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Abstract
Precipitation forecasts are of high significance for different disciplines. In this study, precipitation was forecasted using a wide 
range of teleconnection signals across different precipitation regimes. For this purpose, four sophisticated machine learning 
algorithms, i.e., the Generalized Regression Neural Network (GRNN), the Multi-Layer Perceptron (MLP), the Multi-Linear 
Regression (MLR), and the Least Squares Support Vector Machine (LSSVM), were applied to forecast seasonal and annual 
precipitation in 1- to 6-months lead times. To classify precipitation regimes, precipitation was clustered using percentiles. The 
indices quantifying El Niño-Southern Oscillation (ENSO) phasing showed the highest association with autumn, spring, and 
annual precipitation over the studied areas. The MLP and LSSVM algorithms provided satisfactory forecasts for almost all 
cases. However, our results indicated that the performance of LSSVM decreased in testing data, implying the tendency of this 
algorithm towards overfitting. The MLP showed a more balanced performance for the training and testing sets. Consequently, 
MLP seems best suited to be used for forecasting precipitation in our study area. The modeling algorithms provided less reli-
able forecasts for the regions corresponding to the 10–40th percentiles, mostly located in hyper-arid and arid environments. 
This underscores the inherent difficulty of precipitation forecasting in the hyper-arid and arid areas, wherein precipitation is 
very erratic and sparsely distributed. Our findings illustrate that clustering precipitation regimes to consider microclimate 
seems vital for reliable precipitation forecasting. Moreover, the results seem useful to design preventive drought/flood risk 
management strategies and to improve food-water security in Iran.
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Introduction

Precipitation is the most important component of the 
hydrologic cycle on the globe, recharging renewable 
surface and ground water resources (Brutsaert 2005; Jin 
et al. 2021; Sospedra‐Alfonso et al. 2015). As such, it is 
of paramount importance for domestic, industrial, and 
agricultural sectors, particularly in the context of chang-
ing climates (Medina et al. 2019; Myers et al. 2017; Qin 
et al. 2020). Precipitation anomalies, which can manifest 
as floods or droughts, may highly affect human life qual-
ity (Dai 2011; Petrucci 2022). Therefore, precipitation 
forecasts hold significant value in informing strategies 
aimed at adapting to drought and floods, ensuring food 
and water security, and promoting human health (Medina 
et al. 2019; Nguyen-Huy et al. 2017; Nouri et al. 2017a). 
Precipitation anomalies occur in association with local-
scale microclimate anomalies and global teleconnections 
phasing. Climate change influences not only precipitation 
magnitude, but also its seasonality and type (Nouri and 
Homaee 2020, 2021b; Qin et al. 2020) through impacting 
the storm track activity and atmosphere–ocean teleconnec-
tion signals (Cai et al. 2015; Evans 2009; Trenberth 2020; 
Trenberth et al. 2013).

Teleconnection fluctuations and their correlation with 
precipitation provide a promising approach for forecast-
ing precipitation amounts and anomalies as well as climate 
change impacts on precipitation. There are plenty of studies 
addressing the association between teleconnection signals 
and precipitation-related variables, e.g., dry/wet days, rain-
fall intensity, precipitation amount, precipitation extremity, 
precipitation duration, and precipitation type, on the globe 
(Casanueva et al. 2014; He and Guan 2013; Irannezhad et al. 
2021; Nazemosadat and Cordery 2000; Nazemosadat and 
Ghasemi 2004; Nouri and Homaee 2021b; Skeeter et al. 
2019; Helali et al. 2022; Xiao et al. 2017). Moreover, the 
precipitation behavior during different atmospheric telecon-
nection events (for instance the El Niño-Southern Oscilla-
tion, ENSO) has been leveraged to evaluate the variabilities 
of hydrological and biometeorological variables such as 
runoff and streamflow (Niu et al. 2014; Wang et al. 2022b), 
soil moisture (Nicolai‐Shaw et al. 2016; Niu et al. 2014), 
groundwater level (Rust et al. 2018), heat waves (Choi et al. 
2020; Jacques‐Coper et al. 2021), evapotranspiration (Chai 
et al. 2018; Helali and Asadi Oskouei 2021; Zhao et al. 
2020), land–atmosphere coupling strength (Holmes et al. 
2017; Nouri and Homaee 2021a), and crop yield (Bannayan 
et al. 2011; Nouri et al. 2017a). The teleconnection signals 
have been also used to project the future changes in hydro-
climatological variables (Rust et al. 2019; Yoon et al. 2015).

Spatial inconsistency in the relationship between pre-
cipitation and large-scale teleconnections refers to the 

phenomenon in which the relationship between precipita-
tion and teleconnection is significant at certain points or 
regions but not at neighboring areas (Brown and Com-
rie 2004). This discrepancy can be a potential pitfall for 
understanding the complex interactions between precipi-
tation and large-scale atmospheric phenomena. This can 
be explained by local impacts (particularly for point-scale 
studies) and/or the coupled effects exerted by other large-
scale teleconnection patterns. Brown and Comrie (2004) 
explained spatial inconsistencies in the relationship of 
ENSO and winter precipitation by the Pacific Decadal 
Oscillation (PDO) phase shift over the western United 
States. Therefore, the phase of one teleconnection driver 
may modulate the impacts of another, affecting forecast-
ing skill (Dannenberg et al. 2018; Theobald et al. 2018). 
This implicitly implies that forecasting precipitation 
based on one teleconnection driver seems to be highly 
uncertain, since it does not consider the coupled effects 
of teleconnections.

The investigation of the relationship between precipi-
tation and teleconnections has been extended to regional 
scales, such as catchment-level studies, to overcome the 
spatial inconsistency observed in point-scale investigations 
(Räsänen and Kummu 2013; Sigaroodi et al. 2014; Xiao 
et al. 2015; Zhang et al. 2013, 2016a). However, conflicting 
results may still arise on regional scales. The relationships 
and forecasting models represent the average precipitation 
condition of a basin and might not be valid for each local site 
within that basin. This can be ascribed to the microclimate 
which can influence local precipitation regimes in a highly 
variable and non-uniform manner. Therefore, a sophisticated 
analytical approach is required to consider the microclimate 
impacts in different teleconnection events. Clustering tech-
niques identify distinct groups of microclimate conditions 
associated with specific precipitation patterns (Roque-Malo 
and Kumar 2017). They can be particularly useful in reduc-
ing the uncertainty of precipitation forecasts, by providing a 
more detailed and nuanced understanding of the local factors 
that contribute to precipitation variability (Di et al. 2015; 
Gibson et al. 2021; Liu et al. 2020; Roque-Malo and Kumar 
2017).

Various modeling approaches have been adopted to ana-
lyze the precipitation anomalies during different teleconnec-
tion events and to forecast precipitation. It is worth noting 
that modeling approach should physically explain the pre-
cipitation response to teleconnections. Linear approaches, 
such as linear regression, have been widely utilized in previ-
ous studies to associate precipitation-related variables with 
teleconnection indices (Hu et al. 2005; Kim et al. 2012; 
Wang et al. 2017, 2006a). This modeling approach is valid 
for the case that precipitation is linearly associated with tel-
econnection anomalies. However, it has been argued that 
the linear approaches seem unsuitable to be employed when 
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precipitation responds non-linearly to atmospheric telecon-
nection patterns (Chung and Power 2017; Kinouchi et al. 
2018; Krishnaswamy et al. 2014). With recent advances in 
computational and data sciences, artificial intelligence has 
emerged as a promising tool for analyzing complex rela-
tionships with high inherent uncertainty in different fields 
(Boukabara et al. 2021; Shouval et al. 2021). Machine learn-
ing (ML) is a sub-domain of artificial intelligence that offers 
deep insights into complex non-linear data structures (Shou-
val et al. 2021). Use of machine learning is rapidly grow-
ing in weather forecasting and hydroclimatology literature 
(Arcomano et al. 2020; Ashley et al. 2019; Böhm et al. 2021; 
Chakraborty et al. 2021; Scher and Messori 2018). Recently, 
ML alternatives have been applied to forecast precipitation 
based on teleconnection signals (He et al. 2021). This study 
aimed to forecast the lagged responses of seasonal and 
annual precipitation to a wide range of teleconnection sig-
nals across different clustered precipitation regimes in Iran 
using sophisticated machine learning algorithms.

Methodology

Study area and data

Iran, situated in the Middle East, is a vast country char-
acterized by a diverse range of climatic regimes, ranging 
from hyper-arid to humid. This remarkable climatic vari-
ety can largely be attributed to the presence of the Alborz 
Mountains in the north and the Zagros ranges in the west. 
The precipitating air masses blowing from the Caspian Sea 
are trapped by the Alborz, yielding sub-humid and humid 
conditions in northern Iran (Nouri and Homaee 2021b). The 
eastward Mediterranean humid air masses are also blocked 
by the Zagros Mountains, resulting in a semi-arid condition 
in western half of Iran. The arid and hyper-arid climates 
prevail in central, eastern, and southern Iran, where annual 
precipitation over 250 mm is infrequent (Nouri and Homaee 
2021b). As a result, different seasonal and annual precipita-
tion regimes can be observed in our study area. We clustered 
seasonal and annual precipitation based on the percentiles 
to portray different precipitation regimes and to consider 
the microclimate impacts across the studied sites (Fig. 1, 
and Table 1).

The Iran Ministry of Energy records precipitation data 
from more than 4360 locations (https:// stu. wrm. ir/ login. asp), 

Fig. 1  Location of the studied 
sites (listed in Table 1 of sup-
plementary material) classi-
fied in different precipitation 
percentiles

https://stu.wrm.ir/login.asp
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and the Iran Meteorological Organization (IRIMO) collects 
precipitation data from more than 720 synoptic and climatol-
ogy stations (https:// data. irimo. ir/ login/ login. aspx) (Nouri 
and Homaee 2018, 2022; Saemian et al. 2021, 2022). We 
employed three main selection criteria: the dataset length, 
the presence of missing data, and the identification of out-
liers. The clustering facilitated the differentiation between 
outliers and anomalies. Specifically, precipitation spikes 
were observed in the data from some arid southern sites 
that initially appeared to be outliers but were, in fact, a typi-
cal behavior within specific clusters of these areas. There-
fore, we classified such spikes as anomalies and retained 
the site. Nevertheless, the spikes that appeared unusual for 
a given cluster were deemed outliers and the corresponding 
sites were excluded from the analysis. Finally, the monthly 

precipitation data were gathered from 117 synoptic sites and 
600 rain gauges with no missing data and outliers for the 
duration spanning from 1987 to 2015 (Table 1 in supple-
mentary material).

The teleconnection indices are also listed in Table 2. 
These indices were retrieved from different sources given 
in Table 2 of supplementary material. For further details 
on the indices, one can refer to Hanley et al. (2003), Bald-
win et al. (2001), Wang and Enfield (2001), Overland et al. 
(1999), Kutiel and Benaroch (2002), Barnston and Livezey 
(1987), and Wallace and Gutzler (1981). The datasets used 
to derive indices and their spatial resolution, as well as 
the latitude/longitude range of teleconnection patterns are 
listed in Table 3 of supplementary material. It is notewor-
thy that most indices were already computed by different 

Table 1  Clustering criterion (Cr), the number of stations located in each cluster (SN), standard deviation (SD), and mean and coefficient of vari-
ation (CV) of seasonal and annual precipitation

* The criterion magnitude is the precipitation magnitude which the site grouped in a given percentile has the precipitation magnitude lower than 
that

No Percentile Autumn Winter

Cr* (mm) SN SD Mean CV Cr (mm) SN SD Mean CV

1 10th 28.4 73 14.0 19.7 71.0 57.9 72 14.4 45.2 31.8
2 20th 38.2 71 21.1 32.6 64.8 75.1 72 16.9 66.0 25.6
3 25th 43.0 36 22.7 40.7 55.8 82.2 36 26.3 78.8 33.4
4 30th 50.1 36 23.8 46.3 51.5 88.9 36 29.1 86.1 33.8
5 40th 66.0 71 22.4 57.8 38.7 102.4 72 31.5 96.2 32.8
6 50th 80.8 72 27.1 73.4 36.9 117.3 71 39.0 108.7 35.9
7 60th 94.4 72 36.9 87.7 42.1 134.6 72 45.3 126.1 35.9
8 70th 114.3 71 45.5 104.5 43.6 158.2 71 56.1 145.9 38.4
9 75th 124.3 36 52.1 118.6 44.0 173.6 37 49.6 166.7 29.7
10 80th 144.3 35 59.2 133.9 44.2 196.1 34 56.7 185.2 30.6
11 90th 194.1 73 69.9 165.9 42.2 255.8 72 59.1 223.3 26.4
12 95th 275.7 35 89.6 233.6 38.4 301.9 36 79.2 278.4 28.5
13 100th 813.0 36 96.2 453.0 21.2 653.6 36 138.8 409.6 33.9

No Percentile Spring Annual

Cr (mm) SN SD Mean CV Cr (mm) SN SD Mean CV

1 10th 20.2 73 16.0 15.4 104.3 135.3 72 34.4 102.1 33.7
2 20th 32.6 71 18.5 26.5 70.1 185.9 72 49.9 161.3 31.0
3 25th 38.1 38 19.8 35.3 56.0 202.2 37 75.3 194.8 38.7
4 30th 45.3 34 21.4 41.2 52.0 220.2 34 56.2 210.1 26.8
5 40th 63.1 72 27.0 53.8 50.1 253.9 72 54.1 237.5 22.8
6 50th 82.4 71 31.1 74.1 42.0 287.3 74 56.2 271.4 20.7
7 60th 96.2 71 33.3 89.7 37.1 328.3 69 65.7 307.1 21.4
8 70th 110.0 73 37.1 103.7 35.7 380.8 72 67.6 353.0 19.2
9 75th 117.4 36 37.6 113.0 33.2 416.2 36 80.6 398.8 20.2
10 80th 126.9 35 43.5 121.7 35.7 464.7 35 95.4 441.8 21.6
11 90th 152.7 71 44.8 139.1 32.2 653.2 72 109.0 549.9 19.8
12 95th 183.3 36 51.8 167.8 30.9 860.4 36 135.0 757.0 17.8
13 100th 305.4 36 62.6 215.3 29.1 1714.7 36 153.5 1178.0 13.0

https://data.irimo.ir/login/login.aspx
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sources, viz. National Center for Environmental Information 
(NCEI), Physical Sciences Laboratory (PSL), Climate Pre-
diction Center (CPC) of National Oceanic and Atmospheric 
Administration (NOAA), National Center for Atmospheric 
Research (NCAR), Climatic Research Unit of University 
of East Anglia, Australian Bureau of Meteorology, and the 
Centre d’Estudis Ambientals del Mediterrani (CEAM). 
We, however, calculated Caspian Sea Surface Temperature 
(CSST), Indian Ocean Basin Sea Surface Temperature (IOB-
SST), Pacific Ocean Index (POI), Persian Gulf Sea Surface 
Temperature (PSST), and Western Pacific Sea Surface Tem-
perature (WPSST) by applying gridded NOAA Optimum 
Interpolation SST v2 (https:// psl. noaa. gov/ data/ gridd ed/ 
data. noaa. oisst. v2. html). These indices were equal to the 
average SST for the corresponding areas given in Table 3 of 
supplementary material.

In the current study, the aridity index map provided by 
Nouri and Homaee (2018) was utilized to classify the cli-
mates (Fig. 1). Accordingly, the sites corresponding to the 
10–40th precipitation percentiles are mainly situated in the 
central and eastern Iran and the strips of the Persian Gulf and 

the Gulf of Oman in the south of the country, with arid and 
hyper-arid climatic regimes (Fig. 1). The sites corresponding 
to the 40–60th percentiles are mostly located in northwest-
ern semi-arid environments and southern and northeastern 
arid regions. The 60–80th percentiles dominantly comprise 
the northwestern semi-arid locations and the arid areas lying 
near the boundary between the semi-arid and arid climates 
in southern Iran. The 80–100th percentiles also encom-
pass semi-arid, sub-humid, and humid areas in the central 
and northern Zagros and the sub-humid and humid areas 
located in the northern flanks of the Alborz. Accordingly, 
the precipitation percentiles are scattered across a broad 
range of climatic and topographic settings, illustrating that 
different precipitation regimes, and consequently microcli-
mates, were included in our investigation (Fig. 1). Hence, the 
geographic and climatic indices appear not to be promising 
criteria to explain precipitation regimes. For instance, two 
sites, namely Arhan (No. 50 in Table 1 of supplementary 
material) and Saroo (No. 605 in Table 1 of supplementary 
material), both classified under the 70th percentile with an 
annual precipitation of approximately 360 mm, exhibited 

Table 2  List of teleconnection indices

a Niño1 + 2 region (0–10º S, 90º W–80º W)
b Niño3 region (5º N–5º S, 150º W–190º E)
c Niño3.4 region (5º N–5º S, 120º W–170º W)
d Niño4 region (5º N–5º S, 150º W–160º E)

No Teleconnection indices No Teleconnection indices

1 AMO: Atlantic Multidecadal Oscillation 21 QBO: Quasi-Biennial Oscillation
2 AO: Arctic Oscillation 22 SCN: Scandinavia Index
3 CSST: Caspian Sea Surface Temperature 23 SFlux: Solar Flux
4 EA: East Atlantic pattern 24 SOI: Southern Oscillation Index
5 EAWR: Eastern Asia/Western Russia pattern 25 SSPOT: Sunspots
6 IOBSST: Indian Ocean Basin Sea Surface Temperature 26 SST1 + 2: Sea Surface Temperature in Niño1 + 2 region
7 MEI: Multivariate El Niño-Southern Oscillation Index 27 SST3: Sea Surface Temperature in Niño3 region
8 MSST: Mediterranean Sea Surface Temperature 28 SST3.4: Sea Surface Temperature in Niño3.4 region
9 NAO: North Atlantic Oscillation 29 SST4: Sea Surface Temperature in Niño4 region
10 NCP: North Sea-Caspian Sea Pattern 30 SSTas: Sea Surface Temperature anomalies in four Niño regions
11 Niño1 + 2: Extreme Eastern Tropical Pacific Sea Surface Tempera-

ture anomalies
31 SSTs: Sea Surface Temperature in four Niño regions

12 Niño3: Tropical Pacific Sea Surface Temperature anomalies 32 TNA: Tropical North Atlantic
13 Niño3.4: East Central Tropical Pacific Sea Surface Temperature 

anomalies
33 TNA-TSA: Tropical North and South Atlantic

14 Niño4: Central Tropical Pacific Sea Surface Temperature anomalies 34 TNI: Trans-Niño Index (standardized difference between 
Niño1 + 2 and Niño4)

15 NPI: North Pacific Index 35 TNIi: Difference between SST1 + 2 and SST4 indices
16 PDO: Pacific Decadal Oscillation 36 TPI: Tripole Index for the Interdecadal Pacific Oscillation
17 PNA: Pacific North American pattern 37 TSA: Tropical South Atlantic
18 POI: Pacific Ocean Index 38 WHWP: Western Hemisphere Warm Pool
19 POL: Polar/Eurasia pattern 39 WP: Western Pacific oscillation
20 PSST: Persian Gulf Sea Surface Temperature 40 WPSST: Western Pacific Sea Surface Temperature

https://psl.noaa.gov/data/gridded/data.noaa.oisst.v2.html
https://psl.noaa.gov/data/gridded/data.noaa.oisst.v2.html
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significant differences in their climatic and geographic char-
acteristics. Arhan is a cold semi-arid mountainous area situ-
ated at an elevation of 2028 m.a.s.l, while Saroo is an arid 
region located at an elevation of 1347 m.a.s.l. Despite these 
dissimilarities, the two sites were classified under the same 
precipitation regime, highlighting the limitations of rely-
ing solely on geographic and climatic indices for explaining 
precipitation patterns.

Summer precipitation was not considered in the current 
study, as it is less than 10% of annual precipitation in 80% 
of investigated sites. Given a high rate of evapotranspiration 
in summertime, water precipitated in summer appears not 
important to be forecasted in Iran.

Modeling framework

Pre‑processing

The modeling approach consisted of three primary stages: 
the pre-processing, the forecasting, and statistical evaluation 
(Fig. 2). In the first phase, the correlations between seasonal 
and annual precipitation (as predictands) with 40 teleconnec-
tion indices (as candidate predictors in Table 2) were exam-
ined for 13 clusters. This was conducted in 1- to 6-months 
lagged times, resulting in the creation of matrices that 
encompassed a total of 240 associations. The predictands 
were autumn (October–November–December), winter 
(January–February–March), spring (April–May–June), and 
annual precipitation. It should be noted that the hydrologic 
year in Iran spans from 1st October to 30th September of the 
subsequent year (Nouri and Homaee 2020). The Pearson’s 
correlation coefficient was used to evaluate the relationship 

between teleconnection indices and precipitation on seasonal 
and annual scales:

where xi is the independent variable (i.e., teleconnection 
indices), yi is the dependent variable (precipitation), and y 
and x are the average of the dependent and independent vari-
ables, respectively.

The correlation matrix established in 1- to 6-month lead 
times is as follows:

where i and j stand for the number of teleconnection 
indices (Table 2) and the number of percentiles (Table 1), 
respectively.

After constructing the correlation matrices, a three-step 
technique known as the forward selection was employed to 
identify the most significant predictors. This approach has 
been extensively utilized in the literature (Khan et al. 2007; 
Modaresi et al. 2018; Wang et al. 2006b). First, the predic-
tor with the highest correlation coefficient was selected to 
model the predictand. Subsequently, other predictors were 
gradually introduced into the model in descending order of 

(1)R =

n∑
i=1

�
xi − x

��
yi − y

�
�

n∑
i=1

�
xi − x

�2�
yi − y

�2
,

(2)Ri,j =

⎡
⎢⎢⎢⎢⎢⎣

R1,1 R1,2 R1,3 . R1,13

R2,1 R2,2 R2,3 . R2,13

. . . . R3.13

. . . . .

R40,1 R40,2 R40,3 . R40,13

⎤
⎥⎥⎥⎥⎥⎦

,

Fig. 2  The forecasting framework and stages based on the machine 
learning (ML) algorithms of the Generalized Regression Neural Net-
work, GRNN, the Multi-Layer Perceptron, MLP, the Multi-Linear 
Regression, MLR, and the Least Squares Support Vector Machine, 

LSSVM. (The nRMSE, PBIAS and NSE denote normalized Root 
Mean Square Error, Percent Bias, and Nash–Sutcliffe Efficiency, 
respectively, explained in “Quantitative evaluation”.)



Environmental Earth Sciences (2023) 82:495 

1 3

Page 7 of 21 495

their correlation coefficient. Finally, the three predictors that 
produced the minimum error were deemed the most appro-
priate combination (Table 3). Note that we experimentally 
realized that incorporating more than three predictors might 
elevate the risk of overfitting.

Forecasting

In the second step, the seasonal and annual precipitation was 
forecasted using four ML algorithms including the General-
ized Regression Neural Network (GRNN), the Multi-Layer 
Perceptron (MLP), the Multi-Linear Regression (MLR), 
and the Least Squares Support Vector Machine (LSSVM). 
The MLP is a common Neural Network Model (ANN) with 
feed-forward network class including at least three layers of 
input, hidden, and output (Muni Kumar and Manjula 2019). 
It is composed of multiple interconnected nodes or neurons, 
arranged in a layered structure, where each neuron receives 
inputs from the previous layer and produces an output, which 
is transmitted to the next layer. The hidden layer of the MLP 

contains multiple neurons that are assigned weights and 
biases to optimize the model performance (Fig. 3a).

The GRNN is a kernel-based three-layer ANN in which 
the number of neurons in input (output) layers is equiva-
lent to the input (output) vector dimensions (Lee and Resdi 
2014). One of the key features of the GRNN is the use of a 
Radial Basis Function (RBF) in the pattern layer. The RBF is 
a type of activation function often employed in kernel-based 
methods. It is characterized by a center and a width, and it 
assigns a value to each input based on its distance from the 
center. The Gaussian kernel function is a common choice for 
the RBF due to its smoothness and symmetry. In the GRNN, 
the number of neurons in the input and output layers is fixed 
and equal to the dimension of the input and output vectors, 
respectively (Antanasijević et al. 2014; Antanasijevic et al. 
2013). The number of neurons in the middle layer, however, 
is not fixed and is instead defined by observed data applied 
for calibration and validation (Fig. 3b).

The support vector machine (SVM) is a supervised ML 
applying the Structural Risk Minimization approach to 

Table 3  The most important teleconnection predictors applied to forecast seasonal and annual precipitation across different percentiles

Percentile Autumn Winter

10th CSSTAug Niño4Apr WPJun MSSTSep TNA-TSAJul WPSep

20th CSSTAug NPIAug WHWPApr MSSTSep TNA-TSAJul MSSTDec

25th PSSTJul SSTasSep WHWPApr MSSTSep TNA-TSAJul MSSTDec

30th POLJun SST3.4Aug WHWPApr MSSTSep TNA-TSAJul MSSTDec

40th AOSep PSSTJul SOIAug MSSTSep TNA-TSAJul POLDec

50th MSSTSep Niño3.4Apr SOIJul MSSTSep TNA-TSAJul MSSTDec

60th AMOApr MSSTSep SOIJul MSSTSep TNA-TSAJul POLDec

70th SOIJul AOSep PDOJul PDOAug TNA-TSAJul TSAOct

75th SOIJul PDOJul WPAug MSSTSep TNA-TSAJul MSSTDec

80th SOIJul AMOApr MSSTSep PDOAug TNAJul TSAOct

90th SOIJul CSSTJul WPSSTApr MSSTSep POLDec TNA-TSAJul

95th PDOJul SOIAug TNAMay POLDec MSSTSep TNA-TSAJul

100th PNAApr SCNSep SOIJul POLDec TNA-TSAJul NAO2Aug

Percentile Spring Annual

10th CSSTDec PNADec PNAMar CSSTAug NAO2Jul NCPApr

20th CSSTDec PNAMar SOIDec AOJul CSSTAug MSSTMay

25th NPIMar POLJan WPSSTMar AOJul CSSTAug MSSTMay

30th NPIMar NAO2Jan WPSSTMar AOJul CSSTAug MSSTMay

40th Niño4Feb NPIMar CSSTJan CSSTAug PNAAug TSAMay

50th NAO2Jan Niño4Feb POLOct CSSTMay Niño4Jul PSSTJul

60th NAO2Jan Niño4Feb MSSTMar PNAAug SST4Jul TNATSAAug

70th NAO2Jan POLDec SST4Nov CSSTJul Niño4Jul PSSTJul

75th NAO2Jan TPIMar WHWPMar PNAAug SST4Jul TNA-TSAAug

80th SST4Jan POLDec POLJan PNAAug SCNJul SST4Jul

90th MSSTMar NAO2Jan SST4Nov EASep NCPApr SST4Jul

95th MSSTMar NAO2Jan SST4Nov EAWR Aug SST4Jul WPJul

100th MSSTMar NAO2Jan SST4Nov NCPSep POIMay TSAAug
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Fig. 3  The architecture of the 
machine learning algorithms 
(∑ denotes the sum of weights 
for output layer in MLP, and the 
sum of weights for output func-
tions in LSSVM, and the sum of 
weights for variable coefficients 
in MLR. S1 to Sn are the sum-
mation units, and D stands for 
the division unit in GRNN. The 
weights (w) are given to layers 
in MPL and GRNN, to kernel 
functions in LSSVM, and to 
variable coefficients in MLR. 
SV denotes a support vector in 
LSSVM. P(t-1) and P(t-6) are the 
precipitation in 1- to 6-months 
time lags, respectively. α (x, xi) 
is the variable coefficient of xi in 
MLR, and k (x, xi) is the kernel 
function of xi in LSSVM.)
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minimize model error, whereas other methods such as arti-
ficial neural networks (ANN) use Empirical Risk Minimi-
zation principles (Cao et al. 2009; Kazem et al. 2013). The 
LSSVM is a variant of SVM that exploits linear equations 
in a forecasting algorithm. The LSSVM has been shown 
to achieve acceptable performance by applying an effective 
kernel function (Guo et al. 2012). The kernel function maps 
the input data into a higher-dimensional feature space, ren-
dering LSSVM suitable for nonlinear problems (Fig. 3c).

The MLR is a supervised learning technique forecasting 
a continuous variable based on several independent vari-
ables. This algorithm uses the training dataset to estimate the 
coefficients of the linear equation that best fits the data (Jose 
et al. 2022; Najafi et al. 2011). The resulting model can then 
be applied to forecast the value of the dependent variable in 
unseen datasets. In the current work, the MLR algorithm 
using three independent variables was formulated to forecast 
seasonal and annual precipitation (Fig. 3d).

The data were split randomly into two subsets of train-
ing and testing. The training set comprised 70% of the data, 
while the testing set contained the remaining 30%. Two final 
outputs, one for each seasonal and annual timeframe, were 
generated for each model by averaging the results of the last 
10 out of 30 iterations.

Quantitative evaluation

Three metrics of normalized Root Mean Square Error 
(nRMSE), Percent Bias (PBIAS), and Nash–Sutcliffe Effi-
ciency (NSE) were employed to evaluate the forecasting skill 
of ML alternatives. The mathematical expressions of these 
statistics are

where fi and oi are, respectively, forecasts and observa-
tions, o denotes the average of the observed data, and n 
stands for the number of comparisons.

The nRMSE is oftentimes applied to quantify the absolute 
error of estimates. The performance of a model is unsatisfac-
tory if nRMSE exceeds 30% (Dettori et al. 2011). The met-
ric of PBIAS quantifies the model bias or systematic error. 
The positive (negative) PBIAS indicates the tendency of a 

(3)
nRMSE = 100 ×

�
1

n

n∑
i=1

�
oi − fi

�2

o
,
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100
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×
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i=1

�
fi − oi

�
n

,

(5)NSE = 1 −
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i=1

�
oi − fi

�2
∑n

i=1

�
oi − o

�2 ,

modeling algorithm to overestimate (underestimate). The 
model forecast can be judged as satisfactory for the PBIAS 
values less than 25% (Moriasi et al. 2007). The NSE is used 
to evaluate the relative error, and a value lower than 0.5 sug-
gests unreliable model performance (Moriasi et al. 2007). 
When forecasts match observations, the model performance 
is considered excellent and the values of nRMSE and PBIAS 
are equal to 0.0%, and the magnitude of NSE is 1.0. In this 
study, the forecasts with nRMSE of < 30%, NSE of > 0.5, 
and PBIAS of < 25% were deemed reliable.

Results and discussion

Predictors selection

Autumnal precipitation had a higher correlation with tele-
connection indices in 1- to 3-months lagged periods (Fig. 4). 
Except for two indices, i.e., Tropical North Atlantic (TNA) 
and Atlantic Multidecadal Oscillation (AMO), the correla-
tion coefficient was found to be insignificant for the 4- to 
6-months lagged associations. Autumn precipitation showed 
a stronger association with the ENSO indices, such as the 
Southern Oscillation Index (SOI), Niño3.4, Sea Surface 
Temperature in four Niño regions  (SSTas), Multivariate El 
Niño-Southern Oscillation Index (MEI), as well as Pacific 
Ocean Index (POI) in lead periods of 1 to 3 months (Fig. 4). 
Table 3 also displays that the indices quantifying ENSO 
activities, such as SOI, Niño3.4 and  SSTas, were applied 
as three main teleconnection predictors to forecast autumn 
precipitation. The ENSO phasing has been shown to exert 
a strong impact on autumnal precipitation, particularly in 
western Iran (Helali et al. 2020; Nazemosadat and Cordery 
2000; Nazemosadat and Ghasemi 2004; Nouri et al. 2017a). 
Winter precipitation was associated insignificantly (p > 0.05) 
with most teleconnection signals (Fig. 5). Nonetheless, win-
ter precipitation showed a higher correlation with indices 
of Pacific Decadal Oscillation (PDO), and Mediterranean 
Sea Surface Temperature (MSST) in 4- to 6-months lead 
periods, as well as indices of Tropical South Atlantic (TSA), 
East Atlantic pattern (EA), SOI and Polar/Eurasia pattern 
(POL) in lagged times of 1–3 months. MSST and Tropical 
North and South Atlantic (TNA-TSA) were often consid-
ered as the main predictors of winter precipitation (Table 3). 
Unlike autumnal rainfall, sharp dry/wet epochs in different 
phases of ENSO are not anticipated in most regions in Iran, 
because ENSO impacts on winter precipitation are modu-
lated by other teleconnections (Ghasemi and Khalili 2008; 
Nazemosadat and Ghasemi 2004).

There was a significant association between spring pre-
cipitation and Pacific Ocean Index (POI), WPSST, Tripole 
Index for the Interdecadal Pacific Oscillation (TPI), and 
ENSO-related indices, including SOI, Niño4, Sea Surface 
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Temperature in Niño4 region (SST4), and MEI (Fig. 6). 
Similar to autumnal precipitation, ENSO phasing seems to 
cause precipitation perturbations during spring, except for 
the 10–30th percentiles. The La Niña-triggered droughts 
are expected during springtime in western Iran (Ahmadi 
et al. 2019; Helali et al. 2021; Nouri and Homaee 2021a). 
However, ENSO anomalies do not explain precipitation vari-
ations occurring in hyper-arid/arid southern, eastern, and 

central Iran, the regions mostly classified in the 10–40th 
percentiles (Fig. 1). Table 3 indicates that the ENSO-related 
indices, such as SOI, Niño4, and SST4, are among three 
main teleconnection indices applied to forecast spring pre-
cipitation. For most clusters, annual precipitation was asso-
ciated significantly with ENSO-related indicators, POI, TPI, 
and WPSST (Table 3 and Fig. 7). Overall, ENSO seems 
to be one of the key teleconnections affecting precipitation 

Fig. 4  The correlation coefficient of autumn precipitation-teleconnection indies for 1- to 6-months lead times (the asterisk indicates the signifi-
cant correlation coefficient at the 95% confidence level)
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variabilities across the country (Table 3, and Figs. 4, 6, and 
7).

Figure 8 shows the Pearson’s correlation coefficient 
obtained for ML algorithms across different clusters in the 
training and testing steps. The GRNN, MLP, LSSVM, and 
MLR had an average Pearson’s correlation coefficient of 
0.85, 0.92, 0.99, and 0.82 in the training phase, and 0.65, 
0.74, 0.48, and 0.74 in the testing step, respectively. The 

results show that while LSSVM had superior performance 
in the training phase (Fig. 8a, c, e, and g), and its forecasting 
skill was severely impaired in the testing phase (Fig. 8b, d, 
f, and h). This discrepancy indicates a pronounced overfit-
ting problem of LSSVM, despite a reasonable number of 
predictors included for training. In other words, LSSVM 
was too narrowly adjusted to the training dataset and could 
not effectively capture the underlying patterns in the unseen 

Fig. 5  The correlation coefficient of winter precipitation-teleconnection indies for 1- to 6-months lead times (the asterisk indicates the significant 
correlation coefficient at the 95% confidence level)
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dataset. This has been also argued in the ML literature (Peng 
and Wang 2009; Wei et al. 2008).

Machine learning modeling performance

The MLP and LSSVM had a reasonable forecasting skill 
for autumn precipitation in all clusters (Fig. 9b and c). 
However, the nRMSE of autumnal precipitation forecasted 

by GRNN and MLR exceeded 30% for the 10th and 40th 
percentiles (Fig. 9c). Consequently, GRNN and MLR did 
not forecast autumnal precipitation reliably for the regions 
located in the 10th and 40th percentiles. The GRNN algo-
rithm exhibited poor performance in forecasting wintertime 
precipitation, as evidenced by a NSE value of less than 
0.5. However, MLP, LSSVM, and MLR algorithms dem-
onstrated reliable performance across all percentiles for 

Fig. 6  The correlation coefficient of spring precipitation-teleconnection indies for 1- to 6-month lead times (the asterisk indicates the significant 
correlation coefficient at the 95% confidence level)
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forecasting winter precipitation, with nRMSE values below 
30% and NSE values above 0.5 (Fig. 9e and f). The GRNN 
and MLR forecasted spring precipitation based on telecon-
nection indices unreliably (i.e., nRMSE > 30%) for the sites 
grouped in the 10th and 40th percentiles (Fig. 9i). How-
ever, MLP and LSSVM provided satisfactory forecasting 
results for springtime precipitation (i.e., nRMSE < 30% and 
NSE > 0.5) in all percentiles, except for the 10th percentile 

(Fig. 9h and i). The average nRMSE of annual precipitation 
forecasted by GRNN, MLP, LSSVM, and MLR was 15.8%, 
8.0%, 6.7%, and 12.6%, respectively. However, the NSE val-
ues for GRNN-forecasted annual precipitation were found 
to be less than 0.5 for some clusters, indicating poor model 
performance (Fig. 9k). Therefore, MLP, LSSVM, and MLR 
performed acceptably for all percentiles on annual scale 
(Fig. 9k and l).

Fig. 7  The correlation coefficient of annual precipitation-teleconnection indies for 1- to 6-months lead times (the asterisk indicates the signifi-
cant correlation coefficient at the 95% confidence level)
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Fig. 8  The Pearson’s correlation 
coefficient of the Generalized 
Regression Neural Network, 
Multi-Layer Perceptron, 
Multi-Linear Regression, and 
Least Squares Support Vector 
Machine algorithms obtained 
for different precipitation per-
centiles in training and testing 
sets
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The GRNN and MLR did not show a clear tendency to 
overestimate or underestimate seasonal and annual precipi-
tation (Fig. 9a, d, g and j). The MLP algorithm, however, 
underestimated autumnal precipitation, and overestimated 
spring and annual precipitation in most percentiles (Fig. 9a, 
g and j). The LSSVM also tended to overestimate annual and 
wintertime precipitation for the majority of clusters (Fig. 9d 
and j). It is noteworthy that the absolute values of PBIAS 
did not exceed 25% for all cases (Fig. 9a, d, g and j), indicat-
ing acceptable bias errors of the studied ML alternatives in 
forecasting seasonal and annual precipitation.

Overall, LSSVM outperformed the other ML options in 
forecasting seasonal and annual precipitation. Except for 
spring precipitation of the areas in the 10th percentile, MLP 

and LSSVM gave reliable seasonal and annual precipitation 
forecasts (i.e., nRMSE < 30%, absolute PBIAS < 25%, and 
NSE > 0.5). Therefore, these algorithms are best suited to 
forecast precipitation using appropriate teleconnection sig-
nals listed in Table 3. The LSSVM has been identified as 
a robust algorithm for forecasting precipitation (Alizadeh 
and Farajzadeh 2018; Choubin et al. 2016; Tao et al. 2017). 
However, as discussed earlier, the LSSVM algorithm may 
experience overfitting, resulting in unsatisfactory precipita-
tion modeling for regions not included in the training data-
set. Therefore, caution should be exercised when applying 
LSSVM to forecast precipitation for unseen data. However, 
MLP provided a more balanced performance for training and 
testing steps (Fig. 8). This demonstrates that the MLP is less 

Fig. 9  The nRMSE, PBIAS, and NSE values of the Generalized 
Regression Neural Network (GRNN), the Multi-Layer Perceptron 
(MLP), the Multi-Linear Regression (MLR), and the Least Squares 

Support Vector Machine (LSSVM) for seasonal and annual precipita-
tion across different clusters
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susceptible to overfitting, which is a critical consideration 
when selecting an appropriate forecasting model. Therefore, 
in our study area, MLP is a preferable choice for precipita-
tion forecasting compared to LSSVM.

The performance of ML models is generally inferior in the 
regions corresponding to the 10–40th percentiles, as com-
pared to the sites grouped in the 40th to 100th percentiles 
(Fig. 9). For instance, the average nRMSE of autumn pre-
cipitation forecasts provided by GRNN, MLP and LSSVM 
and MLR was 37.5%, 23.4%, 20.0%, and 34.9% in the 10th 
to 40th percentiles, and 15.3%, 15.8%, 13.4%, and 21.4% in 
the 40–100th percentiles, respectively. As stated previously, 
the regions corresponding to the 10th and 40th percentiles 
are mostly situated in eastern and southern hyper-arid and 
arid areas (Fig. 1). These results indicate that forecasting 
skill of ML options is relatively lower in hyper-arid and arid 
areas. Precipitation modeling in hyper-arid/arid areas seems 
to be a challenging task. This can be ascribed to the nature of 
precipitation process in these environments, which is erratic, 
uneven and sparsely distributed (Al-Rawas and Valeo 2009; 
Altwegg and Anderson 2009; Attum et al. 2014). This ren-
ders these water-limited regions susceptible to flood and 
drought risks (Dai 2011). Moreover, precipitation may occur 
aloft, however, it is not detected by rain gauges. This can be 
attributed to sub-cloud evaporation which is the evapora-
tion of raindrops prior to reaching to land surface owing 
to high atmospheric evaporative power in hyper-arid/arid 
areas (Dinku et al. 2011; Salamalikis et al. 2016; Wang et al. 
2022a). This imposes high uncertainties on remotely-sensed 
precipitation products, and also teleconnection-based fore-
casts (Chen et al. 2020; Dinku et al. 2011). Given a relatively 
high forecasting skill of LSSVM and MLP in the 10–40th 
percentiles, these modeling approaches seem to be of much 
use for drought/flood risk management in the hyper-arid/
arid areas studied.

The strength of precipitation and teleconnections corre-
lations may change over time (Douville et al. 2017; Kamil 
et al. 2019; Nouri and Homaee 2020). For instance, Nouri 
and Homaee (2020) and Kamil et  al. (2019) reported a 
sudden increase in the correlation coefficient between pre-
cipitation and ENSO as of the 1980s in central southwest 
Asia. As a result, ENSO-triggered droughts occurred more 
frequently in the twenty-first century with respect to the 
mid-twentieth century. It is worth noticing that three dev-
astating dry episodes in Iran occurred in La Niña years of 
1999–2001, 2007–2009, and 2010–2012 (Nouri and Homaee 
2020; Trigo et al. 2010). Therefore, a change in time study 
might affect the performance of the ML algorithms by alter-
ing the strength of the association between precipitation and 
teleconnections.

Precipitation is a complex phenomenon influenced by 
several environmental factors, such as atmospheric con-
ditions, geography, and topography (Kumari et al. 2016). 

Precipitation is a conditional variable, meaning that it hinges 
on certain circumstances being met before it occurs (Zhang 
et al. 2016b). This adds an extra layer of complexity to 
precipitation forecasting, particularly in complex terrains. 
The ML algorithms can learn these relationships from his-
torical data to forecast future precipitation. However, the 
above-mentioned complexities can impede the skill of ML 
algorithms to capture all the relevant information. Cluster-
ing identifies the underlying patterns and relationships that 
may be obscured in unstructured data (Ghorayeb et al. 2022; 
Kömüşcü et al. 2022; Mateo et al. 2013; Yang et al. 2022). 
In the current study, this technique facilitated the grouping 
of similar precipitation data into different subsets, enabling 
the identification of regions with similar precipitation pat-
terns as recommended in the literature (Awan et al. 2015; 
Dehghan et al. 2018; Kömüşcü et al. 2022; Kumari et al. 
2016). In addition, clustering can be applied to identify out-
liers or anomalies (Krleža et al. 2020; Mateo et al. 2013). 
In particular, we observed that some sites located in the 
southern and southeastern regions exhibited sudden spikes 
in springtime precipitation. However, since such patterns are 
typical for the corresponding clusters, we considered these 
data as anomalies rather than outliers. On the other hand, we 
also identified some stations with precipitation spikes that 
were not typical for a given cluster. Consequently, we con-
sidered these spikes as outliers and removed such stations 
from our study area. Overall, the application of clustering 
can significantly enhance the forecasting skill of ML mod-
els by reducing data complexity, and detecting patterns and 
outliers/anomalies.

Precipitation forecasting plays a crucial role in various 
fields, including agriculture. The availability of rainfall dur-
ing the autumn and spring seasons is of utmost importance 
for dry farming in Iran. According to Nouri et al. (2017a), 
precipitation shortage during the months of October to 
December (OND) and March to May (MAM) can cause 
crops to fail in dry farming in Iran. Specifically, autumnal 
dry spells jeopardize crop establishment and finally result 
in crop failure under rainfed condition (Nouri et al. 2017a, 
b). Precipitation forecasts can also help the government 
to take well-informed decisions on food security such as 
importing cereal crops, croplands extension, and agricultural 
insurance. Overall, the forecasting methods described in this 
study can be beneficial for decision-makers to adopt proac-
tive agricultural risk management in Iran. Furthermore, as 
climate change exerts its effects on precipitation patterns 
via impacting global teleconnection patterns, the forecast-
ing frameworks can be used to design adaptation strategies 
in our study area.

As for water resources management, the results can pro-
vide valuable insights for policymakers seeking to ensure 
equitable distribution of water resources, particularly in 
densely populated water-scarce areas in Iran. By utilizing 
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precipitation forecasts, water managers can make informed 
decisions on how to manage water resources, including 
increasing water releases from reservoirs to create additional 
storage capacity based on expected inflow, or implement-
ing water conservation measures to preserve water supplies 
during drought (Pattanaik and Das 2015; Ziervogel et al. 
2010). The absence of reliable precipitation forecasts can 
have severe implications, as demonstrated by the disastrous 
flood in southwestern Iran during the spring of 2019 (Dez-
fuli 2020; Khosravi et al. 2020). In this event, the water held 
behind large dams constructed on the Dez and Karkheh riv-
ers was not released in a timely manner, leading to severe 
flooding that inflicted substantial damage to the environ-
ment, infrastructure, and agriculture. Thus, precipitation 
forecasts can facilitate the development of early warning 
systems for floods and droughts and inform water manage-
ment strategies to mitigate weather-related disasters. It is 
noteworthy that robust flood early warning systems require 
forecasts of low-frequency precipitation events on hourly 
and daily scales, as well as rare extreme events such as 
atmospheric rivers (Dezfuli 2020). These forecasts can aid 
decision-makers in identifying and mapping flood-prone 
areas, and can ultimately help to mitigate the impacts of 
floods. Therefore, we recommend that future research efforts 
be directed towards improving the low-frequency precipita-
tion forecasts across Iran. This may involve developing new 
ML algorithms, as well as enhancing our understanding of 
the large-scale atmospheric anomalies.

In the present study, the point data were utilized for pre-
cipitation forecasting. However, in areas with limited data 
availability, gridded precipitation products offer several 
advantages, such as spatial continuity, long-term coverage, 
and access to a broader range of precipitation characteris-
tics (Nouri 2023; Baatz et al. 2021; Valmassoi et al. 2022). 
Therefore, it is recommended to analyze the relationship 
between precipitation and teleconnections using gridded 
products. We also suggest further investigations on forecast-
ing other precipitation characteristics such as precipitation 
type (e.g., snowfall), seasonality, and extremes using tel-
econnection signals in our study area.

Conclusions

We evaluated the precipitation forecasting skills of four 
machine learning (ML) approaches, i.e., the Generalized 
Regression Neural Network (GRNN), the Multi-Layer Per-
ceptron (MLP), the Multi-Linear Regression (MLR), and 
the Least Squares Support Vector Machine (LSSVM), using 
a large number of teleconnection indices across different 
precipitation regimes in Iran. The precipitation percen-
tiles were defined to cluster precipitation regimes. The El 
Niño-Southern Oscillation (ENSO) indices were applied as 

the predictors for most cases, denoting the ENSO phasing 
impacts on precipitation pattern, particularly during autumn 
and spring, in Iran. The LSSVM and MLP provided more 
reliable seasonal and annual precipitation forecasts relative 
to MLR and GRNN. However, as LSSVM showed high sen-
sitivity to overfitting, MLP seems more suited to be applied 
for forecasting precipitation in the surveyed areas. Nonethe-
less, all ML algorithms showed weaker performance in the 
10th and 40th percentiles, encompassing the southern and 
eastern hyper-arid and arid sites. Our results indicate that 
clustering precipitation regimes is a necessary step to over-
come the spatial inconsistency frequently observed when 
investigating the association between precipitation and tel-
econnection anomalies. The findings can be of much use for 
developing proactive drought/flood risk management plans, 
highly required for maintaining food and water security in 
Iran.
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