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Abstract
The effects of soil amendments on soil respiration (SR) rate have not yet been fully evaluated. In the Upper Blue Nile Basin, 
Ethiopia, we investigated seasonal variations in SR rates between and within soil amendments. We set up 24 plots with 8 
treatments—polyacrylamide (PAM), gypsum (G), biochar (B), lime (L), control (C), PAM + L, PAM + G, and PAM + B—in 3 
replicates. Soil temperature, moisture, and SR data were collected monthly. Data were evaluated by paired t-test and nonpara-
metric repeated-measures ANOVA. The SR rates were significantly lower (P < 0.05) in PAM + B (3.43 ± 0.55 µmol  m−2  s−1) 
than in B (4.23 ± 0.61  CO2 µmol  m−2  s−1) and PAM + L (4.14 ± 0.57 µmol  m−2  s−1). The SR rate differed significantly in all 
plots between the wet and dry seasons. The relationships between SR rate and soil properties were not significant, although 
there was a non-significant positive association with soil organic carbon, total nitrogen, soil pH, and clay content. There 
was a significant (P < 0.01) association between soil moisture and SR in all treatments. PAM + B offers a practical means of 
enhancing carbon storage efficiency. Comprehensive studies should be conducted in a variety of agroecological settings to 
determine optimal techniques to reduce SR emissions.
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Introduction

Land degradation leading to soil erosion reduces agricultural 
production and threatens food security worldwide (Powl-
son et al. 2011). In Ethiopia, large-scale soil erosion has 
occurred as population growth has turned forests, pastures, 
and even hillsides into farmland without sustainable man-
agement. Soil erosion is a major problem in many parts of 
Ethiopia (Haregeweyn et al. 2015). The eastern and northern 
regions of the Ethiopian Highlands suffer significant dam-
age through land degradation (Hurni 1988; Shiferaw 2011). 
Other potential contributing factors are the increased use of 
steep slopes for agricultural purposes and reduced vegeta-
tion cover (Amede et al. 2001); biophysical factors (Hurni 
et al. 2010); conversion of natural ecosystems to cultivated 
ecosystems (Seyoum 2016); anthropogenic factors (Nyssen 
et al. 2007); and increasing influence on resources (Guyassa 
and Raj 2013). National soil erosion rates are estimated at 
up to 220 t  ha−1  y−1, with a mean of 37 t  ha−1  y−1 (Tamene 
et  al. 2022). Soil loss reduces agricultural productivity 
by depleting soil nutrients, robbing large amounts of soil 
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organic matter (SOM), and altering soil properties (Haile-
slassie et al. 2006).

A number of soil amendment approaches have been tested 
and used to avert soil erosion in Ethiopia and elsewhere 
(Mamedov et al. 2021; Mulualem et al. 2021, 2022; Awad 
et al. 2012; Kebede et al. 2022; Albalasmeh et al. 2021; 
Asghari et al. 2011). Polyacrylamide (PAM), biochar (B), 
lime (L), and gypsum (G) are common amendments used 
to modify soil properties in order to reduce soil erosion. 
PAM stabilizes soil aggregates and improves cohesiveness 
(Mamedov et al. 2021), reduces soil nutrient depletion, and 
increases nutrient utilization (Mulualem et al. 2022). As a 
result,  CO2 emissions are reduced (Awad et al. 2012). In 
acidic soils, the use of PAM with biochar and lime increased 
the yield of teff (Mulualem et al. 2021). PAM is more effec-
tive than other soil additives in improving the physical qual-
ity of sandy loam soils (Albalasmeh et al. 2021; Asghari 
et al. 2011). The addition of PAM increased water infiltra-
tion and decreased soil erosion (Kebede et al. 2022; Sojka 
and Entry 2000), and it promoted the growth and survival of 
some fungal and bacterial species that bind soil aggregates 
(Caesar-Tonthat et al. 2008).

Lime is often used to reduce soil acidity; applying lime 
alone or in combination with other additives such as gyp-
sum is a viable way to improve soil health and crop yield 
(Bossolani et al. 2020). Biochar improves soil quality (Smith 
et al. 2010). It improved the properties of heavily weathered 
soil and reduced soil loss (Jien and Wang 2013). Chen et al. 
(2018) detailed its long-term effects on soil physiochemical 
properties. One long-term benefit may be reducing addi-
tional carbon (C) mineralization in compost (Jien et al. 
2015). Using biochar to improve soil moisture and nutrient 
retention is beneficial for plant growth (Sales et al. 2022).

Soil amendments can increase crop yield (Aina et al. 
2018). The improvement of SOM is one of the best manage-
ment strategies for ensuring soil sustainability in subtropi-
cal and tropical regions (Jien et al. 2015). Organic fertiliz-
ers improve the content of microbial biomass, the content 
of SOM, the structure of microbial communities, and the 
activity of enzymes involved in the degradation of OM (Nett 
et al. 2012). Organic additives improve soil nutrient status 
and chemical properties (Angelova et al. 2013). Cow dung 
solids can improve soil physical and chemical properties 
(Loper et al. 2010). The co-use of organic fertilizers with 
mineral fertilizers increases crop yields, reduces mineral 
fertilizer consumption, and conserves soil resources (Bayu 
et al. 2006).

Soil respiration (SR) is the major mechanism of C 
exchange between the soil surface and the atmosphere 
(Sheng et al. 2010) and largely determines C accumulation 
in ecosystems. SR is an important indicator of soil fertility 
and a measure of soil quality (Staben et al. 1997). Good land 
management reduces  CO2 emissions (Abegaz et al. 2020; 

Lemma et al. 2021), mitigates climate change (Mekonnen 
and Getahun 2020), and increases soil organic carbon (SOC) 
content. The type and proportion of applied OM additives 
(Ray et al. 2020) and SOC distribution (Menichetti et al. 
2013) have the greatest influence on soil respiration. Com-
pared with OM alone and OM + gypsum, gypsum alone 
reduced cumulative respiration within the top 5 cm of soil 
(Wong et al. 2009). The addition of digestive-rich organic 
additives to the soil improved microbial richness and respi-
ration (Holatko et al. 2021). Biochar reduces heterotrophic 
soil respiration by enhancing recalcitrant fraction of car-
bon (Li et al. 2018). Therefore, understanding the regula-
tion of SR is important, as small changes in SR rates can 
have large effects on atmospheric  CO2 emissions and soil 
C sequestration (Bowden et al. 2004). Furthermore, under-
standing the sensitivity of the terrestrial C cycle to climate 
change requires knowledge of the mechanisms that control 
the release of  CO2 from the soil via SR to the atmosphere 
(Savage et al. 2008). However, to the best of our knowledge, 
the effect of soil modification on SR rates has not been ade-
quately assessed in Ethiopia. Hence, soil respiration study 
on soil amendments could inspire different institutions to 
provide various options for reducing carbon emissions by 
implementing amendments practices in different land uses 
and enhancing carbon sequestration in the soil. This study 
was designed to identify optimal soil amendments that mini-
mize SR and increase SOC storage. The objectives were: (1) 
to assess differences in SR rates between soil amendments; 
(2) to evaluate SR rates between the wet and dry seasons; 
and (3) to pinpoint soil-related and environmental factors 
(soil moisture and temperature) that contribute to SR.

Materials and methods

Study site

The study was conducted in the Aba Gerima catchment (11° 
38′ 0″–11° 40′ 30″ N, 37° 29′ 30″–37° 31′ 0″), Bahir Dar 
Zuri District, which was chosen as representative of the 
midland agroecological zone of the Upper Blue Nile basin, 
northwestern Ethiopia (Fig. 1).

We collected climate data from the Ethiopian National 
Meteorological Agency station in Bahir Dar spanning 
21 years, 2000 to 2020. The average annual rainfall in the 
study area was 1486 mm, and the average monthly tempera-
ture ranged from 18 to 23 °C (Fig. 2). The main rainy sea-
son (growing season) starts in June and ends in September 
(Mihretie et al. 2021). According to FAO’s soil classification 
system (2006), Leptosols are the predominant soil type here 
(Getahun 2016). Teff (Eragrostis tef (Zucc.) Trotter), finger 
millet (Eleusine coracana Gaertn.), maize (Zea mays L.), 
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and lupin (Lupinus albus L.) are the most commonly grown 
crops (Ebabu et al. 2019).

Setup of experimental plots

We used 8 treatments—control (C), gypsum (G), biochar 
(B), lime (L), polyacrylamide (PAM), PAM + B, PAM + G, 
and PAM + L—with 3 replications in a randomized com-
plete block design with 24 plots. We used lime  (CaCO3) 
with 98% neutralizing value for the experiment. We did not 
analyze the purity of gypsum due to lack of finance and 
time. The source of Gypsum and lime was from local dis-
tributers or suppliers. JICA (Japan international cooperation 
agency) imported anionic PAM from Japan. It comprised, by 
weight, 50%, 22%, 20% and 8% of C, O, N and H, respec-
tively. Biochar was made from wood charcoal from stem and 
branches of Acacia decurrens. An acacia decurrens with a 
diameter of 0.1–0.2 m were cut in different sizes for burning, 
arranged on soil (0.5–1 m height, 2–3 m diameter), and were 
set on fire for burning. The pile was covered by a layer of 
corn debris, and soil to avoid complete burning of biomass 
into ash. The burning process took on 3–5 days on average. 

The pyrolysis temperature for preparation of biochar was 
400–450 °C as described by Geng et al. (2022). After burn-
ing this, the charcoal was taken out and manually crushed 
and sieved to get uniform sizes (< 4 mm diameter) by mixing 
the biochar before application on experimental plots. For the 
study, we used blocking to minimize the effect of slope dif-
ferences among the treatments. The average slope for experi-
mental plots was 10% for experimental site (Mulualem et al. 
2021). The size of the plot was 1.3 m width by 4.5 m length 
(5.85  m2). The perimeter of each plot was bordered by a 
0.35 m metal sheet, of which 0.15 m was inserted into the 
ground to delineate nutrients from plot surroundings. Runoff 
trenches with trapezoidal cross-sections (2.5 m length and 
1 m width on the upper, 1.5 m length and 0.5 m width on the 
foot, and 0.6 m deep) were dug beneath each plot and lined 
with a geo-membrane plastic sheet to avoid water loss by 
infiltration. In 2018, we applied PAM  (CH2=CH–CONH2)n 
at 40 kg  ha−1, biochar at 8 t  ha−1, gypsum  (CaSO4·2H2O) 
at 5 t  ha−1, and lime  (CaCO3) at 4 t  ha−1. In 2019, we reap-
plied only PAM at 20 kg  ha−1. The experimental field was 
hoed and the full rates of all amendments except PAM were 
broadcasted manually 20–25 days before sowing (July) and 

Fig. 1  The study site in A Ethiopia, B Upper Blue Nile basin, and C Aba Gerima watershed
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immediately mixed into the upper 0.15–0.20 m of the soil in 
the first year of the experiment (2018), whereas the granular 
(solid) PAM was applied to the soil surface (0.3–0.5 m) by 
hand in two applications, half at the start of the rainy season 
(i.e., 20–25 days before sowing) and the other half immedi-
ately after teff sowing in both study seasons. Moreover, in 
2019 we applied only PAM by half rate. The ratings values 
were chosen from the literature (Kebede et al. 2020; Mulu-
alem et al. 2021). The test plots were hand-plowed 3 times 
a year: during the dry season (May), at the beginning of the 
wet season (June), and at the end of July, when the teff was 
sown. During the test period, all plots were planted with teff, 
which is the most important staple crop in Ethiopia (Huneg-
naw et al. 2021), even though it is low-yielding, unprofitable, 
and resource-intensive (Mihretie et al. 2022).

SR measurement and data collection

Data on SR, soil moisture, and soil temperature were col-
lected from October 2019 to August 2021, with interrup-
tion from April to August 2020 due to COVID-19. Later, 
we started data collection on September 2020 until August 
2021. Our interest was to compare two years soil respira-
tion data however; due to interruption we analyzed the 
merged soil respiration data. SR was measured monthly in 
each test plot (Liang et al. 2019; Powers et al. 2018; Xiao 
et al. 2021). A PVC pipe collar (19 cm diameter, 11 cm 

height) was carefully inserted 5 cm into the soil in each 
plot (Fekadu, et al. 2023a, b, c). Soil respiration data were 
collected between 09:00 and 12:00 on rainless mornings 
(Fekadu et al. 2023a, b, c; Jiang et al. 2013; Sheng et al. 
2010). SR was measured for 90 s (Table 1), and the average 
SR of 90 readings for each collar was used.

Soil sampling and analysis

Soil sampling was collected at 0–20 cm soil depth from each 
experimental plot using hand auger. For every experimental 
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Fig. 2  Rainfall and temperature distribution in the study area

Table 1  Parameters and methods of soil analysis or tools used

Parameter Method or instrument

Available P Sodium bicarbonate method (Olsen et al. 
1954)

Organic C and total N CN Corder (Macro Corder JM1000CN, 
J-Science Lab, Kyoto, Japan)

pH (1:2.5 soil:water) Peech (1965)
Soil bulk density Core sample method, oven-dried at 105 °C 

for 24 h
Texture Hydrometer method (Bouyoucos 1962)
Soil respiration LI-8100 automated soil  CO2 flux system (LI-

8100, LI-COR, Lincoln, NE, USA)
Soil moisture (MS) Gravimetric method
Soil temperature (TS) Omega probe 6000-09TC (LI-COR)
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plot, we collected four samples in north, south, east and 
west direction of the experimental plot, and later we mixed 
four soil samples of the experimental plot and took 200 g 
soil for further physico-chemical analysis. The time for soil 
sampling data collection was after crop harvest in Febru-
ary 2020. Soil samples were air-dried at room temperature, 
ground, and sieved through a 2-mm sieve for soil physical 
and chemical analyses (Table 1). All plots had a clay-loam 
soil texture (Table 2).

Statistical analysis

One-way ANOVA was used to assess the effects of soil 
amendments on soil properties. Tukey’s HSD test at P < 0.05 
was used to detect significant differences between mean val-
ues of soil properties in several comparative tests between 
treatments in experiments. SR data were not normally dis-
tributed, so they were analyzed by the nonparametric Fried-
man’s test, followed by Wilcoxon’s post hoc analysis to iso-
late means with P < 0.05. Significance values for some tests 
were adjusted by Bonferroni’s correction. A paired t-test 
analysis was used to determine the significance of differ-
ences between seasons (wet and dry) among treatments. 
Pearson’s correlation analysis was used to assess the rela-
tionships of SR with soil properties, soil temperature, and 
soil moisture (Gomez and Gomez 1983).

Results and discussion

Effects of soil amendments on soil respiration

The amendments altered the soil physico-chemical proper-
ties. PAM + L increased soil pH by (6.05 ± 0.09) relative 

to the control (5.35 ± 0.10; Table 2), and soil pH was sig-
nificantly higher (P < 0.01) in PAM + L than in other plots 
(C, G, PAM and PAM + G). This is due to the lime, which 
increases the  Ca2+ content at cation exchange sites, where 
 H+ can be displaced. Lime application is well known to 
increase soil pH. Dissolution of lime significantly reduced 
exchangeable  Al3+ and increased exchangeable  Ca2+ (Li 
et al. 2018). Liming generally creates a more favorable 
environment for microbial activity and can lead to the net 
mineralization of organic forms of P (Ameyu 2019).

Available phosphorus (Pav) was lowest in the gypsum-
treated plots (G) and highest in PAM + B (Table 2).  Pav was 
significantly higher (P < 0.001) in PAM + B than in G only. 
The elevated Pav was associated with the improvement in 
soil pH (Table 2; r = 0.75**; Table 5), and the decreased loss 
of Pav increased Pav in PAM + B. Our results are supported 
by similar studies (Li et al. 2019; Mulualem et al. 2021) 
showing that soil amendment with B and PAM reduces run-
off, sedimentation, and washout, and that PAM improves 
soil cohesion and water-holding capacity (Mulualem et al. 
2021). Furthermore, the PAM + B and B plots had sig-
nificantly higher SOC concentrations (P < 0.001) than the 
control (C) and G plots. Biochar alters soil microbial abun-
dance, activity, and community structure (Hardy et al. 2019), 
enhancing SOM degradation and SOC levels. Increased SR 
by microorganisms is thought to promote SOM degradation 
and improve soil fertility (Anjum and Khan 2021). Sorption 
to biochar-mediated aggregates is one of the most important 
reasons for the stabilization of SOC. A study in a maize field 
in the Central Plains of China showed that biochar additives 
increased SOC (Zhang et al. 2012).

However, TN, soil bulk density (SBD), and sand, silt, and 
clay contents did not change significantly among soil amend-
ments during the study (Table 2). In contrast, Abdulrahman 

Table 2  Physico-chemical properties (mean ± SE) of topsoil samples (0–20 cm): all are clay loam

Treatment levels within a column that doesn’t share the same letters are significantly different
ns non-significant, B biochar, C control, G Gypsum, L lime, PAM Polyacrylamide, Pav available phosphorus, SOC soil organic carbon, TN Total 
nitrogen, BD bulk density, (n = 3)
**, ***Indicate the ANOVA p value is significant at P < 0.01, and P < 0.001, respectively, by Tukey test

Amendment Pav (ppm) SOC (%) TN (%) pH  (H2O)
1:2.5

BD (g  cm−3) Clay (%) Sand (%) Silt (%)

B 13.5 ± 0.41ab 1.84 ± 0.04a 0.16 ± 0.01 5.89 ± 0.03abcd 1.29 ± 0.03 36 ± 2.67 32 ± 1.65 32 ± 1.46
C 10.5 ± 0.96ab 1.51 ± 0.04b 0.14 ± 0.01 5.35 ± 0.10 cd 1.30 ± 0.03 37 ± 1.76 31 ± 1.65 32 ± 1.46
G 8.6 ± 0.32b 1.52 ± 0.04b 0.14 ± 0.01 5.28 ± 0.04d 1.31 ± 0.03 34 ± 1.76 33 ± 1.65 33 ± 1.46
L 15.1 ± 0.56ab 1.64 ± 0.04ab 0.15 ± 0.01 5.91 ± .06abc 1.29 ± 0.03 35 ± 3.06 33 ± 1.65 32 ± 1.46
PAM 13.1 ± 0.12ab 1.62 ± 0.04ab 0.14 ± 0.01 5.38 ± .08bcd 1.24 ± 0.03 35 ± 1.15 31 ± 1.65 34 ± 1.46
PAM + B 16.3 ± 1.14a 1.87 ± 0.04a 0.16 ± 0.01 6.00 ± 0.19ab 1.23 ± 0.03 36 ± 0.67 30 ± 1.65 34 ± 1.46
PAM + G 10.2 ± 0.90ab 1.59 ± 0.04ab 0.15 ± 0.01 5.34 ± 0.04 cd 1.25 ± 0.03 35 ± 2.96 31 ± 1.65 34 ± 1.46
PAM + L 14.3 ± 1.11ab 1.66 ± 0.04ab 0.15 ± 0.01 6.05 ± 0.09a 1.23 ± 0.03 35 ± 1.15 31 ± 1.65 34 ± 1.46
P value *** *** ns ** ns ns ns ns



 Environmental Earth Sciences (2024) 83:216216 Page 6 of 11

et al. (2020) showed that B and PAM had a significant effect 
on SBD.

Paired t-test analysis comparing treatments with the 
control revealed a significantly increased mean SR in B, 
L, and PAM + L only (Table 3). These increases may be 
related to the improvement of pH, Pav, and SOC (Table 2). 
Improvement of soil property could have direct impact on 
soil microbial population. As soil property improved in the 
soil, the microbial activate for decomposition of soil organic 
matter becomes faster. This ultimately enhances soil respi-
ration. Various studies have reported the function of soil 
amendments on soil properties; biochar affects soil physi-
cal and chemical properties (Chintala et al. 2013; Gross 
et al. 2021; Kookana et al. 2011; Layek et al. 2022; Li et al. 
2017; Nigussie et al. 2012). Polyacrylamide and biochar 
also improve properties of soil (Alkhasha et al. 2018). PAM 
alone improves the structural stability of the soil (Mamedov 
et al. 2021). Biochar and lime improve the characteristics 
of acidic soils (Wu et al. 2020). Increased inputs of TN and 
SOC from the soil substrate were associated with an increase 
in SR (Wang et al. 2013).

Friedman’s ANOVA revealed a significant difference 
(χ2 = 28.86, d.f. = 7, P = 0.0003) in the effects of soil 
amendments on SR (Table 4). Soil respiration was sig-
nificantly less in PAM + B (3.43 ± 0.55  µmol   m−2   s−1) 
than in B (4.23 ± 0.61  CO2 µmol  m−2  s−1) and PAM + L 
(4.14 ± 0.57 µmol  m−2  s−1; P < 0.05; Table 4). The reason 
could be due to the addition of soil amendments in the soil 
mainly polyacrimide and biochar. Our study is supported 
by Awad et al. (2017) who studied that, PAM + B inhibits 

microbial biomass C and reduces plant residue decompo-
sition. Biochar reduces the organic C mineralization rate 
(Geng et al. 2022). PAM + B could be an excellent tool to 
reduce soil loss (Lee et al. 2015). The SOC (mean ± SE) 
was slightly higher in PAM + B (1.87 ± 0.04) than in B 
(1.84 ± 0.04) and PAM + L (1.66 ± 0.04), though statistically 
not significant (Table 2). PAM + B similarly increased SOM 
(Abulaiti et al. 2022). The addition of PAM and B improved 
soil properties (Alkhasha et al. 2018), mainly because PAM 
significantly improves soil cohesion without increasing the 
rate of decomposition (Awad et al. 2013), and B signifi-
cantly increases soil C sequestration and SOM (Hua et al. 
2014). On the other hand, Awad et al. (2016) found that 
B and PAM, both individually and in combination, had no 
significant effect on total  CO2 emissions owing to their very 
slow rates of decomposition. Using B alone as a soil amend-
ment increased SR (Li et al. 2021) and soil  CO2 production 
(Smith et al. 2010). Biochar addition improved soil micro-
bial abundance, soil enzyme activity, community structure, 
and microbial biomass C (Hardy et al. 2019; Oladele 2019; 
Zhang et al. 2014). However, Šlapáková et al. (2018) found 
that it did not increase SR.

SR was significantly higher in PAM + L than in PAM + B 
(Table 4). The reason could be related to change in soil pH. 
Addition of lime may enhance the microbial activity and 
then soil respiration in the soil. As soil pH increases until 
optimum (5.5–6.5), more  CO2 is released into the atmos-
phere owing to increased soil microbial activity (Yusnaini 
et al. 2021). Liming increased the contribution of respi-
ration to total C loss (Andersson and Valeur 1994). Lime 
in the soil is principally added to reduce soil pH (Mulu-
alem et al. 2021). Moreover, addition of lime in the soil 

Table 3  Paired t-test analysis of soil respiration between control and 
each soil amendment

Different letters in the same column for paired treatments indicated 
significant difference at P < 0.05. See the section  "Setup of experi-
mental plots" for treatment codes

No Amendment CO2 flux (µmol 
 m−2  s−1)

P value (n = 18)

1 C 3.60b 0.0361
B 4.19a

2 C 3.60a 0.3931
G 3.94a

3 C 3.60b 0.0472
L 4.20a

4 C 3.60a 0.6008
PAM 3.47a

5 C 3.60a 0.3839
PAM + B 3.38a

6 C 3.60a 0.7338
PAM + G 3.72a

7 C 3.60b 0.0067
PAM + L 4.09a

Table 4  ANOVA results of soil respiration in different soil amend-
ments

Treatment levels with the same letter within a column are not signifi-
cantly different at P < 0.05 (n = 18). SE standard error of the mean, 
MR mean rank. See the section  "Setup of experimental plots" for 
treatment codes

Soil amendment Min Median Max Mean ± SE MR
CO2 flux (µmol  m−2  s−1)

C 0.59 1.69 16.01 3.64 ± 0.54 4.57ab

B 0.40 2.06 17.04 4.23 ± 0.61 5.88a

G 0.45 1.87 21.97 4.00 ± 0.66 4.53ab

L 0.34 2.09 21.39 4.23 ± 0.67 5.11ab

PAM 0.40 1.86 14.60 3.53 ± 0.53 4.46ab

PAM + B 0.42 1.94 14.99 3.43 ± 0.55 3.79b

PAM + G 0.31 2.41 14.83 3.70 ± 0.44 5.33ab

PAM + L 0.70 2.39 19.52 4.14 ± 0.57 5.93a

χ2 28.86
d.f 7
P-value 0.0003
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is a soil-forming process which involves the deposition 
and accumulation of calcium carbonate in soil, resulting in 
hardening of the soil. Among long-term no-till soils, limed 
soils had a higher SR and greater microbial C biomass than 
unlimed soils, attributed to the higher soil pH (Fuentes et al. 
2006), which may increase soil turnover and organic miner-
alization (Rowley et al. 2018).

SR in each amendment in dry and wet seasons

We compared SR between the rainy season (June–August) 
and the dry season (December–February). Means differed 
significantly between seasons in all plots (Fig. 3). This sea-
sonal difference in SR may be due to that in soil moisture. 
In all plots, soil moisture was significantly higher (P < 0.05) 
during the wet season, and soil temperature was significantly 
higher (P < 0.05) during the dry season (Fig. S1). This sug-
gests that at our study site, soil moisture limits SR more 
than soil temperature does, especially during the dry season. 
Hashimoto et al. (2004) similarly reported that SR is higher 
during the rainy season. In addition, changes in soil moisture 
affect the activity of soil microbes (Orchard and Cook 1983).

The effect of soil moisture on SR can be assessed sea-
sonally to represent environmental changes affecting their 
interaction (Jeong et al. 2018). In general, SR increases as 
soil moisture increases. Soil moisture was significantly cor-
related with SR, soil enzymes, and microbial biomass C 
(Tomar and Baishya 2020). Emissions in the wet season are 
significantly higher than those in the dry season owing to 
improved hydrothermal conditions, which are more favora-
ble for soil microbes and the survival of plant roots (Cui 
et al. 2020; Orchard and Cook 1983; Rodtassana et al. 2021; 

Tomar and Baishya 2020). Boonriam et al. (2021) reported 
that SR in the rainy season is double that in the dry season 
in Thailand. Here, during the dry season, SR was similar 
among treatments (Fig. 3). Lacking enough water, drier soils 
cannot use available energy substrates (Orchard and Cook 
1983).

Factors contributing to SR in various treatments

The rate of  CO2 release from the soil is used as a measure of 
microbial activity (Orchard and Cook 1983). It is determined 
mainly by the soil and by environmental parameters such as 
soil moisture and soil temperature. We found no significant 
correlation (P > 0.05) of SR with any soil property. How-
ever, we found positive associations (P > 0.05) with clay 
content (r = 0.21), soil pH (r = 0.05), TN (r = 0.12), and SOC 
(r = 0.02; Table 5).

Soil moisture was significantly (P < 0.01) related to SR 
in all treatments. The coefficients of the correlation between 
SR and soil moisture ranged from 0.42 to 0.64 (Table S1). 
Li et al. (2021) similarly showed that SR was positively cor-
related with soil moisture. Microbial respiration is linearly 
related to soil moisture (Cook and Orchard 2008). The influ-
ence of soil moisture on estimating SR in semi-arid habitats 
has also been reported (Meena et al. 2020).

There was no association with soil temperature during 
the dry season, but the daily variation of SR was positively 
correlated with that of soil temperature during the rainy sea-
son (Adachi et al. 2009). Soil temperature was significantly 
negatively correlated with SR in all plots (Table S1). Soil 
moisture but not soil temperature determines the incidence 
of SR (Hashimoto et al. 2004). In our case, soil moisture 

Fig. 3  Pairwise comparison of 
SR (mean ± SE) between wet 
(W) and dry (D) seasons within 
treatments. Paired treatments 
with the different letters in the 
bars are significantly different 
at P < 0.05
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played an important role in influencing the change in SR 
relative to soil temperature.

Conclusions

Applications of soil amendments will have positive impact 
for improving soil properties so as to increase crop pro-
duction. The applied soil amendment practices contrib-
uted to soil respiration in different ways during the study 
period. Soil respiration was significantly lower (P < 0.05) 
in PAM + B (3.43 ± 0.55 µmol  m−2  s−1) than in other treat-
ments, including the controls, and was significantly higher 
(P < 0.05) in B (4.23 ± 0.61  CO2 µmol  m−2  s−1) and PAM + L 
(4.14 ± 0.57 µmol  m−2  s−1). Higher soil respiration values 
were observed in the wet season than in the dry season in 
all plots. This was mainly due to the influence of soil mois-
ture effect on soil respiration. Since we focused on some 
soil amendments practices, further studies with different 
rates are required to assess the effect of soil amendments 
on soil respiration which is not yet studied to have more 
understanding on the relationship between soil respiration 
and soil amendments. More detailed studies are needed in a 
variety of agroecological settings to determine the best soil 
amendment methods that minimize  CO2 emissions.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s12665- 024- 11522-4.
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