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Abstract Eutectic growth offers a variety of examples for

pattern formation which are interesting both for theoreti-

cians as well as experimentalists. One such example of

patterns is ternary eutectic colonies which arise as a result

of instabilities during growth of two solid phases. Here, in

addition to the two major components being exchanged

between the solid phases during eutectic growth, there is an

impurity component which is rejected by both solid phases.

During progress of solidification, there develops a bound-

ary layer of the third impurity component ahead of the

solidification front of the two solid phases. Similar to

Mullins–Sekerka type instabilities, such a boundary layer

tends to make the global solidification envelope unstable to

morphological perturbations giving rise to two-phase cells.

This phenomenon has been studied numerically in two

dimensions for the conditions of directional solidification,

by Plapp and Karma (Phys Rev E 66:061608, 2002) using

phase-field simulations. While, in the work by Plapp and

Karma (Phys Rev E 66:061608, 2002) all interfaces are

isotropic, in our presentation, we extend the phase-field

model by considering interfacial anisotropy in the solid–

solid and solid–liquid interfaces and characterize the role

of interfacial anisotropy on the stability of the growth front

through phase-field simulations in two dimensions.
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The formation of ternary eutectic colonies in directionally

solidified systems serves as an interesting platform to study

pattern formation in materials science. From a theoretical

perspective, this problem has already been addressed

extensively by Plapp and Karma [1], but only for systems

with isotropic interfacial energy. This was extended to

study spiraling dendrites in three dimensions by incorpo-

rating kinetic anisotropy [2]. A recent study by Ghosh et al.

[3] on the effects of interfacial energy anisotropy in

eutectics, opens up a gamut of possibilities in the patterns

that are possible from the instabilities during ternary

eutectic colony formation. In this paper, we are going to

build upon the phase field model by Plapp and Karma [1]

and attempt to understand the colony formation dynamics

under different relative orientations of the interfaces with

respect to the direction of pulling of the sample.

1 Isotropic System

We begin by understanding the existing phase field model

for the isotropic system [1] where / field is the one which

differentiates the solid (/ ¼ 1) and the liquid (/ ¼ 0). It’s

evolution is obtained by solving the Allen–Cahn equation

[4]:

s
o/
ot

¼ W2
/r2/� g0ð/Þ þ h0ð/Þ fliq � fsol

� �
; ð1Þ

where the primes indicate derivative with respect to / and

W/ is a constant controlling the contribution of the gradient

energy. s represents the relaxation time for / evolution.

Time is represented by t.

Focusing on the other terms in Eq. 1, gð/Þ ¼ /2ð1�
/Þ2 is a double-well potential introducing an energy barrier

between the / ¼ 1 (solid) and / ¼ 0 (liquid). The last term
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in Eq. 1 denotes the driving force for solidification with

hð/Þ ¼ /2ð3� 2/Þ being an interpolation polynomial

connecting solid and liquid free energy densities denoted

by fsol and fliq; respectively.

The free energy densities are functions of the mole frac-

tions of the independent components in the system and for a

ternary system there are two of them (assuming a substitu-

tional alloy under lattice constraint). We call them u and ~c;
respectively. The expressions for fsol and fliq are given by:

fsol ¼
1

8
u2 � 1
� �2þð~c ln ~c� ~cÞ � ðlnKÞ~c� DT

TE
; ð2Þ

fliq ¼
1

2
u2
� �

þ ð~c ln ~c� ~cÞ; ð3Þ

and, the total energy is given by:

f ¼ hð/Þfsol þ ð1� hð/ÞÞfliq; ð4Þ

where DT and TE represent the undercooling in the system

and the eutectic temperature, respectively in a non-

dimensionalized setting. The temperature distribution in

the Bridgman furnace is computed as:

T ¼ T0 þ Gðz� VtÞ; ð5Þ

where T0 is the temperature at the solidification interface at

t ¼ 0; G is the imposed thermal gradient, z is the location

of the interface, V is the pulling velocity.

From Eqs. 2 and 3, we can see that the two eutectic

solids can have a minimum for u ¼ �1 (the one in equi-

librium for u ¼ 1 is a while u ¼ �1 corresponds to b),
while u ¼ 0 corresponds to an equilibrium in the liquid.

u is the component which is exchanged between the solid-

phases taking part in the eutectic reaction.

The component ~c is only treated in the dilute limit (see

the second terms in Eqs. 2 and 3) with a partition coeffi-

cient K which is the same for both a and b: So, ~c is an

impurity component which triggers the colony formation in

a manner similar to the Mullins–Sekerka instability [5] that

leads to the breakdown of a planar interface into cells in the

case of a binary alloy.

The evolutions of u and ~c are governed by the Cahn–

Hilliard equation [6, 7], as given by:

ou

ot
¼ Mr2 of

ou
�W2

ur2u

� �
; ð6Þ

and,

o~c

ot
¼ ~Mr2 of

o~c

� �
; ð7Þ

where we have dropped the gradient energy term in Eq. 7

keeping in mind that the gradients in impurity component

are small. The mobilities M and ~M are assumed to be

constant and equal in both solid and liquid.

A 2D simulation of the eutectic colonies in Fig. 1 shows

the random orientation of the lamellae with respect to the

pulling direction which is vertically upwards. Also, the two

phase fingers can be seen to be oriented randomly and no

clear finger spacing is selected throughout the course of the

simulation. The parameters used in this simulation were:

G ¼ 0:001; V ¼ 0:1; s ¼ 0:1; M ¼ 1; ~M ¼ 1; dt ¼ 0:001;

dx ¼ 1; dy ¼ 1; W/ ¼ 2:3; Wu ¼ 1:2; ~ceqsol ¼ 0:025 and

~ceqliq ¼ 0:125: The initial undercooling at the solid–liquid

interface was set at 0.1. No-flux boundary conditions were

imposed all around the simulation box of dimensions 1440

by 1000.

Having introduced the model and the microstructures for

an isotropic system, we can see that both / (changes from

1 to 0) and u (changes from �1 to 0) varies across a solid–

liquid interface. On the other hand, across an a–b interface,

u varies (between 1 and �1) but the / remains constant at

1. In order to understand the influence of anisotropy there

exists two possibilities: one where both solid–liquid inter-

faces are anisotropic but the solid–solid interface remains

isotropic, which can be achieved by incorporating the

anisotropy in the evolution equation of /: The second

method is that the anisotropy is incorporated in the u field,

which introduces anisotropy in the solid–solid interface.

2 Anisotropy Through the / Field

The evolution equation under interfacial energy anisotropy

is:

s
o/
ot

¼ r � o

or/

� �
a� g0ð/Þ þ h0ð/Þ fliq � fsol

� �
; ð8Þ

where the 0 indicate derivative with respect to /: The

interfacial energy term in Eq. 8 is,

a ¼ 1

2
W2

/a
2
cðhÞðr/Þ2; ð9Þ

and, the anisotropy function ac which introduces the

fourfold symmetry through the interfacial energy is:

Fig. 1 Microstructures of an isotropic system at a total time of 45,000

a u field and b / field. Colorbars report values of the u and / fields,

respectively
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ac ¼ 1þ dcos 4 h� hRð Þð Þ ¼ 1� d 3� 4
/04
x þ/04

y

ð/02
x þ/02

y Þ
2

 ! !

;

ð10Þ

where the 0 in Eq. 10 indicate that the derivatives (of /
with respect to x or y as denoted by the subscripts) are

evaluated in the frame of reference of the crystal, which

allows us to rotate the crystal anisotropy with respect to the

growing direction in the laboratory frame (the angle of

rotation is defined as hR). The magnitude of anisotropy is

controlled by d (which is set to 0.05 in all our simulations).

All other equations including the ones for the evolution of

u and ~c are the same as in the isotropic situation.

To illustrate the introduction of anisotropy in the model

consider the growth of an anisotropic single phase solid

nuclei (a in this case) for two situations: one where the

reference frame of the crystal coincides with the laboratory

frame (see Fig. 2) and the other where it is rotated by 30�

with respect to the laboratory frame (see Fig. 3).

At this point, it is important to note that the anisotropy

by virtue of being introduced through the gradient energy

in / can only influence the relative orientation of the solid–

liquid interfaces with respect to the pulling direction and

not the orientation between the two solids, (i.e., between a
and b; both of which has / ¼ 1). Thus, the orientation of

the a–b interface is fixed first by force balance at the triple

points (where liquid, a and b coexist) and then modified by

the growth dynamics as it cedes its position at the

solidification interface and becomes a part of the colony.

Furthermore, it is a competition between the orientation of

the fingers as dictated by the orientation of the anisotropy

and the imposed temperature gradient that determines the

orientation of the global solidification envelope. The ori-

entation that the system selects has the minimum mis-ori-

entation with the temperature gradient. These observations

can be confirmed from the microstructures (from the

u field) in Figs. 4, 5, 6 and 7 where the global solidification

envelope can be seen to display an orientation with respect

to the pulling direction. Also, while growth, the fingers

traverse the horizontal direction (as their axes are non-

orthogonal to the horizontal direction), creating the

appearance of a travelling wave.

The simulations shown in Figs. 4, 5, 6 and 7 were per-

formed with no-flux boundary conditions all around. The

Fig. 2 Microstructures of an a particle growing in liquid with

anisotropy in /; at a total time of 500 for hR ¼ 0� from a u, b ~c; and
c / fields

Fig. 3 Microstructures of an a particle growing in liquid with

anisotropy in /; at a total time of 500 for hR ¼ 30� from a u, b ~c; and
c / fields

Fig. 4 Microstructures (u field) of a system with anisotropy in /; for
hR ¼ 0� at a total time of a 30,000 and b 45,000. Colorbars report

values of the u field

Fig. 5 Microstructures (u field) of a system with anisotropy in /; for
hR ¼ 22:5� at a total time of a 30,000 and b 45,000. Colorbars report

values of the u field

Fig. 6 Microstructures (u field) of a system with anisotropy in /; for
hR ¼ 45� at a total time of a 40,000 and b 45,000. Colorbars report

values of the u field
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simulation parameters were the same as in the isotropic

case except for the following: W/ ¼ 3:2; Wu ¼ 1:7; s ¼ 1

and dt ¼ 0:0025:

Another important feature of these simulations is that

they have a well defined finger spacing which was not the

case for the isotropic situation.

3 Anisotropy Through the u Field

In the previous section, anisotropy is introduced only in the

solid–liquid interfaces. There are however alloy systems

where the solid–solid interfaces are anisotropic. Therefore,

in order to explore the influence of an anisotropic solid–

solid interface and the effect of its orientation with respect

to the growth direction on the characteristics of colony

formation, we introduce anisotropy through the u field, by

changing the energy of the solid phase, as:

fsol ¼
1

8
u2 � 1
� �2

a2cðhÞ þ ð~c ln ~c� ~cÞ � ðlnKÞ~c� DT
TE

;

ð11Þ

where ac has the same expression as given by Eq. 10 but

with u0x and u0y in place of /0
x and /0

y; respectively.

By introducing the anisotropy through the barrier

potential in u we intend to restrict its effect only to the a–b
interface as they are the states which are separated by the

barrier potential (see Fig. 8). However, it is to be noted that

in the present model description, the shape of the solid–

liquid interfaces are influenced both by the variations of the

u-field as well as the /-field and the equilibrium shape of a

solid–liquid interface is then determined by contributions

of both (see Fig. 9). The parameters of the anisotropy are

so adjusted that the influence of the anisotropy in the u-

field weakly influences the shape of the solid phase in

equilibrium with the liquid as exhibited by the /-field (see

Fig. 10) and therefore also the ~c-field which follows the /-
field. This construction thereby led us a system, where the

anisotropy is predominantly in the solid–solid interface.

In contrast to the simulations for the isotropic case and

the ones where the anisotropy is introduced through the /
field we can see in Figs. 12, and 14 that the lamellae do

take up a very specific orientation with the solidification

envelope. However, for the simulations shown in Figs. 11,

and 13, the situation is a little more complex. Essentially,

on incorporating an anisotropy in the solid–solid interface

and giving a rotation with respect to the pulling direction,

the basic steady state of the lamella pair gets tilted with

respect to the growth direction. From the theory discussed

Fig. 10 Iso-contours at / ¼ 0:5 for d ¼ 0:05 (black) and d ¼ 0

(green) with hR ¼ 0�

Fig. 9 Microstructures of a system with anisotropy in u, showing a b
particle growing in liquid at a total time of 100 for hR ¼ 0� from a u,

b ~c; and c / fields

Fig. 11 Microstructures (u field) of a system with anisotropy in u, for

hR ¼ 0� at a total time of a 30,000 and b 45,000. Colorbars report

values of the u field

Fig. 7 Microstructures (u field) of a system with anisotropy in /; for
hR ¼ 60� at a total time of a 30,000 and b 45,000. Colorbars report

values of the u field

Fig. 8 Microstructure (u field)

of a system with anisotropy in u,

showing a b particle

equilibrating in a at a total time

of 100 for hR ¼ 30�
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in [3] a measure for the lamellae tilt can be derived and

moreover the a–b interface should remain vertical for hR ¼
0� and 45� for this choice of anisotropy function. So while

in the simulations in Figs. 12 and 14 it can be seen that the

colony formation results as a perturbation of the tilted

lamellar state, for the simulations in Figs. 11 and 13,

colony formation occurs due to a breakdown of a lamellar

state that is aligned with that of the pulling velocity. The

rotated lamellar orientation in Figs. 11, and 13 can be

directly attributed to spinodal decomposition.

These simulations (the parameters are the same as in the

case where anisotropy was introduced through the / field

except for dt which was set to 0.001) were carried out with

periodic boundary conditions on the vertical boundaries but

no-flux on the horizontal ones. The implementation of a

no-flux boundary condition on the vertical boundaries

would have led to finger termination at the boundary

towards which the fingers were moving and conversely,

generation of fingers at the boundary from where the waves

were receding.

4 Conclusions

We have tried to understand the pattern formation

dynamics in ternary eutectic colonies under conditions of

specific orientation relationships between the pulling

direction and the different interfaces in the eutectic

(namely, the a-liquid, b-liquid and a–b interfaces). The

orientation of the a-liquid and b-liquid interfaces were

fixed by introducing anisotropy through / and simulations

on such systems revealed tilts in the global solidification

envelope enforced by the individual lamellae units.

Moreover, we saw the system select a definite finger

spacing which was absent in the isotropic systems. By

incorporating anisotropy through the u-field, we oriented

the a–b interface at different angles to the pulling direction

and the resultant eutectic colonies had a well-defined

lamellae orientation quite unlike what was seen for the

isotropic as well as the case where anisotropy was intro-

duced through /: Furthermore, the solidification envelope

appeared to be orthogonal to the constituting lamellae and

a specific finger width was also selected by the system.
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