimum to be

slow and sometimes becomes less stable [32]. Therefore,

algorithm specific parameters of the ABC algorithm are

chosen, in the pre-initialization phase, based on prelimi-

nary trail runs of the algorithm by keeping in view of the

number of dimensions and complexity of the model and

search space of the problem. The control parameters of the

ABC algorithm, colony size (CS), modification rate (MR),

scout production period (SPP) and maximum cycle number

(MCN), random food sources or process variables (xij) of

number of dimensions (D), considered for this study are:

CS = 6; D = 3; MR = 0.8; MCN = 10; SPP = 0.25 *

MCN. During initialization, random food sources or

process variables (xij) of required number of dimensions

(D) are randomly initialized within the specified boundary

values of FSW independent parameters, and they are

evaluated using fitness Eqs. (3–5). During employee bee

phase, neighborhood sources (vi) are produced form the

initial pool of variable values (xi) using equation.

vij ¼ xij þ ;ij xij�xkj
� �

. . . ð6Þ

and they are evaluated using fitness Eqs. (3–5). Now, best

food source between vi and xi is selected by applying

greedy selection mechanism. Based on the probability

calculated using the equation,

Pi ¼
Fitnessi

PSN
N¼1 FitnessNð Þ

. . . ð7Þ

onlooker bees are assigned and the same procedure used in

employee bee phase is repeated. Now, once the scout

production period (SPP) is over, the unimproved food

source if any exits is found and replaced with a new

random solution using the equation

xij ¼ x
ji
min þ rand 0; 1ð Þ x

j
jmax � x

j
jmin

� �
. . . ð8Þ

and the fitness is evaluated using Eqs. (3–5), in scout bee

phase. Now, the best solutions achieved so far, is memo-

rized and the above described process is repeated until the

termination criterion is not met. The ABC algorithm is

developed in Matlab 7.0, on a Laptop equipped with Intel

Core2Duo processor with 2 GB RAM. Number of fitness

evaluations (is the product of CS and MCN) and standard

deviations are the standard performance metrics of an

algorithm that indicates that it’s the rate of convergence

and stability respectively. The number of fitness evalua-

tions required to converge at the optimal solution is found

to be 60 and the standard deviation, calculated for 30

independent executions of the algorithm, is 0.0005. The

average computational time required to execute the algo-

rithm is 0.22 s.

5.1 Validation

ABC algorithm was used to find optimal process parame-

ters of FSW process using the Eqs. 3, 4 and 5 for YS, UTS

and % EL respectively. And the results were validated by

conducting confirmation tests. Three weld test runs were

performed using close range of process parameter settings

to validate an estimation of the ABC algorithm. The esti-

mated range of process variables, predicted values of

response variable, experimental settings of process vari-

ables, mean value of the observed response variable and

the percentage error in estimating the response value with

respect to the observed value of each equation are pre-

sented in Table 7. The mean values of the response
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variables YS, UTS and %EL for the first confirmation weld

test was observed as 156.2521, 181.54 and 3.12 respec-

tively. The mean values of the response variables UTS, YS

and %EL for the second confirmation weld test was

observed as 180.681, 156.72 and 3.33 respectively, and

similarly the mean values of the response variables %EL,

YS and UTS for the third confirmation weld test was

observed as 3.0135, 157.12 and 181.15 respectively.

The confirmation tests suggested that the regression

equations developed were adequate to predict the optimal

process parameters of FSW process to join dissimilar alu-

minium alloys AA6061 and AA6351 within the specified

process boundaries using the ABC algorithm. The results

also indicated that moderate range of process conditions

might lead us to improved mechanical properties of FS

weld joints.

6 Conclusions

The interaction of FSW process parameters is studied by

joining AA 6061 and AA 6351 and the empirical rela-

tionships are established for ultimate tensile strength, yield

strength and percentage elongation in terms of the inde-

pendent variables such as tool rotational speed, tool tra-

verse speed and axial force. Using ANOVA technique,

adequacy of the empirical models is verified. Further, ABC

algorithm is applied to estimate the optimal range of pro-

cess parameters of FSW process, and the results are

experimentally validated. It is observed that the increase in

the tool rotational speed, welding speed and axial force will

in turn increase the ultimate tensile strength, yield strength

and percentage of elongation, and once they attain maxi-

mum values, they decreases gradually. The results also

indicate that the proposed process modelling and opti-

mization of FSW using ABC algorithm is a promising

methodology, to predict optimal process conditions of

FSW to join dissimilar aluminium alloys.
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Appendix

The pseudo code of ABC algorithm [26] is presented

below:

1. Initialize the Colony Size (CS), Number of Food

Sources/Solutions (SN), Number of dimensions to

each solution (D), Modification Rate (MR), SPP

(Scout Production Period-limit).

2. Initialize the population of solutions xi,j where

i = 1… SN and j = 1…D.

3. Evaluate the population.

4. cycle = 1.

5. REPEAT
6. Produce a new solution vi for each employee bee by

using (6) and evaluate it as

vij ¼ xij þ ;ij xij�xkj
� �

if Rj\MR; otherwise xij. . . ð9Þ

[;ij—is a random number in the range [-1, 1]. k [ {1,

2…SN} (SN: Number of solutions in a colony) is randomly

chosen index. Although k is determined randomly, it has to

be different from i. Rj is a randomly chosen real number in

the range [0, 1] and j [ {1, 2,…D} (D: Number of

dimensions in a problem). MR, modification rate, is a

control parameter.]

7. Apply greedy selection process for the employee

bees between the vi and xi.
8. Calculate the probability values Pi using (7) for the

solutions xi

Pi ¼
Fitnessi

PSN
N¼1 FitnessNð Þ

. . .: ð10Þ

9. For each onlooker bee, produce a new solution vi by

using (6) in the neighborhood of the solution selected

depending on Pi and evaluate it.

10. Apply greedy selection process for the onlooker bees

between the vi and xi.
11. If Scout Production Period (SPP) is completed,

determine the abandoned solutions by using ‘‘limit’’

parameter for the scout, if it exists, replace it with a

new randomly produced solution using (8).

Table 7 ABC algorithm estimations and the experimental findings

Response function

optimized

ABC algorithm estimations Experimental findings Percentage error

FSW process parameters FSW process parameters

N S F Response value N S F Response Response value

YS 601.7060 39.0217 8.8943 157.0752 600 30 9 YS 156.2521 0.526777

UTS 601.7567 53.7241 7.1702 181.8339 600 60 6 UTS 180.681 0.638086

%EL 715.5764 42.0691 6.9825 2.9371 600 60 6 %EL 3.0135 -2.53526
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12.

xij ¼ x
ji
min þ rand 0; 1ð Þ x

j
jmax � x

j
jmin

� �
. . . ð11Þ

13. Memorize the best solution achieved so far.

14. cycle = cycle ?1.

15. UNTIL (Max Cycle Number or Max CPU time).
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