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Abstract
Accurate prediction of soil liquefaction potential is crucial for evaluating the stability of structures in earthquake regions. This 
study focuses on predicting soil liquefaction using a dataset that included historical liquefaction cases from the 1999 Turkey 
and Taiwan earthquakes. The dataset was divided into three subsets: Dataset A (fine-grained), Dataset B (coarse-grained), 
and Dataset C (all samples). Through the analysis of these subsets, the study aims to assess the performance of machine 
learning algorithms in predicting soil liquefaction potential. This study applied ensemble machine learning algorithms, 
including extreme gradient boosting, adaptive boosting, extra trees, bagging classifiers, light gradient boosting machine, 
and random forest, to accurately classify the liquefaction potential of fine-grained and coarse-grained soils. A comparison 
between the genetic algorithm approach for hyperparameter optimization and traditional methods such as grid search and 
random search revealed that genetic algorithms outperformed both in terms of average test and train accuracy. Specifically, 
the light gradient boosting machine yielded the best predictions of soil liquefaction potential among the algorithms tested. 
The study demonstrated that Dataset B achieved the highest learning performance with accuracy of 0.92 on both the test 
and training sets. Furthermore, Dataset A showed a training accuracy of 0.88 and a test accuracy of 0.84, while Dataset C 
exhibited a training accuracy of 0.87 and a test accuracy of 0.87. Future studies could build on these findings by evaluating 
the performance of genetic algorithms on a wider range of machine learning algorithms and datasets, thus advancing our 
understanding of soil liquefaction prediction and its implications for geotechnical engineering.
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Introduction

Liquefaction is one of the most important, interesting, com-
plex, and controversial topics in geotechnical engineering. 
The great destruction caused by liquefaction in the Alaska 
earthquakes  (Mw = 9.2) and Niigata  (Ms = 7.5) that occurred 
in 1964 increased the interest of geotechnical engineers in 
this phenomenon. The term liquefaction describes a set of 
soil deformations that occur when saturated cohesionless 
soils are disturbed in undrained conditions in static, tempo-
rary, or cyclical ways (Kramer 1996). Although liquefaction 
was thought to occur only in sandy soils for many years, 
studies and observations have shown that liquefaction may 
occur in low-cohesive silts (Ishihara 1984, 1985) and grav-
elly soils (Evans and Seed 1987; Yegian et al. 1994). The 
emergence of liquefaction in the soil layers in earthquakes 

can cause considerable damage to structures on the ground 
and underground structures. Therefore, determining the fac-
tors that cause liquefaction in soils, liquefaction hazards, 
and predicting possible harmful effects are considered 
among important research topics in geotechnical earthquake 
engineering.

Local ground conditions significantly affect the struc-
tural damage that can occur during earthquakes. Thus, it is 
important to predict the behavior of soils under cyclic loads 
and their static strength after earthquakes. It is possible to 
determine the stress–strain behavior of soils during and after 
earthquakes with various laboratory test systems. In par-
ticular, the liquefaction potentials and the post-liquefaction 
behavior of saturated sandy soils under cyclic loads can be 
investigated in the laboratory with dynamic test systems such 
as dynamic simple shear, dynamic triaxial, dynamic torsion 
test, and shaking table (Das 1993; Youd and Idriss 2001; 
Xue and Xiao 2016; Rahbarzare and Azadi 2019; Erzin and 
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Tuskan 2019; Alizadeh Mansouri and Dabiri 2021; Pham 
2021; Zhou et al. 2022b). However, obtaining undisturbed 
samples from soils whose liquefaction risk is investigated, 
and the modeling of the field conditions in laboratory experi-
ments may present some difficulties. Therefore, it is widely 
preferred to perform liquefaction risk analyses using meth-
ods based on field tests, such as the standard penetration 
test (SPT), cone penetration test (CPT), and measurement 
of shear wave velocity  (Vs). The most significant advan-
tage of field tests is that they allow evaluating the soil in its 
natural state. Experiments and identification can be made at 
the desired depth from the surface. However, since seismic 
activity is difficult to demonstrate in the field, soil param-
eters related to liquefaction strength cannot be obtained in 
experiments to determine the liquefaction potential. To reach 
the evaluation criteria, empirical relations have been devel-
oped by examining past earthquakes where liquefaction has 
occurred (Law and Wang 1994).

Methods based on SPT test results are widely used to 
determine the liquefaction potential among field tests (Ghani 
and Kumari 2022a; Ghani et al. 2022; Yılmaz et al. 2022). 
The most important of these is the “Simplified Method” 
published in 1971 (Seed and Idriss 1971) and has also 
been accepted as the standard in liquefaction analysis. 
This method is based on the principle of obtaining a factor 
of safety (FSL) by dividing the ratio of cyclic resistance 
to liquefaction (CRR) by the earthquake-induced cyclic 
stress (CSR). If the factor of safety is less than 1, liquefac-
tion is expected. If it is greater than 1, there is no risk of 
liquefaction.

On the other hand, the fact that the SPT test contains 
many uncertainties in the application procedure necessitates 
correction in the obtained SPT-N values (Youd et al. 2001; 
Idriss and Boulanger 2010; Alizadeh Mansouri and Dabiri 
2021). In addition to those that can be determined by labo-
ratory and field tests, many parameters, such as earthquake 
magnitude and peak horizontal ground acceleration, are used 
in liquefaction analyses based on the SPT test. Although 
CSR and CRR parameters can be determined using empiri-
cal expressions developed based on past earthquakes (Youd 
et al. 2001; Cetin et al. 2004; Idriss and Boulanger 2008, 
2010; Boulanger and Idriss 2014) and field observations, it 
is difficult to obtain a single appropriate empirical expres-
sion due to the need for many parameters and uncertainties 
(Cai et al. 2022; Zhou et al. 2022b). Although the determin-
istic methods mentioned above are still widely used in the 
evaluation of liquefaction, as they are simple and practical, 
they might contain significant uncertainties due to the vari-
ables used in these methods. In addition to the uncertainties 
related to the anisotropy and non-uniform properties result-
ing from the heterogeneous structure of the soils, the uncer-
tainties in the seismic parameters caused by earthquakes 
are the major ones. Although some researchers propose 

reliability methods for deterministic approaches used in 
liquefaction evaluations to overcome these uncertainties 
(Baecher and Christian 2005; Ghani and Kumari 2022b; 
Golmoghani Ebrahimi et al. 2023; Jha and Suzuki 2009; 
Johari et al. 2012; Juang et al. 2009; Kwak and Lee 1987), 
some researchers have also emphasized that it is inevitable 
to use reliable, simple, and predictable flexible calculation 
techniques to evaluate the liquefaction potential of any piece 
of soil, as in many fields of engineering science (Xue and 
Yang 2013, 2016; Xue and Xiao 2016; Juang et al. 2022).

Examining the literature in question, it is seen that differ-
ent researchers have used different types of artificial intel-
ligence (AI) and machine learning (ML) techniques, such as 
artificial neural network (ANN) (Hanna et al. 2007; Ram-
akrishnan et al. 2008; Mughieda et al. 2009; Xue and Liu 
2017; Alizadeh Mansouri and Dabiri 2021; Kurnaz et al. 
2023), adaptive neuro-fuzzy inference system (ANFIS) 
(Rahman and Wang 2002; Chern et al. 2008; Xue and Yang 
2013), support vector machine (SVM) and relevance vec-
tor machine (RVM) (Samui and Sitharam 2011; Samui and 
Karthikeyan 2013; Rahbarzare and Azadi 2019) to overcome 
the uncertainties in the assessment of soil liquefaction risk. 
Additionally, optimization techniques have started to be used 
in liquefaction risk evaluations to improve the generalization 
ability of ML models and overcome limitations in recent 
years (Rahbarzare and Azadi 2019; Zhang et al. 2021; Zhao 
et al. 2021; Cai et al. 2022; Ghani and Kumari 2022a; Ghani 
et al. 2022; Umar et al. 2022; Zhou et al. 2022a), have been 
implemented in most complex geotechnical engineering 
problems with high success (Díaz et al. 2022; Li et al. 2022; 
Rehman et al. 2022; Wang et al. 2022).

Classification-based estimation studies also have a major 
role in the liquefaction phenomenon with AI and ML. Using 
historical case datasets, researchers have successfully used 
classifiers of different methods to predict the liquefaction 
potential. Ahmad et al. (2019) focused on case histories 
with Bayesian belief network (BBN) and C4.5 decision 
tree (DT) models to assess the liquefaction potential. They 
achieved satisfactory results, especially with the BBN 
model. Alobaidi et al. (2019) used ensemble models to pre-
dict the liquefaction potential and compared them with ML 
models. They have claimed that the ensemble models per-
form better in overcoming the uncertainties and predicting. 
Rahbarzare and Azadi (2019) studied CPT-based field cases 
and proposed a fuzzy support vector machine (FSVM) clas-
sifier supported by optimization algorithms for liquefaction 
prediction, and they achieved satisfactory results. Zhao et al. 
(2021) studied two case history databases. They proposed 
a hybrid ML model that includes particle swarm optimiza-
tion and kernel extreme learning machine (PSO-KELM) to 
evaluate the liquefaction potential. They emphasized that the 
proposed model has achieved better results than the various 
ML models. Ahmad et al. (2021) used different BBN models 
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in CPT field cases to assess the liquefaction potential, and 
gave the results comparatively. Zhang et al. (2021) focused 
on the addition of the  Vs parameter to the prediction models 
of the liquefaction potential based on the SPT field cases. 
They used a multi-layer fully connected network model opti-
mized by the deep neural network (ML-FCN DNN). Thus, 
they stated that they achieved higher accuracy prediction 
success. Kumar et al. (2021) proposed a deep learning (DL) 
model for the prediction of classification-based liquefaction, 
and the results they achieved were compared with the emo-
tional backpropagation neural network (EmBP), and high-
lighted the success of the proposed DL model. Zhang et al. 
(2021) proposed an SVM model optimized by gray wolf 
optimization (GWO) to present a prediction model of the 
liquefaction potential and suggested that GWO improved 
the prediction success. Zhang and Wang (2021) used three 
different datasets. They proposed an ensemble model that 
combined the predictions of the seven base classifiers in the 
prediction of liquefaction and achieved reliable results. Zhou 
et al. (2022a) proposed SVM models optimized by GWO 
and genetic algorithm (GA) using three historical datasets. 
The results indicated that GWO and GA have increased 
SVM performance; however, GWO was slightly more suc-
cessful. Zhou et al. (2022b) used three historical datasets to 
propose random forest (RF) models optimized by GWO and 
GA. The results showed that the optimization of GWO and 
GA has improved the performance of the single RF model. 
Additionally, GWO-RF was more successful in two datasets 
and GA-RF was more successful in one. Demir and Sahin 
(2023) presented Adaptive Boosting (AdaBoost), Gradient 
Boosting Machine (GBM) and eXtreme Gradient Boosting 
(XGBoost) ensemble algorithms to evaluate soil liquefaction 
potential in SPT-based dataset. The results suggest that the 
proposed ensemble models obtained reliable results in lique-
faction prediction. Kumar et al. (2022) used XGBoost, RF, 
GBM, support vector regression (SVR), and group method 
of data handling models in the prediction of soil liquefac-
tion using a SPT-based database. Although all models were 
successful, the XGBoost model showed the best prediction 
performance for the liquefaction potential.

This study focused on a thorough investigation of the 
potential of ML algorithms, particularly classifiers, in 
accurately predicting soil liquefaction. In this regard, the 
dataset containing 620 SPT-based historical cases presented 
by Hanna et al. (2007) was used. It is seen that a signifi-
cant part of the soil types in the dataset presented by Hanna 
et al. (2007) are classified as fine-grained soils. However, 
the dataset includes only the parameters used in coarse-
grained soil liquefaction analysis methods based on SPT as 
input parameters. Nevertheless, the input parameters in the 
database do not include parameters that reflect the physi-
cal properties of soils that are known to be effective in the 
liquefiability of fine-grained soils. Since the development of 

the pore water pressure of clay–silt mixtures during cyclic 
loads is quite different from that of sand soils, the liquefac-
tion criteria developed for sands will not function efficiently 
for fine-grained soils. In terms of stress–strain behavior, the 
behavior of sands depends significantly on confining stress 
and relative density, while the behavior of clays depends on 
plasticity, consolidation stress, and stress history. Therefore, 
Boulanger and Idriss (2006) separated fine-grained soils into 
categories such as "sand-like" and "clay-like" according to 
their behavior. Over time, many criteria have been developed 
to determine the susceptibility to liquefaction of fine-grained 
soils based on the physical properties of the soil. Early on, 
the criteria proposed to separate liquefiable and non-lique-
fiable fine-grained soils were based on the percentage of 
clay (C%), liquid limit (LL), and the ratio of natural water 
content to liquid limit  (wn/LL) (Wang et al. 2022; Seed and 
Idriss 1971; Andrews and Martin 2000). In the following 
years, the average grain size  (D50) (Bol et al. 2010), and the 
soil plasticity index (PI) (Bray and Sancio 2006; Ghani and 
Kumari 2021; Seed et al. 2003) were used for liquefaction 
sensitivity.

The dataset presented by Hanna et al. (2007) has been 
widely used in many studies that propose prediction models 
on liquefaction evaluation (Gandomi et al. 2013; Hoang and 
Bui 2018; Kayadelen 2011; Kurnaz and Kaya 2019; Zhang 
and Wang 2021; Zhang et al. 2021; Zhao et al. 2021; Zhou 
et al. 2022a, 2022b). In the mentioned studies, the perfor-
mance results of the models were obtained by performing 
analyzes with parameters affecting the liquefaction behavior 
of coarse-grained soils, without considering the presence of 
fine-grained soil types in the dataset. Considering that this 
situation may affect the performance of the proposed fore-
casting models, in addition to the entire dataset, the dataset 
was divided into fine and coarse-grained soils, and three 
different datasets were analyzed in the current study. A vari-
ety of powerful ML ensemble algorithms were used in the 
analysis, including XGBoost, AdaBoost, Extra Trees Algo-
rithm (EXT), Bagging Classifier (Bagging), Light Gradient 
Boosting (LightGBM), and Random Forest (RF).

The main contribution of this paper is highlighted as 
follows:

(a) Unlike previous studies that used the dataset presented 
by Hanna et al. (2007), prediction models were devel-
oped for different variations considering the difference 
in soil type within the dataset, and it is emphasized that 
grouping the dataset according to soil type positively 
affects the prediction model performance results.

(b) The ML models’ performance was enhanced through 
the utilization of optimization techniques, including 
random search (RS), grid search (GS), and GA.

(c) By integrating ensemble methods and fine-tuning the 
hyperparameters, this study aims to provide valuable 
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insights into the practical application of these robust 
algorithms and their unparalleled effectiveness in pre-
cisely classifying the liquefaction potential across vari-
ous soil types.

Dataset description

In this study, the dataset presented by Hanna et al. (2007), 
which contains a total of 620 SPT-based case records of 
two major earthquakes that occurred in 1999 in Türkiye 
 (Mw = 7.4) and Taiwan  (Mw = 7.6), was used in three dif-
ferent variations. Since the whole dataset contains differ-
ent soil types, as mentioned in the Introduction part of this 
paper, the dataset was divided into two categories: fine-
grained and coarse-grained soils. Three different datasets 
were analyzed in this study. The first dataset (A) consists 
of fine-grained soils only, the second dataset (B) consists 
of coarse-grained soils only, and the third dataset (C) con-
sists of all samples. Among the case records in the entire 
dataset, 406 data are classified as fine-grained soil (dataset 
A) and 214 data are classified as coarse-grained soil (data-
set B). All three datasets consist of 12 input parameters 

and a single output parameter. The input parameters are 
the depth of the analyzed layer (z), the corrected SPT blow 
numbers  (N1,60), the percentage of fine content less than 
75 µm (FC (%)), the depth of the groundwater table  (dw), 
total and effective overburden stresses (σv, σv’), thresh-
old acceleration  (at), cyclic stress ratio (CSR), shear wave 
velocity  (vs), internal friction angle of the soil (ϕ), earth-
quake magnitude  (Mw), maximum ground acceleration 
 (amax). The output parameter of the binary classification 
problem is the liquefaction potential. The descriptive sta-
tistics for the dataset used in this study are presented in 
Table 1.

Additionally, Table 2 presents the correlation coeffi-
cients between the distinctive characteristics analyzed. The 
values range from -1 to 1, with higher absolute values 
indicating stronger correlations. As expected, σv and σv’ 
exhibit a high correlation, with a coefficient of 0.98. N

1,60 
also shows a positive correlation with ϕ, with a coefficient 
of 0.84. Furthermore, CSR exhibits a positive correlation 
with  amax, with a coefficient of 0.90. The presented cor-
relations can help identify important relationships between 
distinctive features and can be utilized in predicting the 
values of certain variables based on others.

Table 1  Descriptive statistics 
for variables related to soil 
liquefaction

z N
1,60 F dw � �′ at CSR vs �0 Mw amax

Count 620 620 620 620 620 620 620 620 620 620 620 620
Mean 7.66 14.48 62.99 1.45 144.60 82.48 0.07 0.37 166.98 31.96 7.49 0.38
Std 4.90 11.39 34.28 1.20 98.20 52.84 0.07 0.15 67.09 4.85 0.10 0.15
Min 0.80 1.00 1.00 0.35 12.10 7.50 0.00 0.12 37 23.46 7.40 0.18
25% 3.80 7.00 29.00 0.71 67.90 41.60 0.04 0.25 130 28.40 7.40 0.38
50% 6.70 11.00 74.50 1.10 121.60 68.15 0.06 0.39 155 31.41 7.40 0.40
75% 10.20 18.00 96.00 1.78 202.45 113.93 0.08 0.45 200 34.70 7.60 0.40
Max 19.80 75.00 100.00 10.00 408.90 233.70 0.85 0.77 500 52.08 7.60 0.67

Table 2  Correlation matrix of 
input and output parameters

z N
1,60 F dw � �′ at CSR vs �0 amax Mw Liq

z 1.00 0.39 – 0.25 0.07 1.00 0.97 – 0.24 – 0.11 0.58 0.54 0.51 – 0.08 – 0.26
N
1,60 0.39 1.00 – 0.55 0.10 0.41 0.42 0.01 0.16 0.40 0.84 0.14 0.19 – 0.25

F -0.25 -0.55 1.00 – 0.15 – 0.26 – 0.29 – 0.10 – 0.07 – 0.31 – 0.52 – 0.27 – 0.16 – 0.09
dw 0.07 0.10 – 0.15 1.00 0.06 0.21 0.11 – 0.26 0.14 0.11 0.17 0.00 – 0.13
� 1.00 0.41 -0.26 0.06 1.00 0.98 – 0.23 – 0.08 0.60 0.55 0.52 – 0.04 – 0.26
�′ 0.97 0.42 – 0.29 0.21 0.98 1.00 – 0.20 – 0.09 0.61 0.57 0.55 0.00 – 0.25
at – 0.24 0.01 – 0.10 0.11 – 0.23 -0.20 1.00 – 0.07 0.43 – 0.03 – 0.01 0.09 – 0.08
CSR – 0.11 0.16 – 0.07 – 0.26 – 0.08 – 0.09 – 0.07 1.00 – 0.03 0.09 – 0.20 0.90 0.27
vs 0.58 0.40 – 0.31 0.14 0.60 0.61 0.43 – 0.03 1.00 0.48 0.35 0.05 – 0.18
�0 0.54 0.84 – 0.52 0.11 0.55 0.57 – 0.03 0.09 0.48 1.00 0.27 0.13 – 0.33
Mw 0.51 0.14 – 0.27 0.17 0.52 0.55 – 0.01 – 0.20 0.35 0.27 1.00 – 0.11 – 0.12
amax – 0.08 0.19 – 0.16 0.00 – 0.04 0.00 0.09 0.90 0.05 0.13 – 0.11 1.00 0.20
Liq – 0.26 – 0.25 – 0.09 -0.13 – 0.26 – 0.25 – 0.08 0.27 – 0.18 – 0.33 – 0.12 0.20 1.00
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Background of ensemble learning methods

The basic working mechanism of ensemble learning meth-
ods (ELM) is based on multiple learning models rather than 
the individual learning model in ML. ELM combines pre-
dictive values obtained with multiple learners to produce 
a single predictive value. In this way, ELM reduces vari-
ance and bias in estimation results compared to individual 
ML, which are mostly divided into boosting, bagging, and 
stacking (Mienye and Sun 2022). Boosting methods use data 
from the wrong test results of the learning model as input in 
the next stage until a successful prediction is obtained. The 
stages continue until a certain stopping condition is satis-
fied. However, methods that prefer the bagging approach 
obtain predictions with the learning model by taking differ-
ent subsets from the training set. These estimation results are 
aggregated as a result of a single estimation by taking max 
voting or average (Dietterich 2000). The final predictions 
are obtained through a meta-model using different learn-
ing models’ predictions in stacking. Under the heading of 
boosting, bagging, and stacking, many different methods 
have been developed so far, and their applications in vari-
ous fields, such as landslide assessment, predicting water 
quality, have been compared and discussed (Dou et al. 2020; 
Almadani and Kheimi 2023). In this part of the study, the 
methods of XGBoost, AdaBoost, EXT, Bagging, Light-
GBM, and RF, which achieved satisfactory results in the 
application phase for the estimation of soil liquefaction clas-
sification, are explained.

Extreme gradient boosting

XGBoost is an improvised version of the gradient boosting 
algorithm, and the working procedure for both is the same. 
Its implementation of parallel processing at the node level 
makes it more powerful and faster than the gradient boost-
ing algorithm (Walia 2021). XGBoost is used for supervised 
learning problems that try to predict the  yi variable from a 
 xi multi-feature training set. The objective function consists 
of two parts, the training loss L(θ) and the regulation term 
Ω(θ) (Eq. 1):

L(�) represents how predictive the model is based on the 
training data. Several types of loss functions can be used. 
The regulation term Ω(�) controls the complexity of the 
model. It helps to make predictions with high accuracy by 
simplifying the model. In this way, it ensures that the model 
avoids overfitting. The trade-off between the training loss 
L(�) Moreover, the regulation term Ω(�) is also called the 
bias-variance trade-off in ML (Chen and Guestrin 2016). In 

(1)obj(�) = L(�) + Ω(�).

the study, the hyperparameters of XGBoost, including the 
step size shrinkage (eta), minimum loss reduction (gamma), 
maximum depth of a tree (max_depth), minimum sum of 
instance weight (min_child_weight), maximum delta step 
(max_delta_step), subsample ratio (subsample), and the 
number of runs XGBoost will try to learn (n_estimators), 
were identified as the parameters to be optimized. Some 
recent studies have emphasized that the various parameters 
of the XGBoost algorithm give superior results when opti-
mized and adjusted for different problems (Abdu-Aljabar 
and Awad 2022; Janizadeh et al. 2022).

Adaptive boosting

AdaBoost’s main difference from other ELM is that it adap-
tively adjusts the errors of weak hypotheses returned by 
weak learners (WeakLearn) (Freund and Schapire 1997). 
WeakLearn predictions are combined using a weighted 
majority vote (or sum) to produce the final prediction. 
In each successful iteration, the weights (w1, w2, …, wN) 
assigned to the training samples are modified, and the learn-
ing algorithm is applied again. The weights of the incor-
rectly predicted training samples in the previous step are 
increased in the boosted model. Thus, WeakLearn is forced 
to guess correctly the wrongly guessed examples (Pedregosa 
et al. 2011). According to research by Rajasekar et al. (2022) 
and Amini et al. (2023), AdaBoost has shown promising 
performance in predicting problems compared to other algo-
rithms, particularly when hyperparameterized.

Extra‑trees algorithm

EXT is named after Extremely Randomized Trees. It is an 
ELM based on DTs. It acts randomly like RF while making 
certain decisions. It is similar to RF in creating multiple 
trees and splitting nodes using random subsets of features. 
However, it does not bootstrap the observations. It also ran-
domly splits the nodes instead of the best ones (Geurts et al. 
2006). This method applies a meta-estimator that fits a set 
of random DTs (a.k.a. EXT) to various sub-samples of the 
dataset. It uses averaging to improve prediction accuracy and 
overfitting (Pedregosa et al. 2011). Few studies emphasize 
that if the EXT algorithm is hyperparameterized in differ-
ent application areas, it can greatly affect the results. One 
of these studies, Cuocolo et al. (2020), emphasized that the 
hyperparametric EXT classifier can achieve good results in 
predicting the surgical consistency of pituitary adenoma. 
In this study, max_depth, the number of trees in the forest 
(n_estimators), the minimum number of samples required to 
split (min_samples_split), the minimum number of samples 
required to be at a leaf node (min_samples_leaf), whether 
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bootstrap samples are used when building trees (bootstrap), 
and the function to measure the quality of a split (criterion) 
parameters are tuned.

Bagging classifier

Bagging methods work well with powerful and complex 
models, such as advanced DTs, compared to boosting meth-
ods. Bagging methods use the randomness of an ensemble 
to reduce the variance of the weak estimator. It is a class of 
ensemble algorithms that obtain individual predictions from 
random subsets of the original training set via a black-box 
estimator and aggregate them to form the final prediction. 
It performs this aggregation using voting or averaging and 
generates the final prediction. This algorithm also includes 
several studies in the literature known as Pasting, Random 
Subspaces, and Random Patches (Pedregosa et al. 2011). 
Few studies in the literature use the bagging classifier for 
hyperparameterization. Sari and Maki (2023) emphasized 
that they obtained superior results using the face mask 
detection dataset over the Kaggle face mask detection on 
Kaggle by optimizing the bagging classifier using a hybrid 
bat algorithm. In this study, the Bagging method’s hyperpa-
rameters were optimized, which involved tuning the param-
eters such as the number of samples to draw (max_samples), 
the number of base estimators in the ensemble (n_estima-
tors), whether samples are drawn with replacement (boot-
strap), and whether features are drawn with replacement 
(bootstrap_features).

Light gradient boosting

Many boosting tools use pre-sort-based algorithms for DT 
learning, while LightGBM uses histogram-based algorithms. 
The main advantages of using histogram-based algorithms 
are that it reduces the amount of memory usage in calcu-
lation processes and shortens the training time (Ke et al. 
2017). This situation increases the usefulness of the Light-
GBM technique, especially in problems where the number of 
features is high, and the data volume is high. The LightGBM 
method uses gradient-based one-sided sampling (GOSS) and 
exclusive feature bundle (EFB) approaches to overcome the 
performance degradation of other methods in problems with 
many features and large data sizes. With GOSS, most data 
samples with small gradients are not used, focusing on a 
specific part of the dataset. With EFB, mutually exclusive 
features are bundled to reduce the number of features (Ke 
et al. 2017). These two techniques significantly reduce the 
solution time and processor requirements. Numerous studies 
emphasize that satisfactory results are obtained when the 
LightGBM method is hyperparametrized for different prob-
lems (Dhar 2022; Pei et al. 2022). In this study, the hyperpa-
rameters of the LightGBM method, including learning_rate, 

the complexity of the tree model (num_leaves), max_depth, 
minimum number of data points needed in a child node 
(min_child_samples), subsample, and column sample by 
tree (colsample_bytree), were optimized.

Random forest

In RF, each tree in the ensemble is generated from a boot-
strap sample taken with replacement from the training set. 
Additionally, when each node is constructed during the tree, 
the best split is determined from all the input features or a 
random subset of the features. Similarly, to other classifi-
ers, the RF classifier utilizes two types of dataset that store 
the attributes and target values of the training samples. It 
uses randomness in generating classifiers, and the ensemble 
is estimated by combining the average predictions of the 
individual classifiers. The primary purpose of incorporat-
ing randomness is to mitigate the variance within the for-
est estimator. However, this effort to reduce variance might 
slightly increase bias (Pedregosa et al. 2011). It has been 
emphasized that using the RF method and population-based 
algorithms such as the GA and Harris Hawks optimization 
algorithm can obtain satisfactory results in various estima-
tion problems if its parameters are tuned (Daviran et al. 
2023; Ge et al. 2023). In this study, the hyperparameters of 
the RF algorithm, including max_depth, min_samples_split, 
min_samples_leaf, bootstrap, and criterion, were optimized.

Performance evaluation criteria for ensemble 
learning methods

Performance evaluation is a crucial step in developing and 
deploying machine learning models and algorithms. It 
allows us to assess the effectiveness and reliability of our 
models, determine their strengths and weaknesses, and make 
informed decisions about their performance in real world 
scenarios. Performance evaluation quantitatively measures 
how well a machine learning model or algorithm performs 
on a given task or dataset. Various performance metrics are 
available to evaluate a model’s performance, and the choice 
depends on the nature of the task and the type of model. 
Common metrics include accuracy, representing the ratio of 
correct predictions to the total; precision, measuring the pro-
portion of true positives among positive predictions; recall, 
indicating the ratio of true positives to all actual positives; 
and F1 score, a harmonic mean of precision and recall for 
balanced assessment. It is crucial to select the appropriate 
metric based on the task at hand and interpret the results 
contextually for an effective model assessment (Gong et al. 
2023).

In our study, we evaluate the performance of the classi-
fication models mentioned using commonly accepted met-
rics, namely accuracy, which is a very basic and intuitive 
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performance measure. During binary classification, some 
samples may be misclassified into the opposite class. The 
accuracy score indicates how well the model classifies both 
positive and negative samples. Accuracy is calculated as 
the proportion of true predictions, both true positives (TP) 
and true negatives (TN), from the total number of samples, 
which are given below:

where TP are correctly predicted positive samples, TN are 
correctly predicted negative samples, FP are negative sam-
ples incorrectly predicted as positive, and FN are positive 
samples predicted as negative. High accuracy indicates 
that the model is effective in classifying samples into the 
right classes overall. However, precision and recall provide 
more detailed information on how well it identifies positive 
classes. We use these standard evaluations to evaluate the 
different models developed for our binary classification task 
and identify the most suitable approach.

Hyperparameter optimization 
and traditional methods

The performance of ML algorithms in terms of variance 
can vary depending on the parameters used. Although some 
parameters are determined internally by the algorithm dur-
ing the training process, others are set by the user (Agrawal 
2021). This multiplicity of parameters poses an optimization 
problem known as hyperparameter optimization, which is 
separate from the core problem being solved. Hyperparam-
eter optimization is a challenging task that requires users to 
explore different parameter values through trial and error. 
To address this, various methods have been developed. Two 
commonly used methods in the field are GS and RS, which 
are considered traditional methods (Lim 2022). GS involves 
systematically evaluating all combinations of parameter val-
ues, which can be time-consuming and resource-intensive. 
On the other hand, RS reduces solution time and resource 
consumption by randomly sampling parameter values. How-
ever, this randomness can sometimes lead RS to deviate 
from the optimal solution compared to GS.

Genetic algorithm

GA is a widely used AI technique to deliver satisfactory 
results in a short time frame. It was initially developed by 
Holland in 1975 (Holland 1992) and is based on the princi-
ples of Darwin’s theory of evolution. The algorithm follows 
a solution generation and evaluation mechanism to improve 
results by favoring well-performing individuals. GA incor-
porates crossover and mutation operators to create new 

(2)Accuracy =
TP + TN

TP + TN + FP + FN
,

individuals. The process continues iteratively until a specific 
stopping condition is met. Through the use of these opera-
tors, poor-performing individuals in the initial population 
and among the newly generated individuals can be identified 
and, if necessary, removed or improved upon, contributing 
to the refinement of the population. GA has demonstrated 
success in numerous domains, including energy, health, 
industry, and earth science, and has been applied to a wide 
range of problem types, such as estimation, optimization, 
and classification (Jalal et al. 2021; De and Kundu 2022; 
Sharma et al. 2022; Kummer et al. 2023).

Given the complexity and multidimensionality of the 
optimization problem at hand, GAs were selected as the 
primary optimization method due to their qualities, such as 
versatility, effectiveness, and efficiency. GAs have inherent 
robustness to noise and outliers in the data, ensuring stable 
performance even under challenging conditions. Moreover, 
their parallelizability allows for significant acceleration of 
the optimization process, particularly for large-scale prob-
lems or computationally expensive fitness functions. Addi-
tionally, GAs can seamlessly handle a mix of categorical, 
continuous, and integer parameters, making them well suited 
for optimizing machine learning (ML) models with diverse 
parameter types. The combination of robustness, paralleliz-
ability, and the ability to handle various parameter types 
makes GAs an ideal choice for optimizing ML models in 
the context of this study.

Results

In this study, an Intel(R) Core(TM) i7-5600U CPU @ 
2.60 GHz and a suite of Python libraries, encompassing 
numpy for efficient mathematical computations, pandas 
for seamless data manipulation, matplotlib and seaborn for 
informative data visualization, sklearn for comprehensive 
ML tasks, xgboost and lightgbm for boosting algorithms, 
and sklearn_genetic and hyperopt for hyperparameter opti-
mization, were employed to augment soil liquefaction pre-
diction in geotechnical engineering. The overall study work-
flow is depicted in Fig. 1.

Data preprocessing and model training strategy

The dataset utilized in this study was robustly scaled using 
the robust scaling technique. This scaling approach is highly 
suitable for datasets characterized by outliers or a non-nor-
mal distribution. By employing the Robust Scaler, the data 
were transformed by subtracting the median and dividing it 
by the interquartile range, effectively capturing the data’s 
spread. Furthermore, to manage categorical data, the  Mw 
and  amax features re-encoded using one-hot encoding, which 
allows for the representation of categorical information in a 
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format that machine learning algorithms can readily inter-
pret. The algorithms can capture the inherent patterns and 
relationships associated with each category by converting 
the categorical variables into binary columns, enabling more 
comprehensive analysis and prediction.

To ensure the reliability and generalizability of the mod-
els, the dataset was divided into a training set, comprising 
70% of the samples, and a test set, which constituted the 
remaining 30%. To avoid potential biases and objectively 
assess the models’ performance, a tenfold cross-validation 
was conducted on the training set. The StratifiedKFold tech-
nique was used to select the validation sets, ensuring that 
the class distribution remained balanced throughout the 
cross-validation process. This rigorous evaluation meth-
odology helps assess effectiveness and mitigate the risk of 
overfitting. In addition, the models’ hyperparameters were 
fine-tuned to optimize their performance. To achieve high 
success in cross-validation results, searching in the hyper-
parameter space is a recommended and possible process. 
It is common for searching on a small subset of its param-
eters to have a large impact on the model’s predictive and 
computational performance, while other parameters can be 
left at their default values (Pedregosa et al. 2011). In this 
study, a comparable strategy was employed, aligning with 
similar approaches found in the literature that have demon-
strated successful outcomes (Abdu-Aljabar and Awad 2022; 
Amini et al. 2023; Cuocolo et al. 2020; Dhar 2022; Ge et al. 
2023; Janizadeh et al. 2022; Sari and Maki 2023). These 
studies utilized parameters and parameters ranges similar to 
those outlined in Table 3. A range of values, as presented in 

Table 3, were explored and adjusted to identify the optimal 
configuration for each algorithm. By carefully tuning these 
hyperparameters, the predictive capabilities were enhanced, 
improving accuracy and reliability in predicting soil lique-
faction potential.

Hyperparameter optimization using GA

To investigate the classification of soil types, a grain size 
partitioning technique was used to analyze the soil sam-
ples. This process revealed two discernible categories of 
soil: fine-grained and coarse-grained soils. A comprehen-
sive understanding of the different soil types was achieved 
by identifying and segregating the samples based on their 
grain size, facilitating a subsequent classification analysis. 
To assess the performance of the learning models, three 
distinct datasets were constructed, namely, as mentioned 
earlier, datasets A, B, and C, were constructed. Each data-
set corresponded to a specific soil type, and the learning 
models were independently evaluated using these datasets. 
This approach allowed for meticulous examination of the 
effectiveness in accurately classifying the respective soil 
types. Therefore, a comprehensive and robust analysis was 
performed, allowing for a more nuanced understanding of 
the classification capabilities of the models.

In addition, this study used GAs as a hyperparameter opti-
mization technique for ML algorithms. GA employs a popu-
lation size parameter which determines the number of chro-
mosomes within the population utilized in the algorithm. 
The population size plays a crucial role in the efficiency and 

Fig. 1  General flow diagram of the study
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efficacy of the GA. A larger population size has the potential 
to enhance diversity within the population, increasing the 
chances of discovering the optimal global solution. How-
ever, this advantage comes at the expense of longer run times 
for each generation. Conversely, a smaller population size 
can lead to faster convergence but also increases the risk of 
premature convergence, where the algorithm may become 
trapped in a local optimum and fail to reach the global opti-
mal solution. Choosing the most appropriate population 
size is thus crucial for the success of the GA and is often 
determined through experimentation and testing. This study 
evaluated the performance of ML algorithms using GA with 
different population sizes. The GA was implemented with 
different configurations. The population size varied between 
10, 15, 20, and 30 individuals, while the number of genera-
tions was set to 100. A cross-over probability of 0.6 and a 
mutation probability of 0.2 were utilized. The tournament 
size for selection was set to 4, and the algorithm used for 
optimization was eaMuPlusLambda, that implements the 
( � + � ) evolutionary algorithm, utilizing a provided popula-
tion, toolbox of evolution operators, and various parameters 
to iteratively generate offspring, evaluate their fitness, and 
select the next generation for a specified number of gen-
erations, returning the final population and a logbook of 
evolution statistics. The GA was executed 20 times with a 
different random seed to mitigate the influence of random-
ness. The results of the experiment are presented in Fig. 2, 
which shows a comparison of the GA performance for vary-
ing population sizes. Based on the provided data, the highest 
average accuracy is achieved by Dataset B, while the lowest 
average accuracy is observed in Dataset C. Changes in popu-
lation size do not appear to significantly affect the overall 
performance across datasets.

Table 3  Hyperparameters for different ML models

Algorithm Hyperparameters Range/values

XGBoost eta Continuous (0.01,0.999)
gamma Continuous (0.01,0.999)
max_depth Integer (2, 20)
min_child_weight Continuous (0.01,0.999)
max_delta_step Continuous (0.01,0.999)
subsample Continuous (0.01,1)
n_estimators Integer (5, 300)

AdaBoost n_estimators Integer (5, 300)
learning_rate Continuous (0.01,0.999)

EXT max_depth Integer (2, 20)
n_estimators Integer (5, 300)
min_samples_split Integer (2, X_train.shape[0] + 1)
min_samples_leaf Integer (2, X_train.shape[0] + 1)
bootstrap Categorical ([True, False])
criterion Categorical (["gini", "entropy"])

Bagging max_samples Integer (10, 50)
n_estimators Integer (10, 300)
bootstrap Categorical ([True, False])
bootstrap_features Categorical([True, False])

LightGBM learning_rate Continuous (0.01,0.999)
num_leaves Integer (2, 50)
max_depth Integer (2, 20)
min_child_samples Integer (2, 50)
subsample Continuous (0.01,0.999)
colsample_bytree Continuous (0.01,0.999)

RF max_depth Integer (2, 20)
min_samples_split Integer (2, X_train.shape[0] + 1)
min_samples_leaf Integer (2, X_train.shape[0] + 1)
bootstrap Categorical ([True, False])
criterion Categorical ([“gini”, “entropy”])

Fig. 2  Comparison of GA performance across different population sizes (Dataset A, B, and C, respectively)
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After tuning the population size and other parameters 
of the GA, we applied ensemble learning algorithms, such 
as bagging and boosting, to further enhance the learning 
performance. However, to achieve optimal results with 
these algorithms, it is crucial to fine-tune their hyper-
parameters through experimental studies. To accomplish 
this, we leveraged the power of GA for hyperparameter 
optimization. The objective was to obtain the optimal set 
of hyperparameters for the ML algorithm, ensuring the 
best possible performance. This approach offers several 
benefits, including automating the hyperparameter tun-
ing process and effectively handling non-linear and non-
convex optimization problems with numerous hyperpa-
rameters. Using GA for hyperparameter optimization, our 
objective was to streamline and optimize the ensemble 
learning process, improving the overall performance of 
ML algorithms.

Tables 4 and 5 comprehensively evaluate the performance 
of ML accuracy and CPU times for different population sizes 
on three datasets. The values highlighted in bold indicate the 
highest performance metrics in each category: train accu-
racy, test accuracy, and CPU times, thereby aiding in the 
identification of the most effective ML algorithm per metric. 
Our experimental study showed that Dataset B achieved the 
highest performance, with a test accuracy of 0.9231 and a 
training accuracy of 0.9230. Dataset A exhibited a train-
ing accuracy of 0.8821 and a test accuracy of 0.8402, while 
Dataset C had a training accuracy of 0.8782 and a test accu-
racy of 0.8667.

Tables 4, 5 and Fig. 3 compare the performance of multi-
ple ML algorithms. LightGBM consistently emerges as the 
leading algorithm in accuracy across all three datasets. It 

Table 4  Comparison of ML 
accuracy performance for 
different population sizes 
(Dataset A, B, C)

Train accuracy 
Population size

Test accuracy 
Population size

Dataset Algorithm 10 15 20 30 10 15 20 30

A XGBoost 0.8529 0.8556 0.8577 0.8586 0.8287 0.8402 0.8369 0.8369
AdaBoost 0.8015 0.8057 0.8042 0.8094 0.7934 0.7959 0.7934 0.8033
EXT 0.7523 0.7664 0.7581 0.7680 0.7336 0.7533 0.7369 0.7475
Bagging 0.8129 0.8174 0.8181 0.8190 0.7967 0.8074 0.8123 0.8139
LightGBM 0.8717 0.8744 0.8769 0.8821 0.8230 0.8279 0.8377 0.8254
RF 0.8065 0.8012 0.8157 0.8010 0.7730 0.7451 0.7811 0.7541

B XGBoost 0.9116 0.9177 0.9163 0.9184 0.8908 0.8938 0.8892 0.8877
AdaBoost 0.9174 0.9176 0.9182 0.9202 0.8785 0.8862 0.8785 0.8738
EXT 0.8393 0.8674 0.8821 0.8749 0.8123 0.8569 0.8692 0.8600
Bagging 0.8996 0.9010 0.9010 0.8996 0.8723 0.8585 0.8446 0.8538
LightGBM 0.9157 0.9177 0.9225 0.9230 0.9154 0.9200 0.9231 0.9200
RF 0.8689 0.8639 0.8779 0.8813 0.8738 0.8646 0.9000 0.8923

C XGBoost 0.8685 0.8706 0.8740 0.8731 0.8591 0.8640 0.8522 0.8581
AdaBoost 0.8376 0.8388 0.8398 0.8424 0.8242 0.8231 0.8161 0.8253
EXT 0.7811 0.7947 0.8188 0.8173 0.7731 0.7941 0.8048 0.8086
Bagging 0.8355 0.8362 0.8372 0.8379 0.7887 0.8011 0.7909 0.7973
LightGBM 0.8742 0.8752 0.8782 0.8747 0.8624 0.8667 0.8645 0.8602
RF 0.8305 0.8337 0.8395 0.8438 0.7731 0.7753 0.7898 0.7866

Table 5  CPU times (seconds) for different classification algorithms 
on three datasets

Dataset Algorithm CPU times (s)

Population size

10 15 20 30

A XGBoost 286 534 742 926
AdaBoost 736 1555 1763 2502
EXT 681 1023 1274 1984
Bagging 1143 1590 2396 3346
LightGBM 124 184 243 365
RF 465 688 983 1373

B XGBoost 174 288 382 434
AdaBoost 729 1326 1251 2413
EXT 636 1114 1265 1905
Bagging 889 1173 1636 2253
LightGBM 75 116 154 223
RF 429 645 866 1285

C XGBoost 444 537 1017 1352
AdaBoost 1057 1543 1621 3323
EXT 530 971 1199 1769
Bagging 1152 1976 1952 3604
LightGBM 104 174 210 329
RF 492 764 996 1557



Environmental Earth Sciences (2024) 83:289 Page 11 of 18 289

presents robust performance, particularly in predicting soil 
liquefaction potential, which is critically important in geo-
technical engineering. AdaBoost and XGBoost also dem-
onstrate strong accuracy results, making them viable alter-
natives. However, it is essential to consider computational 
efficiency, as some algorithms may have a longer CPU. As 
can be observed, training time generally increases with the 
population size of the dataset. Among the algorithms, Bag-
ging consistently exhibits the highest training time, while 
LightGBM has the lowest training time across all datasets.

Comparison of genetic algorithm performances 
with other search algorithms

In the subsequent phase of our study, we compared the per-
formance of the GA with other traditional search algorithms 
such as GS and RS. Details of the experimental setup and 
hyperparameters used for each algorithm are provided in the 
methodology section. The results showed that GA outper-
formed the other search algorithms mainly in terms of the 
mean and standard deviation of the results. It is important to 
note that the best results were obtained in dataset B. Figure 4 
compares the performance of different search algorithms 

with respect to their ability to optimize hyperparameters for 
ML models. Regarding the standard deviation of the test 
precision, GS generally has the lowest standard deviation 
across the three datasets, indicating that its performance is 
more consistent compared to GA and RS. GA has a slightly 
higher standard deviation in Dataset A but performs better in 
Datasets B and C. RS has the highest standard deviation on 
Dataset B, suggesting that its performance is more variable 
on this particular dataset.

Fig. 3  Comparison of ML 
algorithms test accuracy perfor-
mances across different models

Fig. 4  Test accuracy perfor-
mance comparisons of search 
algorithms (Dataset A, B, and 
C, respectively)

Table 6  Performance comparison of search algorithms

Dataset Algorithm Avg. test Avg. train Avg. CPU (s)

A GS 0.8230 0.8211 8.330
RS 0.8320 0.8208 0.650
GA 0.8230 0.8717 124.229

B GS 0.8892 0.8898 8.076
RS 0.8908 0.8805 0.627
GA 0.9154 0.9157 74.854

C GS 0.8349 0.8371 10.805
RS 0.8446 0.8411 0.655
GA 0.8624 0.8742 104.249
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Figure 4 and Table 6 compare performance metrics for 
three search algorithms: GA, GS, and RS. The metrics 
evaluated include the average test accuracy, the average 
train accuracy, standard deviation of the test accuracy, the 
standard deviation of the train accuracy, and average CPU 
time. Based on the comparison, the GA algorithm achieves 
the highest average test and train accuracy, indicating its 
effectiveness in optimizing the model performance. Further-
more, the GA algorithm exhibits lower standard deviations, 
indicating more consistent performance across different tri-
als. However, the GS and RS algorithms also show prom-
ising performance, although with slightly lower accuracy 
and varying standard deviations. Regarding computational 
efficiency, RS consistently achieves the lowest average CPU 
time across all datasets, suggesting its advantage in faster 
execution.

Discussion

This study evaluated the effectiveness of a GA approach for 
hyperparameter tuning of ML algorithms and compared it 
with traditional methods such as GS and RS. The study was 
divided into two parts. In the first part, the performance of 
six different ML algorithms was compared, with LightGBM 
showing the best performance. In the second part, the GA 
approach was evaluated, and it outperformed both GS and 
RS in terms of the average test and training accuracy. These 
findings suggest that GA is a promising method for hyper-
parameter tuning of ML algorithms. Overall, the study high-
lights the importance of selecting the appropriate population 
size for ML algorithms to achieve optimal performance and 
could be expanded further to evaluate the performance of 
GA on a larger set of ML algorithms and datasets.

While the GA may perform better in optimizing hyperpa-
rameters, it is important to consider that it can be computa-
tionally expensive and time-consuming, especially for large 
datasets. This aspect can be seen as a disadvantage when 
dealing with large datasets. Due to the nature of GA, which 
involves evaluating multiple individuals within a population 
over multiple generations, the computational cost increases 
as the dataset size grows. The time required to search the 
hyperparameter space and converge to the optimal solution 
can become a limiting factor, particularly when dealing with 
large datasets. In scenarios where computational efficiency 
is a priority, the time-consuming nature of GA may present 
a drawback. In such cases, alternative approaches that offer 
faster hyperparameter optimization methods, such as GS or 
RS, might be more suitable.

The choice of the hyperparameter optimization method 
should consider the trade-off between performance gains and 
computational time, considering the specific characteristics 
of the dataset and the available computational resources.

In addition to the findings related to hyperparameter opti-
mization, the study also made significant contributions to 
soil mechanics and geotechnical engineering. Specifically, 
the study explored the use of ML algorithms to predict soil 
liquefaction potential based on particle size. Soil liquefac-
tion is a phenomenon that occurs when saturated soil loses 
its strength and stiffness during an earthquake, leading to the 
inability of the soil to support structures such as buildings 
and bridges. Accurate prediction of soil liquefaction poten-
tial is critical to assess the safety and stability of structures 
in earthquake-prone regions.

As explained in the “Dataset Description” section of 
this study, the main dataset used in the study includes his-
torical liquefaction cases on fine- and coarse-grained soils 
exposed to the 1999 Turkey and Taiwan earthquakes. When 
the data on the soil layers whose liquefaction status is given 
are examined, it is seen that all of them are data that affect 
the liquefaction sensitivity of coarse-grained soils and are 
used to determine their liquefaction risk (Table 1). It is 
known that liquefaction does not occur in all layers of the 
soil. Therefore, it is important to examine whether there are 
the necessary conditions for liquefaction in hazard assess-
ments. The type of soil has a key place among these condi-
tions. For years, it has been thought that soil liquefaction 
is a behavior peculiar only to water-saturated loose sands 
and that fine-grained soils cannot produce an excessive pore 
water pressure that causes liquefaction. However, it has been 
determined by research that low plasticity silty soils can 
liquefy easily, such as sands, and plasticity properties have 
been revealed to be important in affecting the liquefaction 
sensitivity of fine-grained soils (Ishihara 1984, 1985, 1996). 
The parameters and approaches used in the evaluation of liq-
uefaction in fine- and coarse-grained soils are different from 
each other. When liquefaction in fine-grained soils, the deci-
sion is made mainly by examining the physical properties of 
the soil or based on laboratory test results. In the literature, 
there are many criteria based on the physical properties of 
the relevant soil to determine the liquefaction potential of 
fine-grained soils.

The physical properties of soils, particularly fine-
grained soils, are important factors that can affect the 
liquefaction behavior of soils. The missing parameters 
in the dataset, such as soil grain size distribution, plas-
ticity index, liquid limit and water content, can have a 
significant impact on the accuracy of the models. For 
example, Ghani et al. (2022) conducted a study in which 
physical properties such as  wn/LL and PI were used as 
an input parameter in addition to seismic properties to 
examine the liquefaction behavior of fine-grained soils 
under seismic conditions. They integrated artificial intel-
ligence to enhance accuracy and reduce uncertainties 
associated with traditional deterministic approaches. A 
hybrid method combining optimization algorithms and 
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the adaptive neuro-based fuzzy inference system (ANFIS) 
was introduced to determine the safety factor against 
earthquake-induced liquefaction. The ANFIS firefly 
hybrid model demonstrated high predictive capabilities, 
with  R2 values of 0.976 and 0.982 in the training and test-
ing phases, respectively. Moreover, it is important to con-
sider the broader context of soil properties, particularly 
in fine-grained soils, which significantly influence the 
behavior of liquefaction. Ozsagir et al. (2022) emphasized 
the importance of incorporating comprehensive datasets, 
including parameters such as grain size distribution, plas-
ticity index, and specific gravity, to enhance model accu-
racy. They achieved remarkable success in predicting soil 
liquefaction for fine-grained soils using machine learning 
models, with an accuracy of nearly 90%. Their findings 
highlighted the mean grain size  (D50) as a critical physi-
cal property that influences the performance of machine 
learning models.

Therefore, considering a range of physical properties 
in fine-grained soils is crucial to improving the predictive 
capabilities of models. On the other hand, in evaluating 
the liquefaction of sandy soil layers, the degree of firm-
ness of the ground and the stress state are considered. The 
simplified method proposed by Seed and Idriss (1971) is 
the most widely used approach. The authors conducted the 
study by dividing the dataset into three groups according 
to the type of soil, with the foresight that the parameters 
used as input data in estimating the state of liquefaction 
could lead to erroneous interpretations, since they are 
only used for coarse soils. However, the cases of fine- and 
coarse-grained soils are combined in the dataset. Dataset 
A represented fine-grained soils, while Dataset B repre-
sented the coarse-grained soils, and Dataset C included all 
620 soil cases. The ML algorithms applied in this study 
were evaluated on all three datasets. The best prediction 
performances were obtained with the LightGBM algo-
rithm for the three datasets. Based on the test sets, these 
were calculated as 0.9231 for coarse-grained soils, 0.8402 
for fine-grained soils, and 0.8667 for all soils.

As a result, the models used in the study could clas-
sify the soil liquefaction potential of fine-grained or 
coarse-grained soils with high accuracy. The best predic-
tions were obtained for coarse-grained soils, while the 
lowest prediction performance was obtained for fine-
grained soils. Taking into account the susceptibility to 
liquefaction of soils, the best prediction performance 
was obtained in coarse-grained soils, and the lowest pre-
diction performance in fine-grained soils supported the 
authors’ approach in this study to separate the main data-
set according to the soil type. With the effect of including 
parameters used in the assessment of sandy soils in the 

input layer of all models, the best estimation performance 
was achieved for the dataset representing coarse-grained 
soils. However, although none of the parameters given in 
this dataset are used in the calculations for the evaluation 
of fine-grained soils in the literature, they have provided 
a good prediction performance on fine-grained soils with 
ML methods. This evidence shows that the classification-
based prediction models applied and proposed in this 
study can be useful in evaluating a complex phenomenon 
such as liquefaction.

Limitations of the study

Although this study has achieved significant learning out-
comes, it is important to acknowledge certain limitations 
and challenges encountered during the research. Machine 
learning, in general, is limited by the availability and quality 
of data. Overfitting and underfitting are common challenges 
that can arise when training machine learning models. Over-
fitting happens when a model learns the specific details of 
the training data too well and starts to make predictions that 
are too closely tied to the training data, which can lead to 
poor performance on new, unseen data. On the other hand, 
this occurs when a model is too simple to capture the com-
plexity of the data, resulting in poor predictions.

In the context of geotechnical engineering, the data used 
for training machine learning models often come from 
complex and multidimensional datasets. This can make it 
challenging to develop models that can accurately depict 
the underlying relationships in the data. Additionally, geo-
technical problems often involve multiple interacting factors, 
which can make it difficult to identify the most important 
features for model training.

Genetic algorithm-optimized machine learning algo-
rithms can be computationally costly, especially for large 
datasets. Especially the large number of populations and 
increasing the number of individuals that will undergo 
mutation and crossover can significantly increase the 
solution time and the amount of resource usage. This is 
true not only for GA, but also for other soft computing 
techniques with a wide choice of parameters. Although 
having many options may seem to increase uncertainty, it 
also creates an opportunity to improve the quality of the 
solution. A second hyperparameter optimization process 
can be applied to find the most suitable parameters. Or, 
initial parameter values can be created with the param-
eter values of good results obtained by examining simi-
lar studies in the literature. This can limit the practical 
applicability of these algorithms, particularly for real-
time applications or for problems with a large number of 
input features.
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In addition, in hyperparameter-based studies, choos-
ing wide search ranges and choosing continuous variables 
instead of discrete and categorical variables has the chance 
to increase the solution quality, but may increase the calcula-
tion time and amount of resource usage.

Finally, machine learning models can suffer from gen-
eralization issues, meaning that they may not perform as 
well on new data that are different from the data used for 
training. This is a common challenge in machine learning, 
and it is important to carefully evaluate the performance of 
models on a variety of datasets to ensure that they are able 
to generalize well to new data.

In conclusion, while this study has demonstrated the 
potential of genetic algorithm-optimized machine learning 
for geotechnical engineering applications, it is important to 
be aware of the limitations and challenges associated with 
these methods. Future research should focus on addressing 
these limitations, such as developing more efficient algo-
rithms, improving the generalization of models, and explor-
ing new approaches to handling complex and multidimen-
sional geotechnical data.

Conclusions

In this study, we investigate hyperparameter optimization 
techniques for ML algorithms, focusing on their application 
to prediction of soil liquefaction. By applying our approach, 
we were able to accurately predict soil liquefaction potential, 
highlighting the importance of utilizing artificial intelligence 
to improve the accuracy and reliability of these predictions. 
Our findings indicate that LightGBM emerged as the most 
effective among the ML algorithms evaluated. This obser-
vation underscores the importance of using sophisticated 
algorithms to improve understanding and prediction of soil 
liquefaction. Accurate prediction of soil liquefaction is cru-
cial in preventing or mitigating the potential damage caused 
by this natural disaster. On the other hand, our study also 
draws attention to the effect of soil type on the performance 
results obtained in studies for the prediction of liquefaction.

In this study, it is emphasized that the input parameters 
to be selected based on the type of soil to estimate the liq-
uefaction potential in coarse and fine-grained soils have an 
effect on increasing performance in prediction studies. Since 
there is no input parameter for the susceptibility to liquefac-
tion of fine-grained soils in the dataset used in the study, the 
authors divided the dataset according to the type of soil and 
the best performance results were obtained with the dataset 
containing coarse-grained soils (Dataset B). This situation 
is explained by the fact that all input parameters in the data-
set are parameters used to determine the liquefaction sensi-
tivity of coarse-grained soils (especially sands). However, 
although there are no parameters to evaluate the liquefaction 

potential of fine-grained soils in the dataset, high precision 
was achieved in the prediction of fine-grained soil lique-
faction. This observation is another detail that reflects the 
success of the prediction performances of the methods used 
in this study.

Class redundancy in any dataset negatively affects the 
performance of prediction techniques. Poor performance in 
one class also reduces the success of the other class. By 
dividing the dataset into classes and applying the methods 
separately, the individual prediction performance is higher 
than when considering all classes as a whole. The main 
reason for this is that the parameters are determined spe-
cifically for each dataset class. In particular, machine learn-
ing algorithms based on learning have the opportunity to 
adjust the parameters with less complexity in the training 
processes by dividing the dataset into classes, allowing one 
to obtain high-accuracy results in a shorter time. As empha-
sized in this study, when machine learning algorithms are 
hyperparameterized using successful artificial intelligence 
techniques such as GA, the quality of the solution is posi-
tively affected.

Soil liquefaction is a critical geotechnical issue that 
poses significant risks, including physical damage and loss 
of life. Additionally, due to the heterogeneous character-
istics of soils and the participation of many factors that 
affect the occurrence of liquefaction due to an earthquake, 
the determination of the liquefaction potential is considered 
one of the most complex problems in geotechnical engi-
neering. This study contributes to the field by providing 
information on GA for hyperparameter optimization of ML 
algorithms, specifically in the prediction of soil liquefaction 
in geotechnical engineering. The successful application of 
the GA highlights its potential for broader applications in 
this domain.
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