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Abstract
This study breaks new ground by developing a multi-hazard vulnerability map for the Tensift watershed and the Haouz plain 
in the Moroccan High Atlas area. The unique juxtaposition of flat and mountainous terrain in this area increases sensitivity 
to natural hazards, making it an ideal location for this research. Previous extreme events in this region have underscored 
the urgent need for proactive mitigation strategies, especially as these hazards increasingly intersect with human activities, 
including agriculture and infrastructure development. In this study six advanced machine learning (ML) models were used to 
comprehensively assess the combined probability of three significant natural hazards: flooding, gully erosion, and landslides. 
These models rely on causal factors derived from reputable sources, including geology, topography, meteorology, human 
activities, and hydrology. The research's rigorous validation process, which includes metrics such as specificity, precision, 
sensitivity, and accuracy, underlines the robust performance of all six models. The validation process involved comparing 
the model's predictions with actual hazard occurrences over a specific period. According to the outcomes in terms of the 
area under curve (AUC), the XGBoost model emerged as the most predictive, with remarkable AUC values of 93.41% for 
landslides, 91.07% for gully erosion and 93.78% for flooding. Based on the overall findings of this study, a multi-hazard risk 
map was created using the relationship between flood risk, gully erosion, and landslides in a geographic information system 
(GIS) architecture. The innovative approach presented in this work, which combined ML algorithms with geographical 
data, demonstrates the power of these tools in sustainable land management and the protection of communities and their 
assets in the Moroccan High Atlas and regions with similar topographical, geological, and meteorological conditions that 
are vulnerable to the aforementioned risks.

Keywords Natural hazards · Geographic information system (GIS) · Hazard susceptibility assessment · Machine learning 
(ML) · Area under curve (AUC)

Introduction

Numerous research projects have highlighted the undeniable 
increase in the frequency of natural disasters worldwide, 
predominantly caused by changes in climate (Pei et al. 2023; 
Zhang et al. 2023). Therefore, protection against natural dis-
asters has become an absolute priority, and forecasting and 
prevention measures are still among the steps that need to be 
taken to move towards good planning (Bashir et al. 2024a, 
b; Yousefi et al. 2020). Creating thematic data to map catas-
trophe susceptibility is still among the most crucial methods 
for foreseeing and managing natural risks (Khan et al. 2020; 
Youssef et al. 2023). These maps are essential in natural risk 

management and developing risk reduction strategies. They 
make it possible to visualize and classify at-risk areas, iden-
tify vulnerable populations and infrastructures, and better 
understand the risk factors specific to each region.

However, most current research into natural hazards is 
limited to the analysis of individual risks (Bammou et al. 
2024b; Razavi-Termeh et al. 2023). These studies, which 
focus on particular threats, generally consider risks as inde-
pendent phenomena without considering the combined 
degree of vulnerability of relationships between several 
risks (Panahi et al. 2020; Yousefi et al. 2020). Thus, assess-
ing and looking into the interactions between different risks 
is fundamental. Various hazard investigations are crucial, 
as they allow us to find far more significant concentrations 
of harm and risk than studies focusing on a single type of 
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hazard (Hillier et al. 2020). For this kind of research, the 
geographical distribution of natural hazards in the area has 
to be reevaluated. This strategy aids in lowering the likeli-
hood of occurrence and the possibility of cumulative risks 
brought on by the interplay of several hazards, such as land-
slides, financial losses, and fatalities (Bammou et al. 2024d; 
Sestras et al. 2023; Stalhandske et al. 2024). By mapping 
vulnerability holistically and considering the complex inter-
actions between natural hazards, it is possible to predict, 
prevent, and proactively manage threats to communities and 
the environment.

Multi-hazard vulnerability mapping is a method that aims 
to consider multiple types of threats simultaneously at each 
location. It makes it possible to assess the complex spatial 
relationships between different high-risk events, includ-
ing the possibility for these events to occur concurrently or 
cumulatively, as well as any potential interactions between 
them (Aksha et al. 2020; Ming et al. 2022). According to 
Bammou et al. (2024a, b, c, d), the Tensift catchment con-
sists of well-correlated risk zones with certain common con-
ditioning factors, such as increased water erosion risk from 
runoff-induced flooding and landslides from heavy rainfall 
and flooding. Multi-hazard mapping is a powerful tool for 
understanding better and managing the complex risks that 
threaten communities (Lombardo et al. 2020; Saunders and 
Kilvington 2016).

Various techniques have been used to model multiple haz-
ards, such as using two decision aids, namely the sequential 
Monte Carlo technique and a decision aid (Guo et al. 2020; 
Zhao et al. 2024). Another method combines empirical 
data with deterministic, equation-based (i.e., theoretical) 
discoveries (Bout et al. 2018; Mondini et al. 2023). Fur-
thermore, a method integrating multi-criteria analysis and 
geographic information systems (GIS) has been applied to 
produce successful outcomes, as demonstrated by Lyu and 
Yin (2023), Sestras et al. (2023). Recently, a lot of research 
has employed the integration of machine learning methods, 
including Boosted Regression Tree (BRT), Generalized 
Additive Model (GAM), Random Forest (RF), and Support 
Vector Machine (SVM) for risk prediction (Bammou et al. 
2024a; Kohansarbaz et al. 2022; Ye et al. 2020).

The development of a multi-hazard map using ML mod-
els is based on the study of the leading natural hazards in the 
study area, namely gullying, landslides, and flooding (Bam-
mou et al. 2023). The production of such a map is essential 
for a good understanding of the association of these risks. 
This study, therefore, compared the effectiveness and accu-
racy of different machine learning models, such as SVM, RF, 
ANN, KNN, DT and XGBoost, in producing risk maps for 
the Tensift catchment and the Haouz plain.

This would be a pioneering study in the scientific litera-
ture that combines three natural hazards: landslide, gully 
erosion and flood risks together to construct. This work uses 

state-of-the-art ML models to develop a novel multi-hazard 
assessment strategy to understand the interrelationships and 
assess the dangers of landslides, gully erosion, and floods. 
This study aims to answer the research questions: Why is a 
multi-hazard assessment necessary rather than a single-haz-
ard approach, and what are the benefits? The findings of this 
research are helpful for researchers, authorities, developers, 
and decision-makers involved in land management and risk 
mitigation strategies in the Moroccan High Atlas and regions 
across the globe with similar topographical, geological, and 
meteorological conditions.

Material and methods

Study area

The High Atlas in Marrakech is formed by three primary 
geological formations, according to Duclaux (2005): (1) the 
Permo-Triassic is the most common formation in the east. 
The highest peaks of the Atlas are located in the central 
region, home to (2) Precambrian igneous and metamorphic 
rocks. The western area is home to (3) primary and sec-
ondary limestone formations, most of which have limited 
permeability, continuous surface runoff, and the potential to 
develop significant runoff after heavy rainfall. It often occurs 
in conjunction with Ordovician and Precambrian shales.

The central Moroccan region around Marrakesh is home 
to the Tensift watershed. Its 20,000  km2 surface consists 
mainly of two zones that behave differently hydrologically as 
illustrated by Fig. 1. With an elevation gain of over 4000 m, 
the Atlas Mountains' southern slopes receive a substantial 
amount of precipitation and snowfall (up to 600 mm/year) 
in the catchment region. These mountains act as a "water 
tower" for the large, semi-arid Haouz plain, which is situated 
downstream and receives 250 mm of precipitation annually. 
More specifically, irrigation covers a sizable portion of the 
2000  km3 Haouz plain.

Numerous lithological and structural elements and a var-
ied and erratic hydrological behavior driven by geomorpho-
logical and climatic conditions define the research region. 
They give rise to various threats, such as the floods in Ourika 
on August 17, 1995, and October 28, 1999, which destroyed 
142 structures that regularly caused severe damage, caused 
200 fatalities, and flooded over 300 ha of arable land. More 
recently, on July 18, 2023, they also caused significant dam-
age in Moulay Brahim. The landslides in this area, especially 
along the Tizi N'tichka national route, which links Ouar-
zazate and Marrakech, and the village of Ijoukak, where 
a dramatic landslide occurred in July 2019 that killed over 
20 people due to the landslide and gully erosion, were also 
documented by the Hydraulic Agency of the Tensift Basin 
(ABHT).
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Multi‑hazard inventory

Compiling an inventory is a crucial step in assessing the 
hazard. Based on GPS-based field surveys, regional and 
national statistics from many sources, including the Tensift 
Hydraulic Basin Agency (ABHT) and analysis of Google 
Earth imagery of vulnerable areas in mountainous regions, 
the comprehensive A list of gully erosion, floods, and land-
slides in the Tensift watershed is available given by Fig. 2. 
The inventory maps were created using this information, 
and 620 gully erosion sites, 1291 landslide sites, and 762 
inundation sites as of Fig. 1. The training and validation sites 
for each hazard class in the inventory map were selected 
by random selection. In the literature, the percentage ratio 
of 70/30% is frequently utilized for training and validation 
datasets (Bammou et al. 2024a; Hong et al. 2016; Pourgha-
semi and Rahmati 2018) and it is being continued in this 
study as well. This study applies this percentage ratio by 
integrating binary codings (0, 1), i.e., values associated with 
landslide-relevant and non-landslide-relevant pixels. The 
landslide inventory map was then converted into raster data 
at a resolution of thirty meters (30 m).

Data collection

The creation of the landslide susceptibility grids was based 
on different data sources. Table 1 shows a description of the 
other media used.

Multi‑hazard conditioning factors (MCFs)

Multi-hazard conditioning factors (MCFs) was also con-
ducted to determine the most pertinent criteria for each risk 
category. Table 2 and Fig. 3 provide a quick overview of 
the rasters and data layers of topography, climate, hydrol-
ogy, vegetation, land use, and geology that were constructed 
using GIS software.

These include 25 conditioning factors, namely slope 
given in Fig. 3a, aspect given by Fig. 4b, elevation given by 
Fig. 3c, and precipitation given in Fig. 3d, which were gen-
erated from data from 14 precipitation stations provided by 
ABHT for the period 1992 to 2020. The Topographic Mois-
ture Index (TWI) illustrated in Fig. 3e was calculated using 
Eq. (1). Normalised Differential Vegetation Index (NDVI) 
illustrated by Fig. 3f was determined using Eq. (2).

Other parameters such as drainage density (Fig. 3g), 
lithology (Fig. 3h) which includes 32 facies was derived 
from a 1:500,000 scale geological map of Marrakech, LULC 
(Fig. 3i), which was generated from Sentinel-2 images with 
10 m resolution from 2022, LS factor (Eq. (3) and Fig. 3j) is 
one of the critical elements in the RUSLE equation, along 
with the distances to faults (Fig. 3u) and rivers (Fig. 3k), 
developed using spatial analyst Euclidean distance tool, 
SPI illustrated by Fig. 3l was calculated using Eq. (6), TRI 
illustrated by Fig. 3m was calculated using Eq. (4), geo-
morphons (Fig. 3n), factor K illustrated by Fig. 3o was 
calculated using Eq. (5), HSG (Fig. 3p), distance to roads 
(Fig. 3q), soil type (Fig. 3r), river accumulation (Fig. 3s), 

Fig. 1  The Haouz Plain and the Tensift watershed are study areas
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Fig. 2  Photographs of the three 
hazards in the Tensift catch-
ment collected in the field. 1a, 
1b and 1c Flooding; 2a, 2b and 
2c gully erosion; 3a and 3b 
landslides. NB: their locations 
are shown in Fig. 1

Table 1  Data used and sources

Database and source Scale/resolution Acquisition date

SRTM-DEM (digital elevation model)
United States Geological Survey (USGS)
https:// earth explo rer. usgs. gov/

30 m 2018

Soil type
https:// www. fao. org/ soils- portal/ data- hub/ soil- maps- andda tabas es/ faoun esco- soil- map- of- 

the- world/ en/

1:5 000 000 scale 1981

Sentinel-2 images (B02–B03–B04–B08)
https:// code. earth engine. google. com/

10 m 01-01-2022 to 30-01-2022

Geological map of Marrakech 1: 500 000 scale
Rainfall data Tensift Hydraulic Basin Agency (ABHT) 14 stations 1992 to 2020
Global Hydrologic Soil Groups (HYSOGs)
https:// cmr. earth data. nasa. gov/ search/ conce pts/ C2216 864285- ORNL_ CLOUD. html

250 m 2017-11-28

https://earthexplorer.usgs.gov/
https://www.fao.org/soils-portal/data-hub/soil-maps-anddatabases/faounesco-soil-map-of-the-world/en/
https://www.fao.org/soils-portal/data-hub/soil-maps-anddatabases/faounesco-soil-map-of-the-world/en/
https://code.earthengine.google.com/
https://cmr.earthdata.nasa.gov/search/concepts/C2216864285-ORNL_CLOUD.html
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profile curvature (Fig. 3t), curvature (Fig. 3v), valley depth 
(Fig. 3w), TPI (Fig. 3x) and plan curvature (Fig. 3y). At a 
resolution of thirty (30 m) meters, the topographic variables 
were extracted using the digital elevation model (DEM).

Each layer shown in Fig. 3 was standardized to a pixel 
resolution of 30 m*30 m using software GIS in the WGS 
84/UTM zone 29N projection system. Many factor sets were 
employed to generate the maps of hazard sensitivity, as indi-
cated in Table 1: following the removal of two components, 
there are 13 factors for floods, 17 for gully erosion, and 14 
for landslides.

– As: drainage area of the upstream,
– Β: slope degree (Nellemann and Reynolds 1997).

(1)TWI = In (As∕tan�)

(2)TRI = Y
[∑

(Xij − X00)
2
] 1

2

– xii: each pixel's height next to (0, 0). roughened areas 
with steep slopes have positive TRI values, whereas 
regions with zero gradient have zero TRI values (Jones 
and Vaughan 2010).

– B8 = NIR and B4 = RED.

– As: upstream drainage area.
– β: slope degree.

– ƒcsand: portion of soils that have a lot of gritty sand.
– ƒcl-si: portion of soils with a high percentage of clay to 

silt.
– ƒorgc: portion of soils that contain a lot of organic carbon.
– ƒhisand: portion of very high sand-content soils.

(3)NDVI =
B8 − B4

B8 + B4

(4)LS = (m + 1) ×
[
As∕22

]
×

[
sin�∕0.0896

]

(5)K = fcsand ∗ fcl-si ∗ forgc ∗ fhisand

Table 2  Conditioning factors tested and used to map vulnerability to natural hazards

✓—factor used, x—factor not used, □—eliminated after multicollinearity analysis

Hazard-indicator factors Description Hazard type

Type Range Units Flood Landslide Gully erosion

Valley depth Grid (− 249.95) to 907.68 m x x ✓
LS factor Grid 0–5350.66 L in m, S in % x x ✓
Aspect Grid 9 directions + flat – ✓ ✓ ✓
LULC Grid 7 classes – ✓ ✓ ✓
Precipitation point 154.90–406.10 mm ✓ ✓ ✓
Curvature Grid (− 27.22) to 21.22 – x x ✓
NDVI Grid (− 0.91) to 10 – x ✓ ✓
TPI Grid (− 198.12) to 247.74 – ✓ ✓ ✓
Distance to rivers Polyline 0–7597.17 m ✓ ✓ ✓
TWI Grid 2.37–27.24 – □ ✓ ✓
SPI Grid (− 13.82) to 15.24 – □ x ✓
Slope Grid 0–71.02 ° ✓ ✓ ✓
Elevation Grid 11–4129 m ✓ ✓ ✓
Lithology Polygone 32 facies – x ✓ ✓
Geomorphons Grid 10 classes – x x □
Drainage density Grid 0–0.86 Km/Km2 x x ✓
TRI Grid 0.0009–0.99 – ✓ x ✓
Flow accumulation Grid 0–22,498,869 – ✓ x x
K factor Grid 0.0135–0.0228 t ha h/ha MJ mm x x ✓
Soil type Grid Eight classes – ✓ ✓ x
HSG Grid 6 groupes – ✓ x x
Distance to faults Polyline 0–48,835.9 m x ✓ x
Profile curvature Grid (− 15.72) to 16.11 – ✓ ✓ x
Distance to roads Polyline 0–12,322.7 M x ✓ x
Plan curvature Grid (− 12.27) to 10.17 – ✓ x x
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Fig. 3  a Slope in °, b aspect, c elevation, d rainfall, e TWI, f NDVI, 
g drainage density, h lithology, i LULC, j LS factor, k distance to riv-
ers, l SPI, m TRI, n geomorphons, o factor K, p HSG, q distance to 

roads, r soil type, s flow accumulation, t profile curvature, u distance 
to faults, v curvature, w valley depth, x TPI and y plan curvature
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– As: upstream drainage area.
– β: slope degree.

Selection of multi‑hazard factors

The present study used six predictive models to improve 
ML prediction of susceptibility to floods, landslides, and 
water erosion. These models were subjected to several 
statistical tests to identify solid and linear correlations 
between the various components. These tests, which 
included variance inflation factor (VIF) calculated using 

(6)SPI = As × tan� Eq. (7) and correlation matrix analysis (CM), were used 
to identify and exclude the non-significant components, 
tolerance (TOL) calculated using Eq.  (8), and mutual 
information (MI) calculated using Eq. (9). Low MI values 
indicated a minor effect and led to eliminating the causes 
producing flooding, landslides, and gully erosion. The MI 
analysis demonstrated the relevance of these components.

(7)VIFj =

[
1

Tolj

]

(8)Tol = 1 − R2
j

Fig. 3  (continued)
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Fig. 4  Flowchart of the methodology developed for this study
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– j: affects landslide susceptibility (LS), flood suscepti-
bility (FS), and gully erosion susceptibility (GES).

– n: subclass of LS, FS, and GES impact factors.
– Toli: j tolerance.
– VIFj: j inflation factor.
– MI (n; j): n and j data exchange.
– R: the propensity of j's regression coefficient on all 

other predisposition components.
– H(n): conditional entropy for n given the landslide, 

flooded, and eroded zone j. is the entropy of n − H(n/j).

Using Eq. (10), the normalized frequency ratio (NFR) 
was calculated, the basis for the model's application and 
the optimal analysis of the factors that affected LS, FS, 
and GES. This approach is the most widely recommended 
method for standardizing the significance regarding the 
variety of data used as input for the different factors (Mao 
et al. 2021; Youssef et al. 2023). Therefore, to define the 
link between the factors affecting LS, FS, and GES and 
the susceptible locations, the frequency ratio (FR) derived 
from Eq.  (11) was allocated to the subclass of factors 
impacting LS, FS, and GES, as similar to the approach 
followed by Masoud et al. (2022). Afterwards, Eq. (10) 
was used to standardize the data. This led to the transfor-
mation of each map into an NFR of 1 for high LS, FS, and 
GES and 0 for low LS, FS, and GES.

– n: is the category of variables affecting the likelihood 
of landslides, floods, and gully erosion.

– FRn: n frequency ratio
– NFRn: n normalized frequency ratio
– Wn: n is the number of risk sample points.
– Wt: points in the overall risk sample.
– Pn: n number of pixels
– Pt: total amount of all pixels

The determining factors Jenks' natural break approach was 
utilized to analyze the maps and classify LS, FS, and GES into 
subclasses (Sarker 2021).

(9)MI(n, j) = H(n) − H(n∕ j)

(10)

NFRn =
FRn − Max

(
FRn

)

Max
(
FRn

)
− Min

(
FRn

)∗(0.99 − 0.01) + 0.01

(11)FRn =

Wn

Wt

Pn

Pt

Methodology flowchart

The current study was carried out in five different phases. 
Phase 1 involved the identification of the three natural hazards 
dealt with in this study to collect exhaustive data on various 
events from other sources; Phase 2 involved the differentia-
tion of the different events based on an in-depth analysis of 
the published literature; Phase 3 dealt with the modelling of 
the various types of hazard using six ML models; phase 4 
involved the validation of the models and the selection of the 
most appropriate model for each hazard. Finally, in phase 5, a 
multi-hazard susceptibility map (MHSM) was created by inte-
grating the model with the best AUC for each type of hazard. 
Figure 4 illustrates the overall methodology of this research.

The methodology employed in this research is robust, mul-
tifaceted, and based on several key elements. Firstly, it begins 
with carefully curating high-quality data to ensure its reliabil-
ity and relevance to the study objectives. Secondly, rigorous 
validation techniques are applied to assess the accuracy and 
integrity of the data collected, thereby enhancing the credibil-
ity of subsequent analyses. In addition, the methodology rec-
ognizes the importance of carefully selecting and prioritizing 
conditioning factors and using diverse inventories from reputa-
ble sources by integrating multiple data sets of varying spatial 
and temporal dimensions. Finally, the systematic comparison 
of different machine learning models is an integral part of the 
methodology, ensuring a rigorous evaluation is employed to 
select the best-performing model.

Methods of validation

For the six models developed using different performance 
measures, such as specificity (Eq. 12), precision (Eq. 15), 
sensitivity (Eq. 13), F1 score (Eq. 16), and accuracy (Eq. 14), 
the outcomes of the suggested approach were validated. The 
performance indices are deemed significant if there is a geo-
graphic correlation between the areas that represent the risks 
of flooding, landslides, and gully erosion and the measured 
stable regions and the predicted risk areas of indicated risks 
(Costache 2019; Costache and Tien Bui 2020).

(12)Specifity =
TN

FP + TN

(13)Sensitivity =
TP

FN + TP

(14)Accuracy =
TN + TP

FP + TP + FN + TN
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While TP (true positives), TN (true negatives), FP (false 
positives), and FN (false negatives).

The investigation also used the ROC (receiver operating 
characteristic) curve, another widely utilized metric. The 
most popular ROC curve calculates the prediction mod-
els' accuracy (AUC) by analyzing the area under the curve 
(Eq. 17). Additionally, mean absolute error (MAE) (Eq. 19) 
and root mean square error (RMSE) (Eq. 18) were used to 
map the vulnerability to landslides, floods, and gully ero-
sion. Numerous scholarly research have made use of both 
of these types of indexes.

where TP stands for the real positive, TN for the actual nega-
tive, and P and N, respectively, are the total numbers of pix-
els with and without torrential events.

n: is the total number of samples in the learning or testing 
phase,  Xpredicted: the projected value from the susceptibility 
models (landslides, floods, and gully erosion),  Factual: the 
observed value.

Results

Factor selection and multicollinearity

The Pearson correlation analysis between fifteen influenc-
ing factors (LULC, soil type, topographic wetness index, 
precipitation, elevation, slope, river accumulation, TPI, SPI, 
elevation, plan curvature, HSG, and aspect) and flood risk 
is shown in Fig. 5A. In contrast, Fig. 5B illustrates the Pear-
son analysis between eighteen influencing variables (drain-
age density, aspect, LS-factor, lithology, drainage density, 
K-factor, TPI, TWI, precipitation, distance to rivers, cur-
vature, elevation, slope, NDVI, LULC, and TRI) for gully 
erosion risk. The following factors were considered for the 

(15)Precision =
TP

FP + TP

(16)F1 score =
2

1

Pr
+

1

Recal

Recall =
TP

TP + FN

(17)AUC =
(
∑

TP +
∑

TN)

(P + N)

(18)RMSE =

√√√
√1

n

n∑

i=1

(Xpredicted − Xactual)
2

(19)MAE =

√√√
√1

n

n∑

i=1

|||
Xpredicted − Xactual

|||

landslide risk shown in Fig. 5C: soil type, proximity to riv-
ers, topographic position index (TPI), topographic wetness 
index (TWI), and linkage to faults.

To ensure the complexity of the input variables investi-
gated in this study, the findings of the tolerance and inflation 
coefficients of variance (VIF) indicate a Tol value between 
0.12 and 0.97 for HSG and TWI, respectively, and between 
1.02 and 8.02 for TWI and 8.02 for HSG at the lowest VIF 
value as illustrated by Fig. 5A. Among the fifteen indica-
tors taken into consideration in this study, The Tol and VIF 
criteria led to the exclusion of TWI and SPI from additional 
inquiry. Subsequently, the MI of the remaining thirteen ele-
ments (distance to the river) to 0.013 (HSG) is computed 
and produces positive results as described by Fig. 6A. Thus, 
the most significant aspect is the distance to the river, which 
is followed by slope (MI = 0.159), height (MI = 0.245), and 
backwater (MI = 0.183).

Figure 6 showed that the LS factor and slope for the 
gully erosion risk had the most substantial positive cor-
relation (0.69). Elevation and slope, drainage density and 
gully depth, TWI and gramophone, SPI and gramophone, 
SPI and LS factor, precipitation, elevation, slope, and TRI 
all showed significant linear connections. Figure 5B illus-
trates the results of the tolerance and variance information 
factors (VIF) used in this study to test the overlap of the 
forage influencing factors. For Geomorphone and TWI, 
respectively, the Tol value falls between 0.15 and 0.94, and 
the maximum VIF value for Geomorphones is 6.35, while 
the minimum value for TWI is 1.05. The gramophone com-
ponent was removed from the 18 variables utilized in this 
analysis because of Tol and VIF constraints. The MI of the 
parameters displayed in Fig. 6B is then calculated, and the 
findings show positive values in the range of 0.261 (slope) 
to 0.029 (aspect). As a result, slope is the most significant 
factor, followed by lithology (MI = 0.213), TPI (MI = 0.226), 
and LS (MI = 0.227).

A significant linear relationship was found between the 
following variables: NDVI and precipitation, elevation and 
slope, lithology and elevation, slope and lithology, and slope 
and lithology and the distance between roads and rivers. The 
results for landslide risk indicate that the highest positive 
correlation value (0.63) was a correlation between road mile-
age and height. The findings of the tolerance and variance 
information factors (VIF), which were utilized in this study 
to examine the multicollinearity of the forage-affecting vari-
ables, show that the LULC values and elevation range from 
0.30 to 0.92 in terms of Tol and that the values of LULC 
and elevation range from 1.08 to 3.30 on the maximum VIF 
value (Fig. 5C). The MI of the remaining 14 components 
(Fig. 7B) indicates positive values between 0.132 (inclina-
tion) to 0.021 (LULC). Thus, the slope is the most significant 
component, followed by the following: height (MI = 0.120), 
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lithology (MI = 0.118), road distance (MI = 0.095), and fault 
distance (MI = 0.091).

Six machine learning models were applied to gener-
ate sensitivity maps for floods (Fig. 8A), gully erosion 
(Fig. 8B), and landslides (Fig. 8C) based on risk pre-
dictions using independent variables and the actual risk 

condition using dependent variables. Based on the Jenks 
classifier for natural breaks (Jenks and Caspall 1971). 
Five classifications were applied to each sensitivity map: 
very low, low, moderate, high, and very high. Maps show-
ing the flood sensitivity of the Tensift watershed and the 
Haouz plain were created using the SVM, RF, KNN, DT, 

Fig. 5  The conditioning factors 
for A flood, B gully erosion, 
and C landslide were studied 
using the variance inflation fac-
tor (VIF) and tolerance (TOL) 
multicollinearity
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ANN, and XGBoost models (Fig. 8A(a–g)). Furthermore, 
gully erosion sensitivity maps were created for the same 
watershed using the same models (Fig. 8B(a–g)). Finally, 
landslide sensitivity maps were produced using the same 
models (Fig. 8C(a–g)).

Validation of models

The AUC curves for the six machine learning models that 
were utilized to develop the models for landslides, floods, 
and gully erosion are shown in Fig. 9. The results show 
that the AUCs for the different flood vulnerability models 
range from 90.69 to 96.21% in the training phase and from 

Fig. 6  Analysis of conditioning components' multicollinearity using the correlation matrix for A flood, B gully erosion, and C landslide
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Fig. 7  The importance of 
selected hazard predictive 
factors for A flood, B gully ero-
sion, and C landslide
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Fig. 8  Susceptibility maps for A flooding, B gully erosion, and C landslide, predicted by the (a) SVM, (b) RF, (e) DT, (d) KNN, (g) XGBoost, 
and (f) ANN models
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Fig. 8  (continued)
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87.56 to 93.78% in the testing phase, corresponding to high 
to extremely high performance. The XGBoost, RF, KNN, 
DT, ANN, and SVM models achieved AUCs of (96.21%), 
(94.32%), (94.32%), (93.38%), (91.01%) and (90. 01%) 
in the training phase and AUCs of (93.78%), (93.71%), 
(90.53%), (90.67%), (87.56%) and (92.02%) in the test phase 
(Fig. 9A), for gully erosion the results show an AUC that 
varies from 96.71 to 72.84% in the training phase and from 
91.07 to 78.60% in the test phase, for landslides, the results 
show an AUC that varies from 94.57 to 70.03% in the train-
ing phase and from 93.41 to 70.03% in the test phase.

The effectiveness of the chosen XGBoost FS, GES, and 
LS prediction models throughout the training and validation 
stages is displayed in Tables 4 and 5. Along with the effec-
tiveness of the training data used (30%) and test data used 

(70%), the following metrics are evaluated by adhering to 
the approaches of (Bammou et al. 2024d): Pr (precision), Se 
(sensitivity), Sp (specificity), Ac (accuracy), F1 score, FPR 
(false positive rate), MAE (mean absolute error), RMSE 
(root mean square error), and AUC-ROC (area under the 
receiver operating characteristic curve).

The XGBoost model performed exceptionally well 
for all training data, as evidenced by the following val-
ues: (Pr = 0.95), (Se = 0.97), (Sp = 0.95), (Ac = 0.97), 
(Recall = 0.96), (F1 score = 0.95), (MAE = 0.04), and 
RMSE (values = 0. 19) for the risk of flooding; (Pr = 0.99), 
(Se = 0.94), (Sp = 0.99), (Ac = 0.96), (Recall = 0.95), 
(F1 score = 0.97), (FPR = 0.009), (MAE = 0.03) and 
RMSE (values = 0. 12) for the risk of gully erosion; and 

Fig. 8  (continued)
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lastly, (Pr = 0.97), (Se = 0.98), (Sp = 0.96), (Ac = 0.97), 
(Recall = 0.98), (F1 score = 0.98), (FPR = 0.03), 
(MAE = 0.05) and RMSE (values = 0.23) for the risk of 
landslides, as shown by Tables 3 and 4.

For all test data, the XGBoost model performed excel-
lently, as confirmed by the values (Pr = 0.93), (Se = 0.94), 
(Sp = 0.93), (Ac = 0.94), (Recall = 0.92), (F1 score = 0.92), 
(FPR = 0.07), (MAE = 0.06) and RMSE (values = 0.25) for 
the flood risk, the values (Pr = 0.94), (Se = 0.90), (Sp = 0.93), 
(Ac = 0.91), (Recall = 0.90), (F1 score = 0.92), (FPR = 0.07), 
(MAE = 0.03) and RMSE (values = 0.118) for gully erosion 
risk and lastly the values (Pr = 0.93), (Se = 0.95), (Sp = 0.92), 

(Ac = 0.93), (Recall = 0.95), (F1 score = 0.94), (FPR = 0.08), 
(MAE = 0.06) and RMSE (values = 0.25) for the risk of land-
slides as described by Table 5.

Multi‑hazard maps

The multi-hazard map was produced by constructing and 
evaluating three separate hazard susceptibility maps, each 
correlated with a distinct hazard (FL, GES, and LS). Using 
the XGBoost model, this development was based on the 
link between independent factors, i.e., hazard indicators, 
and dependent variables, i.e., locations at risk of flooding, 

Fig. 9  ROC curve analysis of different models of A flooding, B gully erosion, and C landslide for training and validation data

Table 3  Performance of best XGBoost model based on training data

Performance 
indicators

XGBoost model

Flood Gully erosion Landslide

Precision 0.95 0.99 0.97 Training data
Sensitivity 0.97 0.94 0.98
Specificity 0.95 0.99 0.96
False positive rate 

(FPR)
0.05 0.0094 0.0344

Accuracy 0.97 0.96 0.97
Recall 0.96 0.95 0.98
F1 score 0.95 0.97 0.98
MAE 0.04 0.0371 0.0542
RMSE 0.1900 0.1924 0.2329
AUC (%) 96.21 96.71 94.57

Table 4  Performance of best XGBoost model based on testing data

Performance indi-
cators

XGBoost model

Flood Gully erosion Landslide

Precision 0.93 0.94 0.93 Testing data
Sensitivity 0.94 0.90 0.95
Specificity 0.93 0.93 0.92
False positive rate 

(FPR)
0.0700 0.0706 0.0854

Accuracy 0.94 0.91 0.93
Recall 0.92 0.90 0.95
F1 score 0.92 0.92 0.94
MAE 0.0600 0.0329 0.0658
RMSE 0.2500 0.1814 0.2566
AUC 93.78 91.07 93.41
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gully erosion, and landslides. The three vulnerability maps 
(flooding, gully erosion, and landslides) were then integrated 
into Software GIS to create the comprehensive multi-hazard 
risk map shown in Fig. 10.

As illustrated by Fig. 11, the results indicate that the 
research region is separated into seven vulnerability groups. 
The region is exposed to various risks to the extent of around 
71.03%, with the percentage breakdown as follows: 36.05% 
of the total area is made up of gully erosion (GES), 16.92% 
of floods (FS), 10.59% of landslides and gully erosion (GES-
LS), 6.54% of floods and gully erosion (FS-GES), 0.56% of 
landslides (LS), 0.33% of floods and landslides (FS-LS), and 
0.31% of floods, gully erosion, and landslides (FL-GES-LS).

Discussion

A range of modelling techniques can significantly enhance 
the understanding of risk management. In a semi-arid area 
prone to many hazards such as flooding, gully erosion, land-
slides, and, more recently, earthquakes, such as the cata-
strophic earthquake of September 8, 2023, in the research 
region, there has been an acceleration in the establishment 
of landslide hazard zones.

This study investigated three natural hazards in the Ten-
sift watershed, a region in the Moroccan High Atlas with 
mountain and lowland characteristics. The aim was to per-
form multi-hazard modelling to understand the relationships 

and to assess the susceptibility to landslides, gully erosions 
and flood risks in the study area. To this end, six ML models 
were used to study flooding, gully erosion, and landslides: 
DT, RF, SVM, KNN, ANN, and XGBoost. The analysis of 
(CM), (TOL), (VIF), and (MI) led to the conclusion that the 
selected factors can influence flooding, gully erosion, and 
landslides in the Tensift catchment. To evaluate the models' 
success, training datasets, validation, and evaluation met-
rics were employed to assess the ML models' performance. 
Accuracy, precision, recall, F1 score, mean absolute error 
(MAE), root mean square error (RMSE), and area under the 
receiver characteristic curve (AUC-ROC) are examples of 
standard measurements. The XGBoost model for the three 
hazards showed an average accuracy of (AUC = 95.83%) and 
(AUC = 92.75%) in the training and test phases, respectively.

The spatial prediction of FS is dependent on several 
affecting variables. Due to their collinearity with other 
factors, which reduced the prediction's efficacy, TWI and 
SPI were eliminated from this study's original set of fifteen 
components. Additionally, MI claims that the most cru-
cial element is the distance to the river. According to the 
spatial prediction results of (Al-Areeq et al. 2022; Meliho 
et al. 2022) regarding FS, the most critical areas at a given 
distance from the river were considered very vulnerable 
to high-density floods. Since the Haouz Plain is located at 
low elevations, the findings of the present study are being 
validated by the previous scientific literature, notably 
(Meliho et al. 2022), which shows that high susceptibility 

Fig. 10  A multi-hazard risk map was developed using the most potent XGBoost model
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is connected with elevation, slope, TPI, and TRI in Tensift 
rivers and sub-catchments, especially the Ourika, Zat, and 
Rheraya sub-catchments.

The key variables influencing gully erosion in the 
research region for the spatial prediction of GES indicate 
that geological factors, represented by lithology and topo-
graphic factors, such as slope, LS factor, and TPI, are more 
significant than other variables. This fact is primarily in line 
with the findings of (Baiddah et al. 2023) for lithology and 
the LS variables in the Chichaoua sub-basin; his work also 
highlights the importance of additional elements like altitude 
and proximity to rivers. Selecting a mixed zone, which com-
pares altitude values by combining a lowland, a mountainous 
zone, and the study zone's broad area, can help to understand 
this divergence.

The combination of exceptionally highly friable litholo-
gies, such as Tertiary clays and sediments and Neogene 
phosphate marls, with high altitudes and little vegetation, 
especially on steep slopes and in areas where the vegeta-
tion cover is damaged, favors the occurrence and devel-
opment of this type of erosion (Arabameri et al. 2020; 
Bammou et al. 2024c). Lastly, spatial prediction of LS 
findings demonstrates that the following five factors—
slope gradient, height, lithology, proximity to highways, 

and proximity to rivers—are critical in determining the 
likelihood of landslides. Unstable soils migrate along 
slopes due to the constant action of gravity and the slope 
gradient and elevation variables. Steeper hills are more 
likely to cause landslides. In addition to affecting slope 
stability, excavation activities related to the building or 
extension of road networks can raise the danger of land-
slides in locations near highways. Another critical factor in 
landslides is the proximity to rivers. The stability of slopes 
next to rivers is threatened by bank and gully erosion, rais-
ing the possibility of landslides in these locations.

Compared to the other six models, the XGBoost model 
is more accurate primarily because it uses all base learn-
ers' prediction outcomes, improving its recognition rate 
and generalization capacity. When determining and pre-
serving the optimal path of action, several techniques will 
be employed to address missing values that may have 
occurred on other nodes. XGBoost adds a regular term to 
the objective function and allows custom loss functions, 
but it also minimizes the learning model and avoids over-
fitting, which accelerates learning. Because of this, the 
XGBoost model ultimately produces improved simula-
tion results, and the XGBoost-based method is practical 

Fig. 11  Percentages of various 
hazard types in the research 
region
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and efficient for mapping the susceptibility of landslides, 
floods, and gully erosion.

The use of the XGBoost algorithm, which has shown 
excellent predictive capabilities in this study, has many 
advantages. One notable advantage is its simple implemen-
tation, which does not require prior data preprocessing and 
its built-in mechanisms for handling missing data. In addi-
tion, the ensembled algorithm employs bias reduction tech-
niques by sequentially combining multiple weak learners to 
improve the quality of predictions iteratively (Bashir et al. 
2024a, b; Benzougagh et al. 2024; Zounemat-Kermani et al. 
2021). This approach effectively mitigates the significant 
biases that often occur in ML models. In addition, XGBoost 
prioritizes features in the training phase that contribute to 
improved prediction accuracy to increase computational 
efficiency. This feature can be beneficial in reducing data 
attributes and efficiently managing large data sets.

It is essential to know that the presence of one danger can 
cause the occurrence of another. For example, knowledge of 
multiple hazards, their interrelationships, linkages, and cas-
cading effects can increase awareness of their processes and 
the best methods to prevent and reduce catastrophic losses 
while supporting good land management (Godschall et al. 
2020; Msabi and Makonyo 2021; Ouallali et al. 2024). The 
resulting maps provide essential information to prepare and 
monitor existing and future anthropogenic activities.

Conclusion

The research has substantially contributed to the knowledge 
of how vulnerable Morocco's Northern and High Atlas areas 
are to different threats. Due to their distinct geography and 
dense population, these mountainous areas face an intri-
cate web of natural threats. The primary goal was to give 
decision-makers the necessary information to identify and 
demarcate high-risk zones. This research yields a thorough 
multi-hazard vulnerability map incorporating these three 
main natural risks.

This map divides the research area into six danger zones, 
accounting for 71.03% of the area. Three zones are linked 
to specific hazards: the landslide risk zone (0.56%), which 
is situated in steep, high-altitude Tensift sub-basins; the ero-
sion risk zone (36.05%), which is concentrated along major 
rivers like the R'dat, Zat, and Ourika; and the flood risk 
zone (16.92%), which primarily affects the Haouz plains and 
certain tributaries of the High Atlas.

Additionally, the study showed that there are three 
zones—the flood and landslide hazard zone (0.33%), 
the flood and gully erosion hazard zone (6.54%), and the 
landslide and gully erosion hazard zone (10.59%)—where 
two types of risks overlap. Surprisingly, the High Atlas 
has multi-hazard zones, especially in the Ourika and N'fis 

catchments, which comprise 0.31% of the study area and 
are impacted by all three hazards: landslides, gully erosion, 
and floods.

The XGBoost machine learning model demonstrated 
exceptional dependability and yielded precise fore-
casts for several categories of hazards. Our multi-hazard 
map was the result, and it achieved an impressive aver-
age of (AUC = 95.83%) during the training phase and 
(AUC = 92.75%) during the testing phase. The multi-hazard 
analysis is essential for sustainable growth in these hilly and 
flood-prone areas as infrastructure and urban and rural devel-
opment continue to rise. Based on the multi-hazard risk map, 
policy recommendations for sustainable land management 
and hazard mitigation could be proposed in the context of 
the High Atlas landscape. Developing strategies for increas-
ing public awareness and education about these hazards and 
the importance of sustainable land management could also 
contribute to a more comprehensive understanding of multi-
hazard assessments and more effective land management and 
hazard mitigation.

Albeit it is a pioneering study in the field of multi-haz-
ard assessment, this study has a few identified limitations 
that could be rectified in future research studies. Firstly, the 
study's geographical focus might limit the results' applicabil-
ity to other regions with different topographical, geological, 
and meteorological conditions. Conducting similar studies 
in the future in various geographical areas could validate 
the applicability of the models and allow for comparison of 
the results. The ML models used in this study rely on causal 
factors derived from reputable and trusted sources. Future 
studies could incorporate real-time or dynamic data into 
ML models to study the reflection of changing conditions 
and enhance prediction accuracy. Lastly, this study does not 
extensively acknowledge how the changes in anthropogenic 
activities could impact the three aforementioned hazards. 
It is highly encouraged to encapsulate in-depth studies on 
how the changes in anthropogenic activities such as urbani-
zation, deforestation, and land use dynamics could impact 
landslides, soil erosion and flood risks could get incorpo-
rated into ML models.
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