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Abstract
Attributing vegetation changes and assessment of its temporal response patterns can provide valuable information for natural 
resource management, especially in fragile ecosystems. Hence, this study investigates the dynamics and temporal response 
patterns of different land use classes based on the Normalized Difference Vegetation Index (NDVI) in Pakistan's Haro River 
Basin (HRB) as a test study. So, for this purpose, advanced analytical tools such as Breaks for Additive Season and Trend 
(BFAST), Ensemble Empirical Mode Decomposition (EEMD), Residual Trend Analysis, and correlation coefficients were 
employed. Based on overall analysis, a significant increasing trend in monthly NDVI changes was observed between 2002 
and 2021 and showcasing a positive correlation with climatic factors in diverse land use classes. Spatial analysis revealed 
distinct variations in the time lag response between climatic parameters and NDVI, with approximately 36.38% and 11.38% 
of the area exhibiting statistically significant lag time effects of 0-month and 1-month, respectively. The analysis revealed 
varying rates of relative contributions of climatic change (ranging from 71.88 to 78.26%) and anthropogenic activities (i.e., 
21.74–31.25%). Notably, based on individual land use classes, climate change also emerged as the dominant driving factor, 
accounting for more than 55% of the observed changes to different classes as well. This study breaks new ground by using 
advanced methods to understand how climate and human activities shape vegetation in different River basins, offering crucial 
insights for global ecological research and restoration efforts.
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Introduction

Vegetation dynamics is the most fundamental element of 
the terrestrial global ecosystem (Law et al. 2002), which is 
essential for regulating the energy conversation, carbon and 
water stability, and environmental conditions at various local 
to global timescales (Liu and Lei 2015; Huang and Xu 2016; 
Zhou et al. 2017; Zhang et al. 2020). As a dynamic element 
of the terrestrial ecosystem, vegetation is generally exploited 
to assess the significant impact on the water cycle and 
terrestrial climate conditions on a local, regional, and global 
scale (Liu and Lei 2015; Xu et al. 2015; Huang et al. 2016; 
Zhang and Wu 2020). Climate change and anthropogenic 
activities are two primary forces that play a major part in 
vegetation dynamics and there has been an intensification 
focused on identifying their influence on the development 
of vegetation (Chen et al. 2015; Jiapaer et al. 2015; Kong 
et al. 2020). Generally, remote sensing data e.g., normalized 
differential vegetation index (NDVI) with the appropriate 
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spatial and temporal resolution is used as a powerful proxy 
for monitoring vegetation dynamics (Fathi-Taperasht et al. 
2023), in response to environmental factors like climate 
change and human activities.

Climate change, specifically precipitation (P), is a crucial 
element in regulating vegetation growth (Guo et al. 2021), as 
p has shown a strong correlation with NDVI (Fathi-Taperasht 
et al. 2022) and its impact on growth varies depending 
on the temporal and geographical context. Precipitation 
has a positive impact on vegetation development when 
there is a lack of water, which is most prevalent in arid 
locations (Zhou et al. 2017; Nemani et al. 2003), and its 
variations on an annual and seasonal scale can alternate 
the phenology of vegetation (Snyder and Tartowski 2006). 
Temperature (T) is another significant climatic component 
that impacts NDVI variation and is directly interrelated 
to the beginning, completion, and effectiveness of the 
photosynthesis process in plants (Braswell et  al. 1997; 
Wang et al. 2011). This is primarily due to climate change-
induced temperature rise, which diminishes surface water 
availability, leading to desiccation of vegetation and soils. 
Hence, for a better understanding of vegetation dynamics, 
it is important to understand the NDVI variations and their 
relationships with climatic factors (commonly P and T) at 
different spatial–temporal scales as well as to predict future 
vegetation development trends and their response to climate 
change (Gang et al. 2017).

Conversely, anthropogenic activities have also been found 
to exert a notable impact on NDVI dynamics. Studies have 
revealed that two human-induced factors—rapid population 
growth and the swift expansion of global economies—
significantly influence vegetation cover and have the 
potential to alter its trends at a regional scale (Zhang and Wu 
2020; Shi et al. 2021). In general, anthropogenic activities 
such as unsustainable farming practices, extensive land 
development, overgrazing, and urban expansion contribute 
to a notable reduction in vegetative cover (Liu et al. 2015; 
Feng et al. 2021). However, they can also enhance vegetation 
abundance through improved agricultural practices, 
afforestation efforts, and land conservation measures (Liu 
et al. 2020; Sun et al. 2015). Vegetation and phenology 
characteristics can be varied significantly depending on the 
kind of land cover that was affected. The average amount of 
land cover that has been impacted by anthropogenic activity 
ranges between 30 and 50%  (Foley 2005).

More specifically, as the world's climate continues to 
warm, and increasing inappropriate use of land resources 
continues, the vegetation undergoes significant variations 
(Sun et al. 2015; Huang et al. 2016; Zhang et al. 2016; Jiang 
et al. 2017; Zheng et al. 2019) that might cause massive 
ecological damage and economic loss (Wang et al. 2015; 
Chen et  al. 2020). For Example, Sindh, Pakistan's arid 
region has an overall higher tendency for the NDVI (an 

annual 86.71% and a growing season trend of 82.7%) as 
well as a partial declining trend (an annually 13.3% and in 
the growing season 17.3%) (Bashir et al. 2020). Precipitation 
was the most significant factor which mainly composed 
56.66% of the total climatic factors that impacted NDVI, 
and temperature had an 8.92% influence. The percentages 
of the increase in net primary production (NPP) that were 
attributed to anthropogenic and climate change were 39.70% 
and 60.30% respectively (Peng et al. 2021). In addition to 
significant global climate variability, the increasing human 
activities also intensify the effect on the dynamics of the 
vegetation and this issue has become a crucial issue in 
today's world (Liu et al. 2015; Du et al. 2019).

For detecting changes in NDVI time series, several 
approaches were used for detecting monotonic change and 
trends, such as TIMESAT (Jönsson and Eklundh 2002), 
Fourier spectral (Lhermitte et  al., 2008), regression 
analysis, and wavelet analysis (Torrence and Compo 
1998). However, numerous change detection algorithms 
are still in the proof-of-concept stage or criticized by 
various researchers. These algorithms are frequently 
inaccessible due to a lack of publicly available, efficient, 
and user-friendly implementations, or they have yet to be 
demonstrated on a large scale using real remote sensing 
data. The Breaks for Additive Season and Trend (BFAST) 
algorithm family can also be used as an alternative that 
identifies multiple breaks (de Jong et al. 2011; Fang et al. 
2018). For example, BFASTMonitor, which is designed 
for real-time change monitoring with a focus on breaks 
at the series end; and BFAST01, which characterizes 
the trajectory around the largest break, are all members 
of the family. These algorithms have been successfully 
applied for different time series all over the world, from 
semi-arid regions in Australia to various Canadian 
ecozones, forest disturbances in the Colombian Andes, 
and sub-Saharan dryland turning points. The BFAST 
package is the basis for new change detection frameworks 
such as TSS.RESTREND and STEF (Fang et al. 2018). 
Moreover, for the analysis of intricate time-series data, 
the Ensemble Empirical Mode Decomposition (EEMD) 
method is an effective signal-processing technique (Wu 
and Huang 2011). Its unique ability to decompose data 
into intrinsic mode functions (IMFs) that capture discrete 
frequency components allows it to be applied to a variety 
of non-stationary and non-linear signals. Known for its 
resilience, EEMD reduces mode mixing problems that 
conventional Empirical Mode Decomposition (EMD) 
causes (Hawinkel et al. 2015). EEMD is widely used in 
domains like geophysics, finance, and biomedical signal 
processing. It is particularly useful in obtaining relevant 
data from complex time-series datasets that contain 
inherent uncertainties and irregularities (Hawinkel et al. 
2015). In addition to that, there isn't much research on 
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these advanced machine learning models such as BFAST 
and EEMD algorithms to detect numerous abrupt and 
gradual changes as well as analyze the non-stationary 
and nonlinear interannual variability in NDVI time series 
respectively (Accarino et al. 2021; Ishida et al. 2020; 
Verbesselt et al. 2010).

Keeping in view, the main objectives are to detect 
vegetation dynamics of fragile ecosystem and quantify 
the impact of anthropogenic activities and climate 
change using BFAST and EEMD algorithm family. The 
primary goals of this research study include: (1) utilizing 
advanced algorithms to decompose NDVI for evaluating 
the temporal pattern of vegetation dynamics and its 
correlation with climatic factors and (2) quantifying the 
relative contribution of climate change and anthropogenic 
activities to vegetation dynamics. The research findings 
enhance our understanding of how vegetation responds 
to climate change and human influence, providing a 
technical foundation for future ecological restoration 
efforts in similar locations.

Materials and methods

The current study for attribution of vegetation dynamics and 
temporal response patterns used a holistic approach, which 
includes a novel combination of some advanced analytical 
tools by following sequential steps as depicted in Fig. 1, and 
the details are provided in the subsequent section.

Study area

The Haro River Basin (HRB) is situated geographically 
between 33.99° N to 72.20° E and 34.06° N to 73.43° E. 
Originating from the mountainous regions of Ayubia, 
Murree, and Margallah Hills, as depicted in Fig. 2, the river 
spans a length of approximately 43.65 km and traverses 
through Khyber Pakhtunkhwa (KPK) and Islamabad, 
extending into Punjab. The primary sources of the river's 
inflow are derived from snow and rainfall in the upstream 
areas, with the upper catchment experiencing winter 
snowfall, leading to seasonal variations in inflows. Climate 

Fig. 1   Schematic diagram of 
the methodology adopted in this 
study explanation
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change significantly impacts peak discharge and inflows in 
this region. Four significant tributaries including (Lora Haro, 
Neelan, Stora Haro, and Kunhad) are fed by the Haro River. 
Notably, the Khanpur Dam, located 40 km northwest of 
Islamabad at coordinates 33.80° N and 72.93° E, intercepts 
the Haro River, having a catchment area of approximately 
800 km2. The HRB experiences diverse rainfall patterns, 
with an average annual rainfall of 607 mm in lowland 
regions and 2400 mm in high-altitude areas. The temperature 
in the HRB ranges from 4 to 47 °C (Hagras and Habib 2017; 
Nauman et al. 2019).

The way vegetation responds to climate change has 
received a lot of attention and in the field of climate 
change research, it is now a particularly hard topic (Bao 
et  al., 2014). Among other satellite-based indicators, 
the Normalized Difference Vegetation Index (NDVI) 
has demonstrated its effectiveness as a vegetation 
activity indicator during the past few decades (Groten, 
1993; Neigh et al., 2008; Piao et al., 2014). Hence, the 

methodology of this study involved utilizing data from 
NASA's Moderate Resolution Imaging Spectroradiometer 
(MODIS) Terra for the years 2002 to 2021. Specifically, 
the MODIS product (MOD13Q1.061) was employed 
to acquire Normalized Difference Vegetation Index 
(NDVI) values, offering a spatial resolution of 250 m 
and a temporal resolution of 16 days (Shi et al., 2021). 
On the other hand, climatic data, encompassing monthly 
precipitation, humidity, and maximum and minimum 
temperatures spanning the same period, were sourced 
from the Pakistan Meteorological Department (PMD). 
The Digital Elevation Model (DEM) used in the study 
had a spatial resolution of 30 m and was obtained from 
NASA's Shuttle Radar Topography Mission (SRTM) 
dataset (http://​srtm.​csi.​cgiar.​org/). To assess changes in 
Land Use and Land Cover (LULC) over the study period 
(2002–2021), land use images were collected from Earth 
Explorer USGS (https://​earth​explo​rer.​usgs.​gov/) (refer 
to Table  1 for details). This comprehensive approach 

Fig. 2   Location of Haro River Basin with digital elevation model (DEM) and meteorological stations

Table 1   Detailed information 
about the data sets utilized in 
this research study

Sr. no. Datasets Period Temporal resolution Spatial resolution

1 NDVI (MOD13Q1.06) 2002–2021 16-Day 250 m
2 Meteorological Dataset 

(Precipitation, Tmax, Tmin. & 
Humidity)

2002–2021 Monthly –

3 DEM – – 30 m
4 LULC 2002–2021 Annually 30 m

http://srtm.csi.cgiar.org/
https://earthexplorer.usgs.gov/
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integrates remote sensing, climatic, and topographic data, 
providing a robust foundation for analyzing vegetation 
dynamics and understanding the influences of climate and 
land use changes in the Haro River Basin. Furthermore, 
an investigation of LULC changes was also carried out to 
understand the developing dynamics of human and natural 
activities, which necessitates a thorough understanding 
of temporal variations in relevant aspects. In the current 
study, LULC mapping was carried out using Landsat 7 
satellite data that was thoroughly filtered to reduce cloud 
cover influence and enhance temporal relevance through 
date range selection. Following that, image classification 
was carried out using the NDVI classification criteria 
outlined in Table 2, as specified by Akbar et al. (2019).

Trend analysis by using ordinary least squares (OLS) 
method

A statistical technique Ordinary Least Squares (OLS) 
was initially utilized to identify trends in NDVI and 
climatic factors including precipitation, temperature, 
and humidity at the regional scale (Hou et al. 2015). The 
relationship between one or more independent variables 
and a dependent variable can be calculated by minimizing 
the sum of squares in the difference between the observed 
values and predicted values of the dependent variable 
which is represented by a straight line. This process is 
described below:

where NDVIi is the average NDVI time series data for the 
ith growth season; a and slope indicates the linear regression 
equation's intercept and slope; i represents time series data 
of ith year; n is the length of the time series data for the 
NDVI; ε denote error term. Using a Mann–Kendall test, 
the statistical significance of the NDVI variation trend was 

(1)NDVIi = a + slope × i + Îi

(2)slope =
n ×

∑n

i=1
(i×NDVIi) −

∑n

i=1
i ×

∑n

i=1
NDVIi

n ×
∑n

i=1
i2 − (

∑n

i=1
i)2

assessed and a trend was considered statistically significant 
when p < 0.05.

NDVI time series decomposition using breaks 
for additive season and trend (BFAST)

Breaks for Additive Season and Trend (BFAST) is a 
powerful time series analysis technique used to detect 
abrupt changes or “breaks” in data trends and is employed in 
various fields such as remote sensing, ecology, and climate 
science. BFAST algorithm can decompose the original 
time series data of NDVI into three basic components 
which include seasonal components, trend components, and 
residual components (de Jong et al. 2011; Fang et al. 2018) 
and it can also recognize and classify sudden changes or 
“breaks,” in the seasonal and trend components in a time 
series of remotely sensed imageries. By fitting piecewise 
linear models to the data, BFAST identifies points where 
the observed values deviate significantly from the expected 
trend and seasonality. These deviations signal potential 
disturbances or shifts in the underlying processes being 
monitored. BFAST's ability to effectively capture abrupt 
changes makes it a valuable tool for analyzing environmental 
data, including remote sensing imagery, climate datasets, 
and ecological monitoring records. Its robustness and 
versatility have led to its widespread adoption in various 
scientific fields for understanding temporal dynamics and 
detecting critical transitions in time series data. The basic 
formula of this method is shown below:

where Yt identified the original time series at a time “t”; Tt 
( Tt = �i + �it ) represents the trend component of the time 
series with i = 1,2, …, m; and τ0 = 0 and τm+1 = n, αi and βi 
a s  i n t e r c e p t  a n d  s l o p e  r e s p e c t i ve ly ;  S t 

(  St =
j

∑

k=1

�j,k sin
�

2�kt

f
+ �j,k

�

 )  denotes the seasonal 

component of the time series where j term indicates the 
location of break sections, j = 1…, m; k represents the 
number of harmonic elements; section-specific amplitude 
and phase are expressed by αj, k and δj,k respectively; f 
represents the frequency term; et indicates the residual 
component; t is the observation period.

The BFAST computation processes include Initial 
data preparation to ensure the time series is properly 
structured and clear of gaps. The time series is then 
divided into seasonal, trend, and residual components 
using an appropriate decomposition algorithm. Piecewise 
linear models are then applied to the trend component, 
dividing it into intervals and estimating linear trends 
within each. Following that, significant breakpoints 
or changes in the trend component are identified using 

(3)Yt = Tt + St + et(t = 1 , 2 , 3, ........., n)

Table 2   Classification criteria range based on NDVI

Sr. no. Land use and land cover classes NDVI range

1 Water  < 0–0.015
2 Built-Up 0.015–0.14
3 Barren Land 0.14–0.18
4 Shrub and Grass 0.18–0.27
5 Sparse Vegetation 0.27–0.36
6 Dense Vegetation 0.36–0.74
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statistical or change-point detection techniques. The 
observed breakpoints are assessed for importance and 
reliability, and their interpretation is contextualized 
within the underlying processes under observation. 
Finally, the BFAST analysis findings, comprising the 
original time series data, deconstructed components, and 
identified breakpoints, are shown to aid comprehension 
of temporal dynamics.

Ensemble empirical mode decomposition (EEMD) 
method for NDVI trend decomposition

In the next step, a time-series breakdown method 
Ensemble Empirical Mode Decomposition (EEMD) 
was used to separate nonlinear and nonstationary data 
from NDVI original data series at various timescales 
(Wu and Huang 2011). EEMD is simpler to apply and 
less likely to cause overfitting or bias in the analysis 
because it does not need the definition of any tuning 
parameters. In EEMD, which enhanced version of 
Empirical Mode Decomposition (EMD), the sequencing 
of the initial data, x(t), is broken down into n elements 
known as intrinsic mode function IMFs and a residual 
term. This decomposition process involves iteratively 
extracting IMFs from the original time series using 
EMD with ensemble data generated by adding white 
noise and oscillation at a specific timescale period is 
represented by individual IMF components whereas the 
original sequence's long-term trend is represented by the 
residual term. The formula for EEMD involves iteratively 
decomposing the original time series x(t) into a finite 
number of intrinsic mode functions (IMFs) C(t) and a 
residual component r(t). Mathematically, the EEMD 
algorithm can be represented as follows:

where ci​(t) and r(t) denote the ith IMF and residue term.
The step-by-step calculation equations for Ensemble 

Empirical Mode Decomposition (EEMD) involves.
(1)- Generate ensemble data: xk(t) = x(t) + nk(t) where 

xk(t) is the k-th ensemble data set, x(t) is the original time 
series, and nk(t)is white noise, (2)- Decompose ensemble 
data into IMFs, using Empirical Mode Decomposition 
(EMD): Let ci

k​(t) represent the i-th IMF obtained from 
the k-th ensemble data set, (3)- Repeat decomposition 
for multiple ensembles, (4)- Compute ensemble mean 
of IMFs cˉi​(t) and (5)- Obtain final decomposition by 
subtracting the ensemble mean of IMFs from the original 
time series to obtain the final decomposition.

(4)X(t) =

n
∑

i=1

ci(t) + r(t)

Partial correlation analysis

Partial correlation analysis, which accounts for the effect 
of other factors, enables researchers to extract and quantify 
direct relationships between variables of interest (Abbas 
et al. 2021, 2022). Hence, partial correlation analysis was 
used in this study to determine the correlations between 
climatic variables, land use/land cover (LULC) dynamics, 
and NDVI while accounting for any confounding factors. 
In addition to that partial correlation analysis could aid in 
determining the extent to which climatic variables (such 
as temperature, precipitation, and humidity) have a direct 
influence on NDVI trends, regardless of land use changes 
or other external influences, therefore, partial correlation 
analysis was used to examine the relationship and how 
climatic factors and LULC impact vegetation dynamics.

where rxy represents the correlation between variable x and 
y; rxz represents the correlation of the third variable z with 
the variable x; ryz represents the correlation of the third 
variable z with the variable y.

To assess the lag time response of climate parameters 
to vegetation growth, the relationship between NDVI 
and climatic factors was calculated which frequently 
happens from one month to several months (Chen 
et al. 2014; Bhuyan et al. 2017; Wen et al. 2017). This 
research has taken a 0 to 2-month time lag between 
climatic variables and NDVI.

Estimation of relative contribution of climate 
change and anthropogenic activities

Finally, the residual trend analysis method was used to 
distinguish between human-induced vegetation dynamics 
and effects caused by climate change (Waseem et  al. 
2022, Evans and Geerken, 2004; Wessels et al., 2012). 
The predicted NDVI (NDVIpre) value was estimated 
using regression analysis between NDVI and climatic 
parameters; these values demonstrated the impact of 
climatic driving elements on NDVI. Finally, the residual 
(NDVIres) value is calculated by subtracting the NDVIpre 
value from the NDVIobs value, which illustrates the 
vegetation's response to human activity. When the 
changing trend of the NDVI residual with time was 
insignificant, the change of the NDVI was explained by 
climatic factors. As opposed to the above, the change in 
the NDVI was explained by anthropogenic activities (Jiang 
et al. 2017; Liu et al., 2017). The following equations are 

(5)rxy,z =
rxy − rxz × ryz

√

(1 − r2
xz
) × (1 − r2

yz
)
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used to calculate the proportions of anthropogenic activity 
and climate change to changes in vegetation cover:

where r1 represents variations in vegetation cover due 
to relative rates of contribution of climatic change; r2 
represents variations in vegetation cover due to relative 
rates of contribution of anthropogenic activities. Since no 
additional variables were considered in this investigation 
expect r2 = 1- r1 could be assumed.

(6)r1 =
slope(NDVIpre)

slope(NDVIobs)
× 100%

(7)r2 =
slope(NDVIres)

slope(NDVIobs)
× 100%

Results

Land use and land cover change analysis

The unsupervised classification of land use and land cover 
types in the Haro River Basin for the years 2002, 2013, 
and 2021, shown in Fig. 3, resulted in significant land use 
transformations. For the current study, the land use was 
categorized into six distinct categories, including water 
(W), built-up areas (BU), barren land (BL), shrub and 
grass (SG), sparse vegetation (SV), and dense vegetation 
(DV). In 2002, the landscape composition was 0.2% water, 
64.12% built-up areas, 13.93% barren land, 18.39% shrub 
and grass, 3.32% sparse vegetation, and 0.05% dense 

Fig. 3   Land use and land cover classification map in a 2002, b 2013 and c 2021 respectively
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vegetation. By 2013, there was a noticeable shift, with 
increases in water, barren land, shrub and grass, sparse 
vegetation, and dense vegetation by 0.5%, 18.95%, 30.68%, 
3.84%, and 0.15%, respectively. However, built-up areas 
experienced a substantial decrease of 45.80%. In 2021, 
the landscape continued to evolve, witnessing a surge in 
built-up areas to 61.35%, while water, barren land, shrub & 
grass, sparse vegetation, and dense vegetation experienced 
reductions by 0.24%, 15.44%, 21.48%, 1.45%, and 0.01%, 
respectively, as outlined in Fig. 4. The categories of shrub 
& grass, sparse vegetation, and dense vegetation were 
amalgamated into a single vegetation class for clarity. 
It was noted that the region experienced a large increase 
in anthropogenic activity, driven by infrastructural 
expansion and intensive farming techniques, hence, 
resulting in a notable loss of natural vegetation cover. 
From 2002 to 2021, dominating land cover classes were 
converted to built-up areas, with southern and western 
regions experiencing the most growth. Barren land was 
also turned into space for infrastructure development, 
including roadways, residential, and industrial zones, so 
fostering urban expansion. On the other hand, agricultural 
expansion, aided by machinery-intensive methods, met 
food demand and supplied livelihoods despite rapid 
population rise. Additionally, rural-to-urban migration 
headed the growth of urbanized regions. Conclusively, 
these findings offer a nuanced understanding of the 
dynamic land use and cover patterns throughout the 
studied period, highlighting the complex interplay of 
natural and anthropogenic influences.

Temporal trend analysis of climatic factors and NDVI

Figure 5 indicates the average annual temporal variation 
in slope and trend of different climatic factors and NDVI 
for the study period of 2002–2021 in the HRB. In terms of 
climatic factors rainfall, humidity, and minimum temperature 
exhibited a statistically significant upward trend (0.4044 
mm/year; 0.4497%/year; 0.0282 °C/year respectively). 
Conversely, maximum temperature demonstrated a negative 
trend of − 0.025 °C/year. The analysis also revealed that 
annual precipitation in the Haro River Basin varied in the 
range of 607 mm/year to 2400 mm/year and maximum 
temperature showed a significant increasing trend in spring 
and autumn (with rates of 0.006 °C/year, and 0.026 °C/year 
respectively, and had a slight decreasing trend (at a rate of 
− 0.08 °C/year and − 0.077 °C/year) in winter and summer 
season. However, minimum temperature showed a positive 
trend in winter, spring, and autumn with rates of 0.045 °C/
year, 0.097 °C/year, and 0.057 °C/year respectively, and 
had a negative trend at a rate of − 0.027 °C/year in the 
summer season. Moreover, NDVI data indicates that HRB 
experienced a positive trend over time with overall rates of 
0.0029/year in the HRB. These findings suggest a complex 
interplay between climatic factors and vegetation dynamics 
in the HRB, highlighting the importance of considering 
multiple variables in understanding the ecological changes 
over the study period.

NDVI time series decomposition

This study focused on identifying and characterizing 
variations in the trend component of the NDVI time series at 
the monthly scale in the HRB by using the BFAST approach. 
Furthermore, employing the BFAST technique a breakpoint 
in the NDVI was identified in 2013. The increase in greening 
exhibited a gradual rise trend of 0.0001/year from 2002 to 
2013. Subsequently, it experienced a sudden rising trend 
after 2013 up to 0.0002/year. Concluded that Abbottabad, 
Islamabad, Murree, and Rawalpindi indicated a considerable 
increasing greening trend from 2002 to 2021 as presented 
in Fig. 6. These results highlight the gradual changes in 
vegetation patterns, showcasing how the BFAST approach 
effectively captures and describes these trends in the Haro 
River Basin landscape throughout the study period (Fig. 6).

The decomposition of NDVI time series data from 
the period of 2002–2021 into non-stationary and non-
linear components in Abbottabad, Islamabad, Murree, 
and Rawalpindi is shown in Fig. 7. The original NDVI 
data series range is represented by the D (t) term. IMFs 
represented the non-stationary and non-linear NDVI time 
series data at multiple time scales. Whereas the residual 
term indicated that overall NDVI showed an increasing 
trend in all respective stations. Specifically, Abbottabad Fig. 4   Percentage area of the land use and land cover types
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experienced an increase from 0.51 to 0.54 and Murree 
observed an increase from 0.53 to 0.55 over the span of 20 
years. This decomposition provides a clear understanding 
of the temporal dynamics in vegetation, emphasizing a 
general positive trend in NDVI across the studied regions, 
and contributing valuable insights for ecosystem monitoring 
and management in these areas.

Relationship between climatic factors and NDVI

Partial correlation between NDVI and climatic factors

The effect of precipitation, humidity, maximum and 
minimum temperature on vegetation dynamics was assessed 
by estimating the coefficients of partial correlation. These 
coefficients were then used to map the relationship between 
monthly average precipitation, humidity, temperature, 
and NDVI from 2002 to 2021. In Abbottabad, Islamabad, 
Murree, and Rawalpindi the partial correlation between 

rainfall and NDVI is observed as − 0.058, 0.117, − 0.149, 
and 0.094, respectively. Similarly, the coefficient of partial 
correlation between humidity and NDVI is 0.513, 0.516, 
0.366, and 0.626 for Abbottabad, Islamabad, Murree, and 
Rawalpindi respectively. Similarly, the partial correlation 
coefficients between minimum temperature and NDVI are 
0.063, 0.055, 0.08, and 0.108 for Abbottabad, Islamabad, 
Murree, and Rawalpindi respectively. On the other hand, 
the partial correlation coefficients between maximum 
temperature and NDVI are 0.157, 0.001, 0.23, and -0.048 
for Abbottabad, Islamabad, Murree, and Rawalpindi 
respectively.

A positive coefficient of partial correlation between the 
rainfall and NDVI occupied 81.06% and a negative partial 
correlation coefficient was identified at 18.93% in the entire 
area. The significant positive relationship accounted for 
0.51% and the insignificant positive relationship accounted 
for 99.48% area. A positive coefficient of partial correlation 
was found between the humidity and NDVI accounting for 

Fig. 5   Temporal trend analysis: a NDVI, b rainfall, c humidity and d maximum and minimum temperature from 2002 to 2021



	 Environmental Earth Sciences (2024) 83:356356  Page 10 of 16

100% and a significant positive correlation is identified in the 
100% area. Within the area, a positive coefficient of partial 
correlation between maximum temperature and NDVI was 
present in 38.56% region while a negative coefficient was 
observed in 61.44%. Among these correlations, a significant 
positive relationship was found in the 10.13% area while an 
insignificant positive correlation accounted for 89.86%. A 
positive coefficient of partial correlation was found between 
the minimum temperature and NDVI accounted for 100% 
and an insignificant positive correlation was identified in 
100% of the study area. Significant results for the partial 
correlation of all climatic factors and NDVI.

Partial correlation between land use classes and climatic 
factors

Figure 8 indicates annual timescale analysis for significant 
positive and negative partial correlations between NDVI-
based land use classes and precipitation, humidity, minimum 

temperature, and maximum temperature in the Haro River 
Basin. Rainfall exhibits a positive partial correlation with 
water, barren land, and sparse vegetation while it has a 
negative partial correlation with other classes. Humidity 
only exhibits negative partial correlations with barren 
land and shrubs & grass but it exhibits negative partial 
correlations with barren land and shrubs & grass. Maximum 
Temperature shows negative partial correlations with all land 
cover classifications except sparse vegetation. Minimum 
Temperature displays a strong positive partial correlation 
with water, barren land, and dense vegetation but it exhibits 
a strong negative partial correlation with other classes.

Lag time analysis between climatic factors to NDVI

Time lag response between climatic parameters (P, H, 
Tmax, and Tmin) and NDVI showed distinct variations at 
spatial scale analysis. When considering the monthly scale 
approximately 36.38% of the area exhibited a statistically 

Fig. 6   BFAST algorithm for monthly NDVI time series decomposition from 2002 to 2021 at the regional scale
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significant lag time effect of 0-months in Rawalpindi and 
Islamabad while 63.62% area displayed a statistically 
insignificant lag time effect. For a lag time of 1-month 
11.38% area showed the most favorable lag time response 
for Precipitation (P) to NDVI in Abbottabad while 88.62% 
of the area exhibited a statistically insignificant lag time 

effect. However, in the case of a 2-month lag time 100% area 
revealed an insignificant lag time response for Precipitation 
(P) to NDVI. On the other hand, when examining the lag 
time response of humidity to NDVI it was observed that 
100% area displayed a statistically significant lag time 
effect for both 0 and 1-month lag. However, for a lag time 

Fig. 7   Trend decomposition of monthly NDVI time series for the period of 2002 to 2021 based on EEMD: a Abbottabad, b Islamabad, c Murree 
and d Rawalpindi
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of 2-months, 28.03% of the area in Rawalpindi exhibited a 
statistically significant lag time response of humidity (H) to 
NDVI while 71.97% area showed a statistically insignificant 
lag time response. Regarding the lag time response of 
maximum temperature to NDVI it was found that 100% 
area showed a statistically insignificant lag time effect for 
a 0-month lag. For a 1-month lag time, a combined 30.99% 
area exhibited a significant lag time response of maximum 
temperature (Tmax) to NDVI in Murree and Rawalpindi while 
69.01% of the area displayed a statistically insignificant 
lag time effect. Additionally, in Rawalpindi, 28.03% area 
demonstrated a statistically significant lag time response 
of Tmax to NDVI for a 2-month lag whereas 71.97% of the 
area revealed a statistically insignificant lag time effect. 
Regarding the lag time response of minimum temperature 
to NDVI it was found that 100% area showed a statistically 
insignificant lag time effect for both a 0-month and 2-month 
lag. However, for a 1-month lag time, a combined 36.38% 
of the area exhibited a significant lag time response of 
minimum temperature (Tmin) to NDVI in Islamabad and 
Rawalpindi while 63.62% of the study area displayed a 
statistically insignificant lag time effect.

Contribution of climate change and anthropogenic 
activities to NDVI

The impact of anthropogenic activity on vegetation 
variations cannot be disregarded because they have a 
major effect on the ecosystem of the HRB. In the interest 
of differentiated relative rates of the contribution of 
anthropogenic activity and climate change to vegetation 
dynamics, the residual NDVI trend from 2002 to 2021 
was determined by developing the multiple linear 
regression model between the rainfall, humidity, maximum 

temperature, minimum temperature, and NDVI. The results 
illustrate the proportional contributions of anthropogenic 
activity and climate change in the Haro River Basin. In 
Abbottabad climate change and anthropogenic activities 
accounted for 71.88% and 31.25% respectively. Similarly, 
in Islamabad, the contributions were 75% for climate 
change and 25% for anthropogenic activities. In Murree, the 
respective proportions were 78.26% for climate change and 
21.74% for anthropogenic activities. Lastly, in Rawalpindi, 
the contributions were 75% for climate change and 25% 
for anthropogenic activities in relation to overall dynamics 
observed in vegetation.

Contribution of climate change and anthropogenic 
activities to different land use classes

Comparative rates of the contribution of anthropogenic 
activities and climate change were estimated for 
corresponding land use classes to compare the potential 
influence on NDVI results shown in Fig. 9. Among different 
land use classes, the rates of the contribution of climate 
change and anthropogenic activities to NDVI’s variation 
are different. In Abbottabad, the major relative rates of the 
contribution of climate change are found for built-up, barren 
land, sparse vegetation, and dense vegetation at 84.46%, 
82.98%, 71.43%, and 69.56% respectively. Meanwhile, the 
major relative contribution rate of anthropogenic activities 
found for water is 70.58%. In Islamabad, significant 
contributions from climate change were observed in shrub 
& grass, sparse vegetation, and barren land accounting 
for 93.33%, 82.98%, 87.71%, and 75.84% respectively. 
Meanwhile, anthropogenic activities were found to have a 
major relative contribution rate of 82.57% in dense vegetation 
and 66.66% in water areas. In Murree, the major relative 
contribution rate of climate change is found for built-up, 
water, dense vegetation, and shrub and grass 93.33%, 
88.46%, 85.82%, and 82.24% respectively. Similarly, the 
major relative contribution rate of anthropogenic activities 
found for sparse vegetation is 58.88%. In Rawalpindi the 
analysis revealed that climate change had a major relative 
contribution rate in water bodies, sparse vegetation, dense 
vegetation, and barren land, accounting for 93.87%, 85.44%, 
75%, and 73.97% respectively. Additionally, anthropogenic 
activities specifically in built-up areas exhibited a high 
relative contribution rate of 72.48%.

Discussion

The intricate relationship between land surface dynamics 
and the atmospheric system gets more complex as 
anthropogenic regulations and natural processes interact 
more. Not only is the climate affected by natural forces, 

Fig. 8   Partial correlation between different LULC classes and cli-
matic factors in HRB
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but anthropoid activity can also change it, adding layers of 
complexity to its evolution. Vegetation specifically can only 
grow in the optimum climatic conditions (for example, the 
optimal T and P) and proper nutritious situations. On the 
other hand, Anthropogenic activities such as biodiversity 
programs, human productivity, and way of life have also 
an impact on the dynamic of vegetation (Zhang and Wu 
2020). Several studies have found that vegetation dynamics 
respond on a local scale which is mostly affected by local 
climate as well as the quick expansion of the world economy 
and the explosive development in population as a result of 
anthropogenic activities (Zhang and Wu 2020; Shi et al. 
2021). For example, the study area (i.e., Haro River Basin 
(HRB)) has shown a significant trend towards wetness and 
warmness that was likely caused by the effects of global 
warming as well as anthropogenic activities over the last 
20 years (Nauman et al. 2019). In this study i.e., Nauman 

et  al., (2019) assessed the potential impacts of climate 
change on streamflow in the Haro River watershed, Pakistan, 
using the Soil and Water Assessment Tool (SWAT) and 
showed that streamflow in the Haro River watershed is 
highly vulnerable to climatic variations and could impact 
the discharge at Khanpur Dam, which is a crucial source 
for meeting the domestic water supply needs of a large 
population. Hence, the current study designed a holistic 
approach to investigate the vegetation dynamics in HRB 
and found that Climate change relative contribution rates 
on NDVI are mainly found in the range of 72–78%. Our 
results correlate with a previous study which indicates that 
climate change contributes 59.68% to NDVI and is the main 
driving factor influencing vegetation activities (Zhu et al. 
2023). It was expected that the basin's topography would 
comprise a mix of plains, foothills, and potentially some 
mountainous areas, with diverse land use patterns, including 

Fig. 9   Rates of the relative contribution of climate change and anthropogenic activities to each LULC class: a Abbottabad, b Islamabad, c Mur-
ree and d Rawalpindi
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agricultural areas, urban developments, and potentially 
some natural or protected areas and anthropogenic activities 
such as agriculture, industrial activities, and urbanization 
are limited. Moreover, anthropogenic activities can also 
increase the amount of vegetation in the region by improving 
agricultural technology, amount of plants, and closed hills 
for afforestation (Liu et al. 2020; Sun et al. 2021). National 
and local administrations have accomplished several 
ecological programs over the past 20 years including the 
Ecological Shelter Project, Green Plant Project, Soil and 
Water Management Project, and Natural Forest Preservation 
Project. This study also depicted that from 2002 to 2021 
built-up and vegetation increased to 61.35% and 23%, 
whereas water and barren land decreased by a magnitude of 
0.24%, and 15.44% respectively. The results of a previous 
study in the Simly watershed on the Pothwar Plateau also 
showed that the areas covered by settlements, bare soil, and 
agriculture classes were improved while the areas covered 
by vegetation and water classes significantly declined 
(Butt et al. 2015). Moreover, a relative contribution rate of 
anthropogenic activities was found in this area that ranged 
from 22 to 31% to NDVI. Zhu et al. 2023) also found in 
research that anthropogenic activities could contribute up to 
42.35% to an increase in NDVI. In addition to attribution, an 
understanding of temporal response patterns is necessary to 
predict the dynamics of the vegetation and as the timespan 
elongated the importance of interaction between vegetation 
and climate change increased (Qi et al. 2019). The study 
reveals that a substantial portion of the area (36.38%) 
exhibits a statistically significant instantaneous response 
of NDVI to precipitation (P), emphasizing the immediate 
impact of rainfall on vegetation. Additionally, a notable 
percentage (30.99%) displays a significant lag time effect 
of maximum temperature (Tmax) on NDVI, suggesting 
a delayed but discernible influence of temperature on 
vegetation. These findings underscore the complex and 
multifaceted relationships between climate variables and 
vegetation dynamics in the studied area.

Conclusions

This study employed MODIS NDVI and climatic factors 
(P, H, Tmax, and Tmin) to comprehensively analyze the 
spatiotemporal patterns and relationships from 2002 to 
2021 in the Haro River Basin. Utilizing novel integrated 
methodology, including ordinary least squares linear 
regression, BFAST, EEMD, and partial correlation analysis, 
along with residual trend analysis, the research yielded 
significant insights:

1.	 The comprehensive analysis of land use, climatic factors, 
and vegetation dynamics in the Haro River Basin from 

2002 to 2021 reveals interconnected trends and drivers 
shaping the vegetation dynamics.

2.	 The observed trends in annual average NDVI across all 
monitoring stations signify an overall enhancement in 
vegetation health, coinciding with increasing rainfall 
and humidity and the decreasing trend in maximum 
temperatures, alongside fluctuations in minimum 
temperatures.

3.	 Analyses employing BFAST and EEMD techniques 
further elucidate the significant role of climatic factors 
in driving NDVI variations, showing spatial and class-
specific heterogeneity.

4.	 Notably, while anthropogenic activities exert some 
influence on vegetation variation, climate change 
emerges as the predominant driver, contributing over 
55% to changes in various vegetation classes

5.	 These findings underscore the urgency of addressing 
climate change impacts on ecosystem resilience and 
underscore the critical need for sustainable land 
management practices to mitigate adverse effects and 
ensure long-term ecological sustainability in the Haro 
River Basin.

In conclusion, this research underscores the complex 
interplay of climatic factors and anthropogenic activities 
on vegetation dynamics, highlighting the dominant role of 
climate change. However, causality-based identification of 
specific primary drivers of vegetation change can further 
enhance the scope of this study for better sustainable 
development in the Haro River Basin. The future scope 
of the research may also include conceptual guidance for 
ecological management, specific actions for vegetation 
ecological protection and restoration, and sustainable 
development in the Haro River Basin.
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