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Abstract Eutectic growth is an interesting example for

exploring the topic of pattern-formation in multi-phase

systems, where the growth of the phases is coupled with the

diffusive transport of one or more components in the melt.

While in the case of binary alloys, the number of possi-

bilities are limited (lamellae, rods, labyrinth etc.), their

number rapidly increases with the number of components

and phases. In this paper, we will investigate pattern for-

mation during three-phase eutectic solidification using a

state-of-the art phase-field method based on the grand-

canonical density formulation. The major aim of the study

is to highlight the role of two properties, which are the

volume fraction of the solid phases and the solid–liquid

interfacial energies, in the self-organization of the solid

phases during directional growth. Thereafter, we will show

representative phase-field simulations of a micro-structure

in a real alloy (Ag–Al–Cu) using an asymmetric phase

diagram as well as interfacial properties.

Keywords Ternary eutectic � Phase-field � CALPHAD �
Pattern-formation

1 Introduction

The simultaneous growth of three distinct phases from the

liquid allows for a broad variety of different phase

arrangements far beyond the typical microstructures of

rods, lamellae and labyrinths in binary eutectics. Hence, it

has been a topic of interest for both experimentalists as

well as theoreticians. In addition, their study provides for a

fundamental understanding of principle mechanisms which

are of general importance for the development of multi-

component alloys for advanced technical applications.

Experimental investigations of ternary alloys has been

carried out for both metallic [1] and inorganic alloys [2] for

thin-film solidification conditions, and bulk solidification

of three-phase growth has been studied in separate works

[3–9]. However, theoretical investigations of three-phase

growth have been few, where Himemiya and Umeda [10]

have worked out analytical expressions for undercooling as

a function of spacings for different three-phase configura-

tions, while modeling efforts for thin-film and bulk-solid-

ification patterns were carried out by [11, 12].

One of the widely studied alloys in this regard is the Ag–

Al–Cu alloy [13–19] which classically shows patterns of

the type as shown in Fig. 1a. While variations from this

structure are seen upon changes in the solidification

velocity, the major feature of the patterns is the formation

of lamellae of a single phase in combination with lamellae

formed out of a combination of the other two-phases.

Similarly, there are other systems such as in the Nb–Al–Ni

ternary eutectic system [20], which show patterns quite

different in characteristics from those seen in the Ag–Al–

Cu alloy. So it is an interesting question as to which

material/processing parameters lead to the differences in

structure formation.

Therefore, the central question we wish to address is

how to characterize the influence of these two parameters:

volume fraction of the phases and the solid–liquid surface

energies. To quantitatively identify the influence of each of

the parameters, it is useful to start from a purely symmetric

ternary eutectic, with equal volume fractions of the phases

and equal surface energies of all interfaces, and then
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perturb the system. For our phase-field simulations we

utilize the state of the art phase-field model based on the

grand-potential functional [21]. We perform this study

upon variation of both the surface energies of the solid–

liquid interface and the volume fractions, in order to

independently access the influence of each of these

parameters on structure formation. Thereafter, we utilize

the model for simulating a typical microstructure derived

from the phase-field simulation Fig. 1b using an asym-

metric phase diagram and asymmetric interfacial energies.

2 Material Data and Thermodynamic Functions

In this section we describe a method for incorporating

thermodynamic information in the multi-phase field model

[21] with the possibility of even coupling to thermody-

namic databases. The required inputs include the slopes of

the liquidus and the equilibrium compositions of the solid

and the liquid phases at a given temperature. Using these,

we construct simple free-energy polynomial forms around

the given equilibrium compositions. The change in the

equilibrium compositions as a function of the change in

temperature, is encoded into the parameterization of the

free-energy density using local thermodynamic extrapola-

tion around the equilibrium compositions of interest. In the

following, we briefly describe the scheme of construction

of the free-energy density of the phases.

The simplest form of the free-energy density that can

retrieve the correct Gibbs–Thomson coefficient as in the

databases and the correct slopes of the liquidus and solidus

phases are of polynomials of second order of the following

form,

f a cð Þ ¼ 1

Vm

�XK;K

i\j

Aa
ijcicj þ

XK
j

Ba
j cj þ Ca

�
; ð1Þ

where the coefficients Aa;Ba and Ca are the respective

coefficients, Vm is the molar volume that is assumed equal

for all the phases in the present discourse and K is the

number of independent components. The coefficients Aij

are linked to the curvatures of the free-energy curves and

hence are related to an effective susceptibility. This matrix

can be directly obtained from the databases for real

material simulations by using the information of the free-

energies Ga for each of the phases; as
o2Ga

ociocj

� �

caeq

and caeq

are the equilibrium compositions of the components in the

a�phase that is in equilibrium with a given phase, which is

presently chosen to be a liquid. Assuming Bl
j and Cl to be

zero for the liquid phase, the conditions of equilibrium

(equal diffusion potential and equal grand-potentials )

allows to determine the other coefficients Ba
j and C

a for any

of the solid-phases, such that the equilibrium between the

solid phase a and the liquid phase is reproduced at the

respective equilibrium compositions. Thus, one can derive

for a given temperature T�,

Ba
j ¼ 2ðAl

jjc
l
eq;j � Aa

jjc
a
eq;jÞ þ

X
j 6¼i

Aa
ijc

a
eq;i � Al

ijc
l
eq;i

� �
ð2Þ

Ca ¼
X
i� j

Aa
ijc

a
eq;ic

a
eq;j � Al

ijc
l
eq;ic

l
eq;j

� �
ð3Þ

For describing the driving force as a result of small

undercoolings, we utilize the slopes of the liquidus ml
i and

the solidus ma
i , which can be introduced from known

thermodynamics, and can be incorporated in the

construction of the respective free-energy densities of the

phases. The equilibrium co-existence lines and their

variation as a function of temperature are reproduced,

according to the approximation that the tie-lines are

preserved for smaller undercoolings, i.e. the change in

the phase-coexistence is assumed to occur in a self-similar

manner, such that the resultant equilibrium compositions at

a given undercooling, also exist along the same initial tie-

line. This allows to write the variation of equilibrium phase

concentrations of both phases a; l as,

c
a;l
eq;i Tð Þ � c

a;l
eq;i T

�ð Þ
caeq;i T

�ð Þ � cleq;i T
�ð Þ ¼

c
a;l
eq;j Tð Þ � c

a;l
eq;j T

�ð Þ
caeq;j T

�ð Þ � cleq;j T
�ð Þ

8 i; j 2 1. . .K:

ð4Þ

The extent of extrapolation DT ¼ ðT � T�Þ can be

expressed as the departure from the equilibrium

compositions from the chosen set at temperature T�,

X
i

m
a;l
i c

a;l
eq;i Tð Þ � c

a;l
eq;i T

�ð Þ
� �

¼ ðT � T�Þ:

Combining the two preceding relations, we derive the

equilibrium concentrations of either phase as functions of

temperature along a given tie-line by,

Fig. 1 In a a typical microstructure in a directionally solidified Ag–

Al–Cu ternary eutectic alloy [19], white: Ag2Al, grey: Al2Cu, black:

Al. In b a phase-field simulation of a representative alloy showing

similar morphological characteristics
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c
a;l
eq;i Tð Þ ¼ c

a;l
eq;i T

�ð Þ þ
T � T�ð Þ caeq;i T

�ð Þ � cleq;i T
�ð Þ

� �

DTa;l
f

;

ð5Þ

where DTa;l
f is given by,

DTa;l
f ¼

X
i

m
a;l
i caeq;i T

�ð Þ � cleq;i T
�ð Þ

� �
:

Using the above relations for the temperature variations of

the equilibrium compositions of the phases along a chosen

tie-line, one can determine the coefficients Ba
j Tð Þ and

Ca Tð Þ using Eqs. 2 and 3, such that the equilibrium co-

existence lines are reproduced for small variations of both

the composition and the temperature around the chosen

equilibrium compositions ceq and temperature T�.
For a ternary eutectic alloy with three solid phases in

equilibrium with the liquid, we consider the ternary

eutectic composition of the liquid and the respective

equilibrium compositions of the solid phases at the ternary

eutectic composition for determining the respective sim-

plified free-energy densities as described previously. The

required grand-potential densities of the phases are there-

after computed using the Legendre transform as

(Wa ¼ f a �
PK

i¼1

~lmi
Vm

cai ).

The relaxation coefficients for the solid–liquid interfaces

sal for all the solid-phases are determined from the thin-

interface analysis as described in [21] and extended for the

case of multi-component systems [22], such that the

solidification is purely diffusion-controlled. The relaxation

constants of the solid–solid interfaces are set as the lowest

value among the calculated solid–liquid interface relax-

ation coefficients. The atomic diffusivity matrix in the

present description is assumed to be diagonal, with equal

diffusivities for the components, and is non-zero only in the

liquid with a value given by Dl.

3 Influence of Volume Fractions and Solid–Liquid
Interfacial Energies

An useful starting point to understand the influence of the

volume fractions and the surface energy, is to start from a

model symmetric ternary eutectic system with phases a, b,
c, l and independent components A, B, which can be cre-

ated using the following coefficients matrix Aij and the

slopes ml
i,

A
a;b;c;l
ij ¼

A B

A 1:0 1:0
B 1:0 1:0

0
@

1
A ð6Þ

The liquidus slopes are assumed as,

ma
i ¼

A : 0:45

B : 0

� �
m

b
i ¼

A : 0

B : 0:45

� �
;

m
c
i ¼

A : �0:45

B : �0:45

� � ð7Þ

where we utilize the assumption of parallel liquidus and

solidus lines along the chosen tie-line containing the ternary

eutectic composition. The ternary eutectic composition is set

to give equal volume fractions of the three phases in equilib-

rium with the liquid. The surface energies of all interfaces is

assumed to be 1.0 and the diffusivity is considered to be one-

sidedwith the diffusivitymatrix taken to be an identitymatrix.

The ternary eutectic temperature is set to be TE ¼ 1:0, and the

molar volume Vm is set to be 1.0. The set of equilibrium

compositions of the phases is given by, caeq A;Bf g ¼

0:70691; 0:146545f g, cbeq
n
A;B

o
¼

n
0:146545; 0:70691

o
,

cceq

n
A;B

o
¼

n
0:146545; 0:146545

o
and the eutectic com-

position cliquideq A;Bf g ¼ 0:333333333; 0:333333333f g. With

this thermodynamic setting we first set out to explore the

influence of the composition and surface energy on the

microstructural characteristics.

3.1 Influence of Composition

While in binary alloys, the situation from a completely

symmetric (50-50 distribution) can be perturbed by only

decreasing the volume fraction of one phase while simul-

taneously increasing the volume fraction of the remaining

phases, in a three phase growth model, where, the volume

fractions of the phases can be perturbed along multiple

composition paths. In the following, we adopt two such

composition pathways, one in which the volume fractions

of two phases remain equal but gradually decreases, while

the volume fraction of the remaining solid phase increases

(Path I in Fig. 2); second in which the volume fraction of

one of the phases remains fixed while among the remaining

Fig. 2 Schematic of the liqiudus projections (magenta) and solidus

projections of the three solid phases, along with the two composition

pathways for which the simulations were performed. (Color figure

online)
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two phases, one of them increases in volume fraction while

the other decreases (Path II in Fig. 2).

To determine the change in microstructures upon change

of composition along either of the pathways, we perform a

continuous simulation, wherein, the composition of the far-

field liquid is changed periodically after sufficient time-

intervals during which patterns at a given composition of

the liquid is allowed to go reasonably close to steady-state

evolution. Figure 3, displays the series of microstructures

obtained, where starting from the polygonal state near the

eutectic composition, the morphology decomposes into a

structure of higher connectivity for the larger volume

fractions of one of the phases. Similarly, the simulations in

Fig. 4 are performed along the pathway where the volume

fractions of one of the phases remains intact. Here again,

the brick-like structure is obtained at the end, showing that

there exists a topological pathway from the polygonal state

to the brick-like state, which can be achieved from such a

composition variation. Intermediate states among both

pathways, leads to each of the phases assuming hexago-

nally packed rod-like configuration, with the structural

change occurring through the gradual coalescence of the

rods of the larger volume fraction phase, thus forming the

lamellar morphology. All the simulations are performed

with an uniform undercooling of DT ¼ 0:035.

3.2 Influence of Solid–Liquid Surface Energy

The second way to perturb the symmetry of the ternary

eutectic system is by changing the surface energies. Here

we investigate microstructure evolution under two separate

conditions. First, while keeping the equilibrium volume

fractions symmetric, we change the solid–liquid interfacial

energies of one of the solid-phases, (red phase in Fig. 5a).

This phase has a solid–liquid interfacial energy lower than

the other solid-phases. The solid–liquid surface energies of

the three-phases in order (red, green, blue) are thus (0.8,

1.0, 1.0). In a second perturbation, we introduce an

asymmetry both in the volume fractions and the surface

energies. Here, we choose the equilibrium volume fraction

of one of the phases to be larger than the other two phases

with equal volume fractions. This phase with larger equi-

librium volume fraction is also assigned to have the lowest

solid–liquid interfacial energy. In Fig. 5b, the blue phase

has the largest volume fraction and also the lowest solid–

liquid interfacial energy, such that three solid–liquid

interfaces represented by the colors (red, greeen, blue) read

(0.32, 0.32, 0.36), while the equilibrium volume fractions

are chosen as (0.8, 1.0, 1.0). This leads to the blue-phase

assuming a more lamellar type of structure, with high

degree of connectivity. The simulations are performed

starting from random rods of the different phases dis-

tributed with the respective equilibrium volume fractions.

4 Simulations of a Representative Pattern
in a Real Alloy

In the previous section we elaborated on the influence of

the interfacial energies and volume fractions on pattern

formation. We have seen that asymmetries in either of

these properties influences the symmetry of microstructure

during solidification. As a final example, we present sim-

ulations of a representative alloy that exhibits asymmetry

Fig. 3 Series of microstructures that are obtained upon changing the

volume fractions along a composition pathway along which volume

fractions of two phases (red and green) remain equal (Path I). The

volume fractions corresponding to the images are listed in order for

(red, green, blue) phases as a (0.31,0.31,0.38), b (0.22,0.22,0.56),

c (0.2,0.2,0.6). (Color figure online)

Fig. 4 Series of microstructures that are obtained upon changing the

volume fractions along a composition pathway, wherein the volume

fractions of one of the phases (green) remains constant (Path II). The

volume fractions corresponding to the images are listed in order for

(red, green, blue) phases as a (0.31,0.33,0.36), b (0.21,0.33,0.46),

c (0.12,0.33,0.55). (Color figure online)

Fig. 5 In a phase-fractions corresponding to the ternary eutectic

composition in the equilibrium phase diagram are equal, while one of

the phases (red) has a solid–liquid interfacial energy lower than the

other phases. In b the equilibrium volume fractions of two of the

phases (red and green) is smaller than the blue phase, which is also

the least stiff. (Color figure online)
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both with respect to the equilibrium volume fractions as

well as the interfacial energies.

The surface energies of the interfaces are described by

the following matrices;

cab ¼

a b c l

a � 0:74 0:5 0:64
b 0:74 � 0:7 0:64
c 0:5 0:7 � 0:4526
l 0:64 0:62 0:4526 �

0
BBBB@

1
CCCCA

ð8Þ

The equilibrium compositions of the phases are chosen as:

caeq A;Bf g ¼ 0:015629; 0:951626f g, cbeq A;Bf g ¼ 0:583447;f
0:385855g, cceq A;Bf g ¼ 0:000436; 0:676705f g and the

eutectic composition cleq A;Bf g ¼ 0:180961; 0:691171f g.
The coefficient matrix Aij reads:

Aa
ij ¼

A B

A 0:92 0:83

B 0:83 0:71

0
B@

1
CA A

b
ij ¼

A B

A 4:4 3:52

B 3:52 9:4

0
B@

1
CAA

c
ij

¼
A B

A 146:6 �0:3565

B �0:3565 6:46

0
B@

1
CA Al

ij

¼
A B

A 0:725 0:6857

B 0:6857 1:00

0
B@

1
CA

ð9Þ

while the liquidus slopes read,

ma
i ¼

A : 0:7026

B : 1:099

� �
m

b
i ¼

A : 0:681

B : �0:2648

� �

m
c
i ¼

A : �0:85243

B : �0:8

� � ð10Þ

(For details of the determination of coefficients Aij and the

non-dimensionalization see Appendix 1, 2.)

The results from the phase-field simulation are high-

lighted in Fig. 6 that depicts the microstructures during the

various stages of evolution. The 3D simulation is per-

formed starting from a random-state of rods (size 10 9 10

9 20 in grid units), which represent the early nuclei of the

solids in the liquid, that eventually establish a steady-state

pattern during directional solidification.

The simulated microstructure in Fig. 6d, illustrates close

resemblance to the experimental image in Fig. 1a.

5 Conclusions

There are three-main conclusions that we can derive from

our work:

• The asymmetry in the volume fractions is one of the

key factors determining the co-ordination/connectivity

among the phases.

• The influence of the solid–liquid surface energies is

exhibited in two ways: first the shape of the different phase

clusters is modified on account of the shape of the

quadruple junctions, and second the coupling with the

volume fractions through the change in the solid- compo-

sitions on account of the Gibbs-Thomson shifts. The latter

should become less effective for smaller solidification

speeds and therefore larger microstructural scales.

• A representative structure in the Ag–Al–Cu alloy can

be derived by incorporating an asymmetry both in the

volume fractions as well as in the solid–liquid interfa-

cial energies.

Appendix 1: Parameters for the Representative
Alloy

For performing the simulations of a representative alloy

that shows microstructures similar to that of a real alloy,

we utilized thermodynamic information of the different

phases (FCC(a), HCP(b), h(c), liquid (l)) obtained from the

CALPHAD databases [23, 24]. In generating the free-en-

ergy densities of the different phases, we utilized the fol-

lowing coefficients Aij (J/mol), in dimensional form, which

are directly retrieved from the CALPHAD databases. The

two independent components are chosen as (Ag and Al).

AFCC
ij ¼

Ag Al

Ag 9:2� 104 8:3� 104

Al 8:3� 104 7:71� 104

0
B@

1
CA

AHCP
ij ¼

Ag Al

Ag 4:4� 105 3:52� 105

Al 3:52� 105 9:4� 105

0
B@

1
CA

Ah
ij ¼

Ag Al

Ag 1:466� 107 �3:565� 104

Al �3:565� 104 6:46� 105

0
B@

1
CA

Al
ij ¼

Ag Al

Ag 7:25� 104 6:857� 104

Al 6:857� 104 1:00� 105

0
B@

1
CA

ð11Þ

(a) t=98000 (b) t=2940000 (c) t=3920000 (d) t=5742800

Fig. 6 Series of images highlighting the evolution of a microstructure

from a random state. The colors represent red: a, green: b and blue: c.
t is non-dimensional time. (Color figure online)
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The slopes of the liquidus are calculated using the phase-

coexistence lines obtained from the thermodynamic

database calculations. For the present computations we

assume equal solidus and liquidus slopes. The dimensional

values in units of (K/mol-frac) are listed for each of the

solid-phases as below;

mFCC
i ¼

Ag : 543:57

Al : 850:3

� �
mHCP

i ¼
Ag : 527:57

Al : �204:845

� �

mh
i ¼

Ag : �659:4463

Al : �618:4

� �

ð12Þ

The surface energies of the interfaces in dimensional units

of (J/m2) are described by the following matrices;

cab ¼

FCC HCP h l

FCC � 0:74 0:5 0:64
HCP 0:74 � 0:7 0:62
h 0:5 0:7 � 0:4526
l 0:64 0:62 0:4526 �

0
BBBB@

1
CCCCA

ð13Þ

Please note that part of the surface energy matrix has been

guided by experimental measurements of the Gibbs-Thom-

son coefficients of the solid–liquid interfaces. Assuming a

value for the FCC-l interface as 1.0 J/m2, the other values

for the solid–liquid interfaces are calculated using the ratio of

the Gibbs-Thomson coefficients with the FCC-l interface.

Thereafter, the energy of the solid–solid interfaces are

determined by considering the contact angle measurements.

However, since there is wide variation in the measurements

and that the coupled growth of realisticmicrostructures is not

observed in phase-field simulations corresponding to the

parameters, we have adjusted some of the values based on

microstructural features that we observe in the simulations.

For eg. the value of theFCC-l interface has been changed to

0.64 from a value of 1.0. Similarly, the value of FCC-HCP

interface has been reduced from 1.17 to 0.74 and lastly the

value of FCC-h interface has been reduced from 1.0 to 0.5.

As we have seen in the previous sections, that the interfacial

energies are important in determining characteristics in

structure formation. Therfore, we will probe other variations

of this matrix, in the final section.

Asmentioned previously the volume fractions of the phases

as reported in the experiments turns out to be quite different

from that stated in the CALPHAD databases. This has been

reported separately by other authors as well [5]. Therefore,

in order to derive patterns similar to that observed in the

experiments, we shift the equilibrium compositions of one of

the phases (FCC). Thus the equilibrium compositions of the

phases are chosen as: cFCCeq Ag;Alf g ¼ 0:015629; 0:951626f g,
cHCPeq Ag;Alf g ¼ 0:583447; 0:385855f g, cheq Ag;Alf g ¼
0:000436; 0:676705f g and the eutectic composition

cleq Ag;Alf g ¼ 0:180961; 0:691171f g.

Appendix 2: Non-dimensionalization

The above coefficients are non-dimensionalized using the

energy scale as f0 = 1.0 9 105 J/m2, the length scale as

l0 ¼ Vm

c0ab
f 0

, where c0ab is the surface energy scale taken as

1.0 J/m2 and the molar volume as 10 910-9. The tem-

perature scale T0 is assumed as the ternary eutectic tem-

perature 773.6 K. The diffusivity matrix of the components

is assumed to be diagonal with equal value for both com-

ponents (1.0 910-9 m2/s) and is non-zero only in the liq-

uid. This value is taken as the scale of the diffusivity,

leading to the time-scale being t� ¼ ðl0Þ2=Dl. In this scale,

the grid-resolution is set as Dx ¼ Dy ¼ Dz ¼ 7:0, and the

interface width as e = 28.0, which results in each interface

resolved with 10 grid-points. The time-step is dt = 0.98,

which is derived as the maximal permissible value deter-

mined from the numerical stability criterion for the evo-

lution equation of the mass-conservation of the

components written as per the explicit scheme. Please note

that the scale of the simulation that is chosen is away from

that explored experimentally for the images in Fig. 1a. This

was utilized to perform 3D simulations in acceptable time.

So in this respect the comparison here is only qualitative.
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