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Abstract
Industrial and agricultural development, population increase, limitations in water resources renewability, lack of timely 
management of water resources, and the recent years' droughts have caused pressure on groundwater. One of the aquifers 
that have faced a sharp drop in water level in recent years is the Aspas aquifer in Fars province. In this study, the condition 
of the groundwater level (GWL) in this aquifer was analyzed using the data of the gravity recovery and climate experiment 
(GRACE) Satellite. In addition, pre-processing tools, such as complementary ensemble empirical mode and decomposition 
(CEEMD) and wavelet transform (WT), were utilized. The support vector regression (SVR) and artificial neural networks 
(ANN) models were used in two simple and hybrid ways with pre-processing tools. According to the results, combining the 
models with pre-processing tools has improved their efficiency. As a result, the coefficient of determination  (R2) has been 
improved from 0.927 in ANN to 0.938 in W-ANN and 0.998 in CEEMD-ANN. The  R2 has reached from 0.918 in the SVR 
to 0.949 in the W-SVR and 0.948 in the CEEMD-SVR. The comparison between the results of processing algorithms of 
GRACE satellite in the test phase determined that the GFZ processing algorithm shows the best performance. CEEMD-ANN 
performance was compared to GFZ algorithm. In addition, a new approach was utilized to forecast the GWL shifts. The 
results indicated that the new approach provides a suitable estimate of the groundwater in the shortest time with the lowest 
cost. Therefore, this approach can be used to predict the GWL in other aquifers.
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GFZ  Geo forschungs zentrum
JPL  Jet propulsion laboratory
CSR  Center for space research at the univer-

sity of Texas
R2  Coefficient of determination
RMSE  Root mean square error
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Introduction

A significant share of Iran's drinking water is supplied from 
groundwater sources. This issue has been one of the chal-
lenges raised in the past few years. Ground water level drop 
(GWL) in recent years has caused different researchers 
around the world to look for various solutions to estimate 
and predict the GWL to use these estimates to check the 
condition of groundwater more accurately. The necessity of 
using new up-to-date equipment and facilities is an inevi-
table issue with which humanity deals in many sciences. 
Satellite equipment is a part of these facilities. The GWL 
measurement satellites provide users with processing algo-
rithms according to the micro-scales they make. Using these 
algorithms, if having an acceptable accuracy, can have many 
advantages. For this purpose, it is necessary to be able to 
examine them with the values obtained from the observa-
tional data and, by correcting them, provide updated and 
accurate estimates for the current and future periods. In 
recent years, the use of outcomes from the Gravity Recov-
ery and Climate Experiment (GRACE) Satellite has been 
expanded to study the state of the GWL. In the following, 
we will refer to some of the studies conducted in the field 
of using the data of the GRACE Satellite to investigate the 
changes in the GWL.

Faraji et al. (2016) evaluated the gravimetric GRACE Sat-
ellite data in estimating GWL changes in Qazvin province. 
GLDAS land surface model and observational data of the 
regional wells were used to validate the data of the GRACE 
Satellite. The results demonstrated that the GRACE satellite, 
as a gravity-measuring satellite that was produced only to 
estimate water storage changes, provides users with a good 
estimate of the water storage changes as well as changes 
in the GWL. Behzadi Sheikh Robat (2017) investigated 
the changes in the GWL and mass caused by geodynamic 
effects using data from the GRACE satellite. In order to a 
better revelation of the changes in the gravity field, three 
Gaussian, Fan, and Destriping filters were used. Terrestrial 
data have high power and resolution compared to GRACE 
data for retrieving GWL changes, but the results obtained 
from GRACE Satellite data provide an acceptable map after 
applying the mentioned filters.

Frapart and Ramilin (2018) showed that the GRACE Sat-
ellite data is a suitable source of information for evaluating 

groundwater storage. Among other things, in this research, 
the main methods to monitor the changes in groundwater 
and the applications of the GRACE Satellite data for it were 
investigated. Soleimani et al. (2021) by the images obtained 
from the GRACE Satellite evaluated the fluctuations of the 
GWL in the Jiroft plain. They stated that the JPL algorithm 
was the most suitable model for monitoring the level of 
the Jiroft Plain. Liu et al. (2021) investigated groundwa-
ter level forecasting of a region in the northeastern United 
States using GRACE satellite data. They used support vec-
tor machines (SVMs), combined with the data assimilation 
(DA) technique. The results showed that the SVMs (SVM-
DA) models forced with limited climate variables, can fore-
cast the changes in groundwater levels up to 3-month lead 
times at most of the locations. Ghosh and Bera (2023) esti-
mated groundwater level and storage changes using innova-
tive trend analysis (ITA), GRACE data, and Google Earth 
Engine (GEE) in a region of India. The general results state 
a sharp decrease in the groundwater level and water storage. 
The main reasons for these worrisome challenges are the 
geological structure and excessive extraction of groundwater 
for drinking and irrigation uses.

There have been many studies on groundwater, in most of 
which intelligent models have been used to model the GWL, 
and among which, the support vector regression (SVR) 
model has had a good performance. In the following, some 
groundwater studies with this model will be mentioned. Sat-
tari et al. (2017) used the SVR and M5 tree models to predict 
the GWL in the Ardabil Plain. The results showed that the 
performance of the models is good. Mirarabi et al. (2019) 
were used the SVR and the artificial neural network (ANN) 
models for the GWL prediction. They stated that SVR out-
performs ANN. Aderemi et al. (2023) used machine learn-
ing models such as regressions models, deep auto-regressive 
models, and nonlinear autoregressive neural networks with 
external input (NARX) to forecast groundwater levels using 
the groundwater region 10 at Karst belt in South Africa. 
The results showed that NARX and Support Vector Machine 
(SVM) have better performance than other models used.

In the past years, pre-processing tools like wavelet trans-
form (WT) and empirical mode decomposition (EMD) 
have been noticed, and their combination with different 
models created hybrid models. In the following, we refer to 
some of the studies that have been conducted in the field of 
using these tools to investigate the changes in the level of 
groundwater.

Adamowski and Chan (2011) to forecast the GWL in 
Quebec, Canada assessed the performance of the wavelet-
artificial neural network (W-ANN), ANN, and autoregres-
sive integrated moving average (ARIMA) models. The 
results showed the high ability of the W-ANN model 
in GWL prediction. The wavelet-adaptive neuro-fuzzy 
inference system (W-ANFIS) and W-ANN models by 
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Moosavi et al. (2014) optimized to predict the GWL in 
Mashhad, Iran. The results showed that W-ANFIS model 
works better than W-ANN model. Suryanarayana et al. 
(2014) compared a hybrid wavelet-support vector regres-
sion (W-SVR) with ANN, SVR, and ARIMA models to 
predict monthly GWL fluctuations in Vishakapatnam, 
India. They stated that the best performance belongs to 
the W-SVR model. Bahmani and Quarta (2020) presented 
GWL modeling by combining it with artificial intelli-
gence (AI) techniques. For this study, the gene expres-
sion programming (GEP) and M5 models were combined 
with the WT and complementary ensemble empirical 
mode decomposition (CEEMD) techniques. The results 
showed that the model combined with GEP has a better 
performance. Bahmani et al. (2020) simulated the GWL 
with the GEP and the M5 tree model and their combi-
nation with WT (wavelet-gene expression programming 
(W-GEP) and wavelet-M5 (W-M5)). The results showed 
that the performance of the 2 hybrid models was similar 
and the hybrid models had better performance than the 
GEP and M5 models alone. Wu et al. (2021) were used to 
simulate groundwater levels, the long short-term memory 
(LSTM), and the combination of the wavelet transform 
(WT) with it (WT-LSTM) and combined WT-multivariate 
LSTM (WT-MLSTM). The results showed that the WT-
MLSTM model was better than the LSTM, WT-LSTM, 
and MLSTM models. Shahbazi et al. (2023) utilized the 
W-ANN, W-SVR, CEEMD-ANN, and CEEMD-SVR 
models for modeling the GWL. The results of the mod-
els indicated that the ANN model outperformed the SVR 
model and showed that hybrid models performed best.

A review of references indicates that the use of intel-
ligent models is increasing. In addition, the use of the 
GRACE Satellite, because data of the mentioned satellite 
is up to date, it can be an acceptable service for modeling 
and predicting GWL in different aquifers. Therefore, in 
this research, different methods are compared based on 
the observed values of GWL, and the best method is pre-
sented for similar tasks. The sharp drop in the GWL of the 
Aspas aquifer in the Tashk-Bakhtegan and Maharlu basins 
in the past years made it necessary to investigate the con-
dition of the water level of this aquifer in this research. 
Also, by using satellite data and hybrid models, the water 
level of this aquifer will be checked in periods without 
statistics and in future periods, so that with sufficient 
and appropriate information, correct and practical deci-
sions can be made in the field of exploitation. One of the 
novelties of this study is to provide a suitable approach 
for predicting the values of the groundwater level. In this 
new approach, the groundwater level has been estimated 
using the GRACE satellite data, the use of pre-processing 
tools, and AI models.

Materials and methods

Study area

The study area of Aspas, covering an area of 1590.5km2, is 
located in the Northwestern part of the Tashk-Bakhtegan and 
Maharlu watersheds. The maximum height of the region is 
3495 m at the peak of Bar Aftab mountain, while the mini-
mum height is 2061 m related to the Oujan River. The loca-
tion of the study area is illustrated, in the Tashk–Bakhtegan 
and Maharlu lakes basin in Fars Province of Iran in Fig. 1. 
This Fig., shows the location of 40 observation wells. It also 
shows the 16 meteorology stations used in the area. The 
average precipitation on the aquifer based on drawn maps 
is equal to 427 mm. The average annual temperature of the 
Aspas aquifer was 13 degrees Celsius and the average annual 
evaporation was 2273 mm.

Data preparation

The unit hydrograph shows the changes in the water level of 
the entire aquifer over a certain period. It is designed based 
on the Thiessen method for observation wells with an index 
period. The purpose of determining the hydrograph is to 
show the changes in the aquifer water level, to define the 
maximum and minimum periods, to determine the balance 
period, and to estimate the drop in the level in a certain 
period. Equation (1) is used to calculate the water level of 
the hydrograph.

where, H: the average water level above sea level in meters, 
 ai: the area of   each polygon  (km2), A: the aquifer area  (km2), 
and  hi: the water level in the ith observation well.

To investigate the fluctuations of the GWL, it is neces-
sary to evaluate the existing aquifers. In the studied area of 
Aspas, to investigate the trend and how the GWL fluctu-
ates during a water year or long-term and to calculate the 
amount of water level drop or rise in a certain period, based 
on the water level measurement of the observation wells, 
unit hydrographs of alluvial aquifers are prepared.

The steps of drawing the unit hydrograph are done in the 
following order:

1- Investigating the location, statistical period, and infor-
mation of observation wells.

2- Eliminating statistical deficiencies for the intended index 
period.

3- Obtaining the area covered by each observation well in 
the GIS environment using Thiessen Polygon.

(1)H =

∑
ai × hi

A
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4- Using Eq. (1) and drawing the unit hydrograph of the 
aquifer.

In this research, precipitation, temperature and evapora-
tion data from meteorological stations and data from obser-
vation wells were used. These data are taken from Fars Prov-
ince Regional Water Company. Then, 40 observation wells 
were selected in the Aspas aquifer. The unit hydrograph of 
GWL changes was plotted for the water years 2002–03 to 
2020–21. In Fig. 2, GWL changes are plotted on a monthly 
basis.

The location of meteorological stations used in and 
around the Aspas aquifer is provided in Table 1. According 
to the information received from the GRACE Satellite, six 
different processing algorithms were used to check the status 
of changes in the GWL in the Aspas aquifer.

Precipitation data were analyzed and expanded by HEC-4 
software. Then, box plot method was used to check outlier 
data. The GIS software and the kriging method were used 
to draw the maps. Monthly precipitation maps were drawn 
to the studied area. Then the monthly rainfall values were 
extracted on Aspas aquifer.

The Difference method was used to check the tempera-
ture data and their extension. After checking the outlier 

data, monthly iso-temperature maps were plotted for the 
Aspas studied area. Then, monthly temperature values 
were extracted on the Aspas aquifer. To analyze the evapo-
ration of the aquifer, the statistics of eight stations inside 
and outside the studied area were used. The relationship 
between temperature and evaporation for each station was 
used to check evaporation data and their extension. After 
checking their outlier data, the monthly evaporation and 
transpiration map was plotted for the studied area. Then, 
the monthly evaporation values were extracted for the 
Aspas aquifer.

After specifying the monthly data of GWL, precipita-
tion, temperature, and evaporation of the Aspas aquifer, 
the modeling process started. Before using the data, they 
were standardized (i.e., converting the data into a num-
ber between zero and one). For this purpose, according to 
Solgi (2014) suggestion, Eq. (2) was used.

where, x: desired data, x ̄: average data,  xmin: minimum data, 
 xmax: maximum data, and y: standardized data.

(2)y = 0.5 + (0.5 ×

(
x − x

xmax − xmin

)
)

Fig. 1  Location of the study area in Iran [Shahbazi et al. (2023)]
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Artificial intelligence models

After evaluating the AI models, two were used in this 
research, which had shown proper performance in previous 
research. These models are the ANN and the SVR. Then, 
two pre-processing tools, including the WT and CEEMD 
were utilized to enhance the performance of these models.

ANN model

The following general stages are pursued to build an ANN 
model: In the first step, effective parameters are determined. 
The purpose of this stage is to determine the number of 
neurons in the middle layer, the type of network, the optimal 
number of layers, and the transition and basic functions by 
trial and error to achieve a suitable solution. The second step 

Fig. 2  Unit Hydrograph of the GWL changes in the Aspas aquifer

Table 1  Specifications of the stations used (Shahbazi et al. (2023))

Elevation (m) UTMy UTMx Station Code Variable Stations

2233 3363117 662436 43–068 Precipitation (mm) Ahmad abad
1833 3355239 652573 43–124 Emamzadeh esmaeil
1613 3338446 656499 43–025 Bidkol
2053 3379456 585762 43–061 Chobkhaleh
2340 3419146 596699 43–055 Khosro shirin
2107 3399077 592058 43–054 Dezgard reisun
2046 3352077 641114 43–134 Dashtak
2312 3388840 710365 43–095 Dehbid
1673 3321090 690731 43–035 Temperature (Cº), Evaporation (mm) Dashtbal
2377 3368805 584103 43–202 Kemehr
1616 3316903 664068 43–008 Mehrabad ramjerd
1840 3370902 605703 43–015 Precipitation (mm), Temperature (Cº), 

Evaporation (mm)
Chamriz

2192 3399141 611470 43–201 Sadeh
1690 3354465 620649 43–082 Abas abad
2350 3379054 666049 43–029 Kaftar
1861 3341856 709769 43–105 Madar soleyman
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is network training. The purpose of artificial neural network 
training is to modify the communication weights between 
layers as well as the network bias weights for multiple 
samples. The training of the network is complete when the 
model error or the difference between the output values of 
the network and the target values is minimized. To achieve 
this goal, training data related to the desired pattern are 
given to the network several times, so that the network cor-
rects its weights each time using them. By doing this repeat-
edly, the weights are modified in a way that the network can 
provide acceptable output against non-training input data. 
The third step is network testing. After completing the pro-
cess of training the network and correcting its weights, the 
network is evaluated using a set of data with known output. 
If the network testing is successful, it can be used to deter-
mine unknown values. To acquire more knowledge on this 
subject, study resources (Karamuz and Araghinezhad 2010).

SVR model

By using the concept of the inner product in Hilbert spaces 
and the Hilbert–Schmidt theorem, Vapnik showed that the 
input vector x can be first transferred to a high-dimensional 
space with a non-linear transformation and perform the inner 
product in that space. By this, it can be proved that if a sym-
metric kernel meets the conditions of Mercer's theorem, its 
application in a low-dimensional input space can be con-
sidered as an inner product in a high-dimensional Hilbert 
space and reduces the calculations significantly. (Cortes and 
Vapnik 1995).

In this study, used four common kernels (Eq. 3) of the 
polynomial (Poly), RBF, Sigmoid, and linear (Lin).

The RBF kernel has one parameter g (Gamma). In the 
sigmoidal kernel, only the default values, including zero 
and 1/k Gamma, are used. The linear kernel doesn’t have 
any parameters. However, the polynomial kernel has two 
parameters d (the degree of the polynomial) and r (an accu-
mulative fixed number). For more information on this topic, 
see references (Cortes and Vapnik 1995; Raghavendra and 
Deka 2014). To run the ANN and SVR models, six combina-
tions of architecture, according to Table 2 were considered. 
From the data set, 75% of them were used for the training 
stage and 25% for the test stage. The input parameters are 
precipitation  (Pt), temperature  (Tt), evaporation  (Et), and the 

(3)

k(x, y) = (x.y + 1)d d = 2, 3, …

k(x, y) = exp

�
−
‖x − y‖2

2�2

�

k(x, y) = tanh (x.y + �)

k(x, y) = (x.y)

groundwater level at time t  (GWLt). The output parameter is 
the groundwater level at time t + 1  (GWLt+1).

Pre‑processing tools

WT and CEEMD preprocessing tools were employed in this 
study.

Wavelet transform (WT)

Wavelet Transform, as a mathematical tool, has various 
applications in different branches of engineering. This is due 
to its unique capabilities, which is the ability to follow the 
changes of a signal in a wide time-scale spectrum (time–fre-
quency) simultaneously.

Some of its applications are as follows: finding discon-
tinuous points in the signal, removing noise from the signal, 
compressing the signal, and identifying the system. There 
are many types of wavelet functions with various accuracies 
depending on their applications. The most important and 
widely used ones include Haar, Morlet, Daubechies, Sym-
let, Gaussian, Meyr, Coif, Mexican Hat, Bior, etc. (MAT-
LAB toolbox (2018)). According to Nourani et al. (2009), 
to determine the decomposition level in the WT method on 
a monthly time scale, Eq. (4) can be used as a preliminary 
estimate.

In this regard, L is the decomposition level, and N is the 
amount of data. To learn more about this topic, refer to (Mal-
lat 1998 and Foufoula-Georgiou and Kumar 1994).

CEEMD method

The experimental mode analysis method is a technique for 
examining various signals. R software is used to imple-
ment the CEEMD method. First, the package "hht" must be 
installed in R software. Then, using coding in R software, 
sub-signals can be extracted. When the primary signal is 
analyzed using the CEEMD method and its sub-signals are 

(4)L = Int
[
log(N)

]

Table 2  Details of different architectures of ANN and SVR models

Architecture Input Output

1 GWLt−1, GWLt GWLt+1

2 Pt−1, Pt GWLt+1

3 Tt−1, Tt GWLt+1

4 Et−1, Et GWLt+1

5 GWLt, Pt, Et, Tt GWLt+1

6 GWLt−1, GWLt, Pt−1, Pt, Et−1, Et

,Tt−1, Tt

GWLt+1
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entered as input to intelligent models, composite models 
are formed. The CEEMD method contains two parameters 
named maximum intrinsic mode function (IMF) and £. To 
learn more about this topic, refer to (Wu and Huang (2004); 
Amirat et al. 2018).

Combining models with the pre‑processing tools

To obtain the W-ANN and W-SVR hybrid models, first, 
an initial signal is decomposed using WT and entered into 
the ANN and SVR models as input. If the original signal 
is decomposed using CEEMD and entered into ANN and 
SVR models, the CEEMD-ANN and CEEMD-SVR hybrid 
models are obtained. Figure 3 shows a schematic of how to 
create these models.

GRACE satellite

The GRACE Satellite is a project with cooperation 
between Germany and the USA, which consists of two 
similar and separate satellites. The satellites move at an 
altitude of 500km from the earth surface with a distance 
of 220 km from each other. By changing the local gravita-
tional field through which the satellites pass, the distance 
between the satellite's changes. By analyzing these dis-
tance changes, the gravity field can be obtained (Swen-
son and Wahr 2002). These satellites were launched on 

March 17, 2002, from the Plesetsk space base in Russia. 
GRACE Satellite is the only remote sensing satellite that 
can monitor the changes in the level. The principal use 
of this satellite is to determine hydrological changes by 
measuring the continuous changes of water in water tables, 
soil, surface reservoirs, and snow with an accuracy of a 
few millimeters in terms of water height with a resolution 
of 400 km (Swenson et al. 2009). The mission of this sat-
ellite ended in 2017, but the GRACE-FO satellite, which 
started operating on May 22, 2018, is now recording data.

Gravitational data of GRACE Satellite are processed in 
different algorithms that include the geo forschungs zen-
trum (GFZ), jet propulsion laboratory (JPL), center for 
space research at the University of Texas (CSR) organi-
zations, CNES, COST-G, AIUB, and TUGRAZ algo-
rithms among other processing algorithms of the GRACE 
Satellite.

To learn more about this topic, refer to (Swenson and 
Wahr 2002; Swenson et al. 2009).

Evaluation criteria

Three evaluation criteria were employed in this research, 
including the coefficient of determination (R2), root mean 
square error (RMSE), and Akaike information criterion 

Input Time 
Series

OutputSVR & ANN  
Models

Details

Wavelet 
Transform

Approximent

d2

di

.

.

.

d1

a

Input Time 
Series

OutputSVR & ANN  
Models

Residuals

CEEMD

IMF

r2

ri

.

.

.

r1

IMFi

Fig. 3  Schematic diagram of the W-ANN, W-SVR, CEEMD-ANN and CEEMD-SVR models
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(AIC) (Bahmani et al. 2020). These evaluation criteria are 
presented in Eqs. (5, 6 and 7) (Bahmani et al. 2020).

where, n: number of data, i: counter variable, Giobs : observa-
tional data, Giobs : average of the observational.

data, Gipre : computational data, Gipre : average predicted 
data, m: number of the trained data, and Npar : number of 
the parameters of the model.

Results and discussion

In this part, first, intelligent models were implemented and 
their results were presented. In the next stage, preprocess-
ing tools were used and the results of hybrid models were 
presented. Finally, the results of the models were compared 
based on statistical criteria.

Results of the AI models

Results of the ANN & SVR models

To run the ANN and SVR models, used MATLAB software. 
For this work, were analyzed in each combination, several 

(5)RMSE =

�∑n

i=1
(Giobs − Gipre)

2

n

(6)R2 =
(
∑n

i=1
(Giobs − Giobs)(Gipre − Gipre))

2

∑n

i=1
(Giobs − Giobs)

2 ∑n

i=1
(Gipre − Gipre)

2

(7)AIC = m × ln(RMSE) + 2(Npar)

structures. The ANN model obtained the best structure with 
R2 = 0.927 and RMSE = 0.0158 m. This best combination 
had a "trainlm" training rule and a "tansig" transfer func-
tion. In this combination, 3 neurons in the middle layer and 
8 neurons in the input layer are used. The results of the SVR 
model showed that the best structure had R2 = 0.918 and 
RMSE = 0.0168 m. In this case, the best performance was 
related to Line Kernel. By the criteria, the results showed 
the ANN model did better than the SVR model. In Fig. 4, 
a comparison has been made between the performance of 
these models and the observed values. This Fig. shows that 
the ANN model has performed better at minimum points 
than at peak points. Also, this Fig. shows that the perfor-
mance of the ANN model is better than the SVR.

Results of the W‑ANN & W‑SVR models

To run the W-ANN and W-SVR models, first, the WT was 
used. Then sub-signals obtained from it were entered as 
input to the models. Based on the number of data which is 
222, the level of analysis was calculated as 2, according to 
Eq. (4). To increase the accuracy, decomposition levels 1 to 
4 are considered.

The results of the W-ANN model showed that the Sym3 
wavelet function had the best performance at decomposition 
level 1. This best combination had 8 input neurons and 4 hid-
den layers. This combination used the “Trainbr” training rule 
and the “Purelin” transfer function. In this superior combina-
tion, R2 = 0.938 and RMSE = 0.0149 m were obtained.

In the W-SVR model, the Coif1 wavelet function has per-
formed best at the level of decomposition 2. In this combi-
nation, the best performance was related to the RBF kernel. 
The best combination had R2 = 0.949 and RMSE = 0.0164 m.

In Fig. 5, a comparison has been made between the per-
formance of these models and the observed values. This Fig. 

Fig. 4  The results of the ANN 
and SVR models -testing stage
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shows that the W-SVR model has performed better at peak 
points. But at minimum points the W-ANN model has per-
formed better. Also, this Fig. shows that the performance of 
the W-SVR model is better than the W-ANN.

Results of the CEEMD‑ANN & CEEMD‑SVR models

The program was executed for the maximum IMF number 
of 10, and the outcomes indicated that the maximum num-
ber of sub-signals could be 6. Therefore, the program code 
was run for the number of IMFs from 1 to 6. The results 
of the CEEMD-ANN model showed that the best perfor-
mance was obtained in IMF of 1 and ε value of 0.2. The 
best performance in this combination was related to the 
“Trainbr” training rule and the “Tansig” transfer function. 
This superior structure had an  R2 and error value of 0.998 
and 0.0035, respectively. Based on CEEMD-SVR model, 
the best performance was obtained in IMF and ε value of 2 
and 0.1, respectively. The best performance had been related 
to the Lin kernel. In this case, the  R2 and error value were 
0.948 and 0.0154 m, respectively. In Fig. 6, a comparison 
has been made between the performance of these models 

and the observed values. This Fig. shows that the CEEMD-
ANN model has performed better at minimum points than 
at peak points. Also, this Fig. shows that the performance of 
the CEEMD-ANN model is better than the CEEMD-SVR.

Comparison between the outputs of the models

In this section, the outputs of the models in their various 
states were compared. The measurement of the differences 
between various methods was carried out from March 2014 
to March 2019 in accordance with the statistical period used 
for the data testing stage. According to Table 3, using pre-
processing tools has enhanced the performance of ANN 
and SVR models. Utilizing the WT has improved the ANN 
model by 1.18%. Moreover, using of the WT has improved 
the SVR model by 3.26%.

According to the results, using other preprocessing 
tools (i.e., the CEEMD) has enhanced the performance of 
the ANN and the SVR models. So that the performance 
of the ANN model got better by 7.65% and the SVR 
model by 3.15%. Based on outcomes, it can be viewed 
that the CEEMD-ANN hybrid model has the best perfor-
mance. So that the CEEMD-ANN model had R2 = 0.998, 

Fig. 5  The results of the 
W-ANN and W-SVR models 
-testing stage

Table 3  Performance of the 
models used

Bold values indicates the best structures

Model Type R2 RMSE (m) AIC

Train Test Train Test Train Test

ANN 0.985 0.927 0.0113 0.0158 304.06 91.41
SVR 0.973 0.919 0.0156 0.0168 305.35 91.66
W-ANN 0.983 0.938 0.0125 0.0151 304.49 91.18
W-SVR 0.992 0.949 0.0086 0.0164 302.85 91.57
CEEMD-ANN 0.997 0.998 0.0052 0.0035 300.99 85.35
CEEMD-SVR 0.980 0.948 0.0133 0.0154 304.34 91.32
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RMSE = 0.0035 m. The CEEMD-ANN hybrid model had 
the lowest Akaike coefficient (the AIC = 85.35).

In Fig. 7, used models were compared in the testing stage, 
based on the unit hydrographs of the aquifer (Observed). 
As seen, the hybrid models have more performance that is 
suitable. Among them, the CEEMD-ANN values are closer 
to the observational values. Based on this fig., the CEEMD-
ANN model has a better estimate of points peak and least. 
Therefore, the mentioned model can be used for forecasting 
the GWL of the Aspas aquifer.

Comparing the results of the different algorithms 
of the GRACE satellite

This satellite had monthly information on changes in the 
GWL from April 2002 to the present time for the Aspas 
aquifer, which was used for this study from October 2002 
to July 2022.

Based on the information received from the GRACE Sat-
ellite, 6 different processing algorithms were used to check 
the status of variations in the GWL of the Aspas aquifer. 
Comparing the data of these algorithms with the observa-
tional data obtained from the unit hydrograph of the Aspas 
aquifer, the changes in the GWL of the aquifer must first be 
calculated.

As mentioned, the GRACE Satellite has had no data for 
several months due to the end of its operation and being 
replaced by the GRACE-FO Satellite, and this is shown in 
the Fig that is compared with the observational data of the 
GWL resulted from the unit hydrograph.

By comparing the results of various algorithms in train 
and test periods, it can be observed that GFZ and TUGRAZ 
have better performance than other algorithms in the changes 
of the observational values of the GWL based on the eval-
uation criteria presented in Table 4. To calculate these 

criteria, the months with statistics were included. Accord-
ing to the Table 4, in the test stage (from March 2014 to 
March 2019), the GFZ processing algorithm with R2 = 0.706, 
RMSE = 39.15, and Akaike’s criterion of 91.67 had the best 
performance and was chosen as the best algorithm. It can 
be the reason that the Akaike criterion for the train period 
in JPL and CNES is lower than other algorithms in Table 4, 
which is related to their fewer data than other algorithms.

Figures 8, 9 illustrate the comparison between the perfor-
mance of different algorithms along with the observational 
values in the train and test stages, respectively. As can be 
seen in Fig. 8, the data of the GRACE satellite has a longer 
statistical length. In Fig. 9, which is related to the test period, 
some data are not available due to the completion of the 
satellite mission.

Comparison between the results of intelligent 
models with the processing algorithms of the GRACE 
satellite

In this section, considering the statistical criteria and based 
on the observed values obtained from the unit hydrograph, 
the performance of the best intelligent model employed in 
this research has been compared with the best GRACE Satel-
lite processing algorithm. As explained in the previous sec-
tions, the CEEMD-ANN model outperformed all the intel-
ligent models. Because the GRACE Satellite data provide 
changes in the GWL on a monthly basis, the changes in the 
GWL were calculated using CEEMD-ANN hybrid model 
to compare the results. Among the processing algorithms 
of the GRACE Satellite, the GFZ performed the best. A 
comparison was made between the results of the best struc-
tures to calculate the GWL changes during the training and 
testing periods. The results of this comparison are presented 
in Table 5. According to what can be observed in Table 5, it 

Fig. 6  The results of the 
CEEMD-ANN and CEEMD-
SVR models -testing stage
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is clear that intelligent models have better performance than 
the data of the GRACE Satellite.

Figures 10, 11 provided a comparison between the perfor-
mance of the best intelligent model and the best algorithm 
of the GRACE satellite with the observational values in the 
train and test stages. Based on these Figs, the intelligent 
model has the best performance. Thus, it is more appropri-
ate to use the CEEMD-ANN intelligent model to predict 
the GWL.

Predicting the GWL changes

As cited in the previous section, the CEEMD-ANN model 
was identified as the best model in this research. Now, to 
use this model to predict the GWL, it is necessary to have 
input parameters, which are not available. Here the aim is to 
obtain these values from satellite data, while they are differ-
ent from the observational data of observation wells. First, 
these values should be corrected and then calculated for the 
future period and used in the CEEMD-ANN model. Also, 
as intelligent models must be implemented step by step and 
each step is used as input for the next step, they will have 
good results in the short term. However, as the time step 

increases, the accumulated errors in each step will cause 
irrational estimates. For this purpose, in this study, a new 
and suitable approach was presented to predict changes in 
the GWL in the Aspas aquifer.

An appropriate approach for predicting the GWL 
using the data of the GRACE satellite

The use of the GRACE Satellite data has advantages such as 
up-to-dateness, high speed, lower cost, and obtaining results 
in a short time. Therefore, these data should be corrected by 
correcting their values to use these capabilities for current 
and future periods. Considering the up-to-dateness of the 
GRACE Satellite data and the results obtained from the data 
in the previous sections, a suitable approach was adopted to 
use them. For this purpose, first by using the standardization 
relationship (Eq. 2), the data values of the GRACE Satellite 
(the values of the GFZ processing algorithm) were standard-
ized, and then the filtration capability of the CEEMD and 
CEEMD-ANN models were used. According to the appro-
priateness of the IMF = 1 and the ε value of 0.2, the data of 
the GFZ algorithm was decomposed. The obtained values 
were then entered as input to the ANN model so that the 

Fig. 7  Comparison of the 
results of the models used-
testing stage

Table 4  Performance 
comparison of GRACE satellite 
processing algorithms

Bold values indicates the best structures

Processing algorithm Train Test

R2 RMSE AIC R2 RMSE AIC

JPL 0.603 36.90 277.61 0.640 43.37 91.77
CSR 0.625 36.47 291.60 0.652 43.54 91.77
GFZ 0.661 34.07 291.53 0.706 39.15 95.67
COST-G 0.517 36.92 291.61 0.642 43.10 91.76
CNES 0.622 38.43 305.65 0.636 44.82 85.80
TUGRAZ 0.632 38.18 291.64 0.686 43.11 91.76



 Environmental Earth Sciences (2024) 83:240240 Page 12 of 16

modeling is based on the observed data of GWL changes. 
Considering the results of the CEEMD-ANN hybrid model, 
the “trainbr” training rule and the “tansig” transfer func-
tion (In the best intelligent model structure) were utilized. 
Results of this study are presented in Table 6, according to 
which the model with R2 = 0.78 for the test stage and an error 
value of 0.0696 has performed well. This model can be used 
for the predicting stage. Results reveal that the  R2 of the new 
approach has improved the performance of the GFZ process-
ing algorithm by 2.70% and 7.53% in the training and testing 
phases, respectively. Then, the data of the GFZ in the period 
of April 2021 to June 2022 was given as input to the model. 

The model estimated the changes in the GWL of the Aspas 
aquifer in this time span. The results of the train stage pro-
vided in Fig. 12. The predicted values (from April 2021 to 
Jul 2022) and the data of the test stage of the new approach 
are illustrated in Fig. 13. The results of this approach can be 
used for the coming months as well, considering the updat-
ing of the GFZ algorithm data.

It can be said that the results of this study in terms of the 
more satisfactory performance of hybrid models with WT 
and CEEMD are agreeing with the results of Bahmani et al. 
2020; Bahmani and Ouarda 2020. Also, this study's results 

Fig. 8  Comparison between different processing algorithms of GRACE Satellite with observational values—training stage

Fig. 9  Comparison between different processing algorithms of GRACE Satellite with observational values—testing stage
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agree with those of Adamowski and Chan (2011). They 
found the artificial neural network model performed better.

By conducting this study, suggestions are provided to 
improve similar studies.

1- Using the approach presented in this study, it is possible 
to use the data values of the GRACE Satellite for the 
current and future periods for other aquifers as well.

2- Other methods and approaches can be used to correct 
the values of the GRACE satellite and compare with the 
results of this study.

Conclusions

In this study, AI models, including ANN and SVR, were 
used to model the GWL of the Aspas aquifer. Then, the tools 
consisting of data analysis, including WT and CEEMD, 
were used to form hybrid models. The outputs of intelligent 
models were compared with each other based on observa-
tional data. In the next stage, different processing algorithms 
of the GRACE Satellite were used. Performance comparison 

of different processing algorithms was done based on obser-
vational data. The results showed that the intelligent ANN 
model performed better than the SVR model. The W-SVR 
hybrid model has outperformed the W-ANN. In addition, 
the results showed that the CEEMD-ANN model has out-
performed the CEEMD-SVR model. Based on the results of 
intelligent models proved that the best performance is related 
to the CEEMD-ANN hybrid model. Also, the results showed 
that the GFZ algorithm had the best performance compared 
to other processing algorithms of GRACE Satellite in the 
train and test stages. Comparing the results between the best 
intelligent model (CEEMD-ANN) and the best GRACE Sat-
ellite processing algorithm (GFZ) for calculating changes 
in the GWL showed that the hybrid model performs better. 
A new approach was utilized to forecast the GWL shifts. In 
this approach, data of the GRACE Satellite (GFZ process-
ing algorithm) were decomposed using CEEMD and entered 
as input to the CEEMD-ANN model. Then, modeling was 
done and the values of changes in the GWL were estimated 
for the current and future periods. The results show that the 
coefficient of determination of the new approach, 2.70% and 
7.53% in train and test stages, respectively, has improved 
the performance of the GFZ processing algorithm. Using 

Table 5  The best structures 
used to calculate the GWL 
changes

Bold values indicates the best structures

The best structure Train Test

R2 RMSE AIC R2 RMSE AIC

CEEMD-ANN 0.800 22.26 325.10 0.825 21.57 125.07
GFZ 0.664 34.07 293.53 0.706 39.15 91.67

Fig. 10  The best performance of the structures used-training stage
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Fig. 11  Comparison of the best performance of the structures used- testing stage

Table 6  The results of applying the CEEMD-ANN model using the data of the GRACE Satellite

IMF � Model Parameters Train Test

Structure Epoch Learning Rules Transfer Function R2 RMSE (cm) AIC R2 RMSE (cm) AIC

1 0.2 2–3-1 1000 trainbr tansig 0.691 0.0684 282.64 0.781 0.0696 86.67

Fig. 12  The results of applying the CEEMD-ANN model using the data of the GRACE Satellite-training stage
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the approach presented in this study, the values of changes 
in the GWL of the Aspas aquifer from April 2021 to Jul 
2022 (the time of writing this article) were presented. The 
approach presented in this study has the capacity to estimate 
the changes in the GWL in the coming months by updating 
the data of the GFZ processing algorithm.
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