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Abstract
Developing a susceptibility map is a crucial primary step for dealing with undesirable natural phenomena, gully ero-
sion included. On the other hand, recent computational progress call for employing new methodologies to keep the solu-
tions updated. In this work, the performance of a conventional artificial neural network (ANN) is improved by applying a 
metaheuristic algorithm (symbiotic organisms search—SOS) for generating the gully erosion susceptibility map of an area 
in Golestan Province, Northern Iran. A geo-database is created from the gully erosion inventory and twenty conditioning 
factors. After analyzing the interrelated relationships between the geo-database components, training and testing data sets are 
formed. The models are executed with proper configurations and according to the results, the SOS algorithm could enhance 
the training accuracy of the ANN from 92.8% to 98.4%, and testing accuracy from 89.8% to 91.4%. In addition, comparing 
the performance of the SOS with shuffled complex evolution (SCE-NN) and electromagnetic field optimization (EFO-NN) 
algorithms revealed the greater accuracy of the SOS. However, the SCE-NN and EFO-NN performed more accurately than 
conventional ANN. Therefore, it can be concluded that the use of metaheuristic techniques may improve the prediction ability 
of the ANN in gully erosion susceptibility mapping. Finally, a monolithic equation is extracted from the SOS–ANN model 
to be used as a predictive formula for similar purposes.
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Introduction

Gully erosion mostly exhibit on low to gentle slopes owing 
to flow concentration on susceptible soils (Nachtergaele 
and Poesen 2002). Compared to the preliminary forms of 
water erosion such as splash, sheet, inter rill, and rill, gul-
lies appear to be more morphologically emerged and mani-
fest as discernible dissected lands. The early form of gullies 
is generated once the runoff is concentrated either on the 
land surface or subsurface (underground tunnels shaped by 
soil dissolution with a roof ready to collapse). Ephemeral 
gullies normally disappear by a simple act of tillage, while 
permanent gullies cannot be eliminated by simple agricul-
tural artifacts nor can be easily controlled. In general, gul-
lies develop in a retrogressive manner from gully head-cuts; 
in that, once the hydrological drivers reach headcuts (e.g., 
riverine floods reaching adjacent gullies or any other form 
of runoff generation mechanism), they propagate backward 
from their headcuts (Poesen et al. 2003; Schmitt et al. 2006).

The monetary damages and casualties incurred from 
gullies are mainly associated with farmlands, agricultural 
machinery, livestock, and to a lesser degree, humans and 
rural residential developments (or any other land use that 
is ancillary to the use for such dwellings); however, most 
archives lack such data inclusiveness and integrity. On the 
other hand, a sizable amount of soil is annually washed away 
from gullies into dam reservoirs or other outlets, and many 
lands are degraded. Consequently, intangible costs of gully 
erosions can also be dramatically extensive (Valentin et al. 
2005). This notion signifies the importance of studying gul-
lying behavior (Poesen et al. 2011). Studies conducted on 
gullies can be categorized as measuring, modeling, monitor-
ing, and managing (Vanmaercke et al. 2021). Monitoring-
based studies often adopt a temporal assessment of satellite 
images using remote sensing techniques that have recently 
paved the way to scrutinize the geomorphodynamics of gul-
lies (Borrelli et al. 2022; Jiang et al. 2021; Phinzi et al. 2021; 
Wang et al. 2016), or merely based on field surveys (Schmitt 
et al. 2006). Such analyses may further lead to conceptual 
and process-based numerical models (Modak et al. 2022). 
Modeling itself may encompass a wide spectrum of catego-
ries, including inventory-based heuristic, statistical, proba-
bilistic, stochastic, and physically based models.

Recent advancements in the computer-assisted analysis 
have eased tedious modeling procedures with high iterations, 
which prompted the scientific community to get a grip on 
new pattern-seeking models. As such, data mining mod-
els helped modelers with extracting the emerging pattern 
from a complex natural phenomenon across a given area. In 
this way, special attention has been paid to elucidating the 
mechanism of predictive models by employing explainable 

methods (Al-Najjar et al. 2022; Hasanpour Zaryabi et al. 
2022; Maxwell et al. 2021).

Machine/Deep learning models further made significant 
leverage in not only pattern extraction but predicting the spa-
tial susceptibility of the studied phenomenon across a given 
area (Arabameri et al. 2020c; Conoscenti et al. 2018; Gayen 
et al. 2019; Pourghasemi et al. 2017; Roy et al. 2020). Some 
researchers went even beyond and used ensemble machine 
learning models with various optimization algorithms to 
automatically tune the hyper-parameters embedded in the 
models through significantly high modeling iterations (e.g., 
Band et al. (2020) and Arabameri et al. (2021)). Metaheuris-
tic algorithms such as simulated annealing (Kirkpatrick et al. 
1983), ant colony optimization (Dorigo 1992), particle 
swarm optimization (Kennedy and Eberhart 1995), harmony 
search (Geem et al. 2001), artificial bee colony (Karaboga 
2005), imperialist competitive algorithm (Atashpaz-Gar-
gari and Lucas 2007), and gravitational search algorithm 
(Rashedi et al. 2009) are some examples of the advanced 
optimization algorithms that found their way to spatial mod-
eling of natural hazards.

Symbiotic organism search (SOS) algorithm is a rather 
recent metaheuristic algorithm, first expounded by Cheng 
and Prayogo (2014) and later on used by many others in 
different areas of science. Although it has found global inter-
est for different optimization purposes (Esmaili and Kho-
dashenas 2020), it has not been yet applied to gully spatial 
prediction. Therefore, this literature gap is tackled in this 
research. Based on this introduction, the main objectives 
of this study are to: (1) use the SOS algorithm to optimize 
the performance of a popular machine learning technique, 
namely, artificial neural network (ANN) for gully erosion 
susceptibility mapping (GESM) across loess and silt-rich 
gully prone region of the Golestan Province, Iran and (2) 
conduct a comparative assessment on gully spatial pattern 
prediction using different ensembles and address the most 
reliable one. The findings of this research may shed light on 
decision-making and urban planning by authorities in the 
intended area. Moreover, from the methodological point of 
view, the used algorithms can open new doors to the use of 
artificial intelligence techniques for predicting undesirable 
phenomena, such as erosion.

Data and study area

Study area

The study area geographically lies between 37° 30′ 00″ to 
37° 50′ 00″ N latitude and 55° 31′ 40″ to 56° 2′ 10″ E longi-
tude. Comprising parts of Marave-Tape and Kalaleh cities, 
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it is extended for an area of approximately 784  km2 in the 
northeast of the Golestan Province, Iran (Fig. 1). Maximum 
and minimum elevation in the selected site are 160–1490 m 
a.s.l. A temperate Mediterranean climate prevailed in the 
area, with a minimum and maximum precipitation of 346 
and 610 mm. Farmlands account for 45% of the entire study 
area (i.e., the predominant land use class), followed by 

rangelands (38%), forests (16%), and residential areas (1%). 
Grey-to-block shale and thin layers of siltstone and sand-
stone (Sanganeh FM) (symbolized as Qsw), Cenozoic in the 
era, is the widespread outcrop in the study area, covering 
75.5% of the entire area. Table 1 summarizes the areal extent 
of the main geological formations in the study area.

Fig. 1  Study area and spotted gullies

Table 1  Description of the 
geological formations in the 
study area

Geo unit Descript Age_Era Area (ha) Area (%)

Ksn Ammonite bearing shale with interaction of limestone Mesozoic 9225.64 11.76
Qsw Grey to block shale and thin layers of siltstone and sandstone Cenozoic 59,219.31 75.5
Qm Swamp and marsh Cenozoic 1504.62 1.92
Ksr Grey thick—bedded limestone and dolomite Mesozoic 3657.96 4.66
Qal Stream channel, braided channel and flood plain deposits Cenozoic 4827.08 6.15
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Inventory map

An inventory map is the basis of any spatial susceptibil-
ity modeling. In this study, the gully headcuts, representing 
gully developments, were taken from the repository of the 
Natural Resources and Watershed Management Organization 
of the Golestan Province. The points were positioned using 
a handheld GNSS device during extensive field surveys 
coupled with Google Earth imagery and mapped in ArcGIS 
software (Arabameri et al. 2020a).

The inventory map contains a total of 803 gully locations 
(i.e., headcuts) as illustrated in Fig. 1. As a rule of thumb, a 
70:30% sample partitioning balance was adopted to split the 
samples into two groups for training (562 gullies) and test-
ing (241 gullies), respectively. The former is used for model 
training and parameter tuning, while the latter group is kept 
apart to subsequently validate the model’s results. With the 
same division strategy, 803 non-erosion points were created, 
where no gully has been spotted. It is noteworthy that due 
to the abundance of gully samples, the chosen partitioning 
balance does not harm the data enrichment scheme, and each 
sampling group may well serve its assignment.

Conditioning parameters

Erosional processes and environmental phenomena gener-
ally occur and propagate under the presence and interac-
tion of a set of environmental and human-induced changes. 
Environmental factors mainly include hydrological (dis-
tance to streams, drainage density), geological/geomorpho-
logical (lithology), pedological (surface and subterranean 
properties, including mineral soil, silt/clay/sand content, 
bulk density, and soil texture), and topological attributes of 
the area (altitude, slope, slope aspect, terrain ruggedness 

index—TRI, height above the nearest drainage—HAND, 
valley depth, plan curvature, topographic position index—
TPI, and relative slope position—RSP). Human-induced 
changes or anthropogenic factors (translated into land use 
and distance to roads) mainly include the development activ-
ities that can alter, predispose, and trigger gully inanition 
or accelerate gully propagation mechanisms, such as unsu-
pervised road constructions. Table 2 describes the causa-
tive role of each of the above-mentioned categories in gully 
initiation/development and the corresponding spatial scale 
of the acquired data. As detailed in Table 2, it was strived to 
employ all the conditioning factors that represent the gully 
propagation mechanism in the study area. Most notably, 
DEM (digital elevation model)-derivatives, known as mor-
phometric indices containing (in) direct single or multiple 
hydrological/erosional attributes were adopted to assess any 
discernible relationship with gully evidence. Thematic maps 
of the selected gully conditioning factors (hereafter predic-
tors) were produced in the ArcGIS environment (Fig. 2). 
Detailed explanations of the conditioning factors can be 
found in earlier works (Arabameri et al. 2020a, b).

Frequency ratio analysis

Frequency ratio (FR) analysis is a bivariate statistical 
approach that is here used for quantifying the correlation 
between the sub-classes of each conditioning factor and the 
occurrence of gully erosion. This method, however, can be 
independently employed for susceptibility assessment of 
various natural disasters (Elmahdy et al. 2022; Guru et al. 
2017; Lee and Pradhan 2007). Based on the FR formula, the 
FR value for the sub-class i is obtained as the ratio between 
the fraction of gully erosions that happened within it and 
the fraction of the area covered by it. The calculated FR 
values are presented in Table 3. As is known, the higher the 

Table 2  Causative relationship between predictors and gully occurrence/development

Predictors Causative relationship Scale

Anthropogenic (land use, distance to roads) Unsupervised road constructions and other structural activities 
with poor foundations, drainage design, and maintenance near 
gully prone areas; impeding or entirely changing drainage sys-
tem and the corresponding hydrological mechanisms; causing a 
moisture trap and artificial accumulation of water alongside the 
road; further predisposing the nearby lands and causing stabil-
ity problems in road outer slopes

1:25,000

Hydrological (distance to streams, drainage density) Soil dissolution and dispersion and retrogressive headcut devel-
opment due to concentrated flow

1:25,000

Pedological (mineral soil, silt/clay/sand content, bulk density, 
soil texture)

General soil susceptibility in terms of runoff generation (hydro-
logical groups) and resistivity to gully propagation, land covers 
and their protective roles on the soil surface

1:100,000

Geological (lithology) Soil erosion resistance and shear stress 1:100,000
Topographical (altitude, slope, slope aspect, TRI, HAND, valley 

depth, plan curvature, TPI, RSP)
Elevation and DEM-derivatives (i.e., morphometric indices) with 

spatial connotations to hydro-erosional mechanisms
1:25,000
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Fig. 2  Gully erosion condi-
tioning factors. a TPI, b plan 
curvature, c altitude, d slope 
aspect, e slope, f HAND, g 
drainage density, h distance to 
stream, i TRI, j distance to road, 
k bulk density, l mineral soil, 
m clay content, n sand content, 
o RSP, p silt content, q valley 
depth, r land use, s soil texture, 
and t lithology
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Fig. 2  (continued)
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Table 3  Results of FR-based 
correlation analysis

Layer Sub-class FR Layer Sub-class FR

Aspect Flat 1.59 Clay content (17.0, 21.0) 1.02
N 0.64 (21.0, 24.0) 1.40
NE 0.66 (24.0, 26.0) 1.48
E 0.81 (26.0, 28.0) 0.90
SE 0.60 (28.0, 30.0) 0.53
S 0.87 (30.0, 35.0) 0.30
SW 1.49 Bulk density (1474.0, 1521.0) 0.51
W 1.60 (1521.0, 1538.0) 0.77
NW 0.96 (1538.0, 1551.0) 0.80

TRI (0, 2.2) 0.98 (1551.0, 1563.0) 1.29
(2.2, 4.3) 1.01 (1563.0, 1601.0) 0.99
(4.3, 6.5) 1.01 Valley depth (0.0, 48.9) 0.24
(6.5, 8.7) 1.03 (48.9, 96.3) 0.12
(8.7, 11.0) 0.84 (96.3, 137.6) 0.52
(11.0, 13.9) 1.15 (137.6, 175.9) 0.94
(13.9, 37.0) 1.18 (175.9, 217.2) 1.81

Mineral soil (16.0, 21.0) 1.54 (217.2, 270.7) 3.07
(21.0, 23.0) 1.13 (270.7, 395.5) 2.00
(23.0, 25.0) 0.40 Plan curvature (− 6.1, − 1.8) 2.58
(25.0, 27.0) 0.20 (− 1.8, − 0.9) 1.98
(27.0, 35.0) 0.00 (− 0.9, − 0.3) 1.50

Lithology Ksn 0.93 (− 0.3, 0.1) 0.99
Qsw 0.93 (0.1, 0.7) 0.59
Qm 0.00 (0.7, 1.6) 0.61
Ksr 17.26 (1.6, 9.1) 0.61
Qal 1.70 Dis. to road (m) (0.0, 335.4) 1.81

Land use Forest 0.15 (335.4, 726.2) 0.70
Agriculture 0.80 (726.2, 1176.5) 0.59
Range 3.18 (1176.5, 1731.7) 0.32
Residential 0.11 (1731.7, 2503.1) 0.23

Silt content (31, 39) 0.00 (2503.1, 4532.4) 0.37
(39, 43) 0.03 Sand content (15.0, 22.0) 0.47
(43, 47) 1.19 (22.0, 25.0) 1.10
(47, 49) 1.29 (25.0, 28.0) 1.09
(49, 55) 0.87 (28.0, 33.0) 1.39

HAND (0.0, 32.8) 2.43 (33.0, 44.0) 0.00
(32.8, 71.5) 0.80 TPI (− 38.8, − 11.4) 2.45
(71.5, 112.0) 0.42 (− 11.4, − 4.4) 2.32
(112.0, 164.2) 0.24 (− 4.4, 0.2) 1.04
(164.2, 239.6) 0.02 (0.2, 5.0) 0.41
(239.6, 494.6) 0.06 (5.0, 11.6) 0.42

Dis. to stream (m) (0.0, 153.0) 2.18 (11.6, 54.8) 0.27
(153.0, 308.9) 0.78 Soil texture Silty loam 1.10
(308.9, 469.6) 0.45 Silty clay loam 1.15
(469.6, 649.0) 0.22 Loam 0.10
(649.0, 878.2) 0.33 Clay loam 0.19
(878.2, 1959.2) 0.00 Slope (%) (0, 8.8) 1.25

Drainage density (km/km2) (0.0, 0.4) 0.17 (8.8, 17.6) 1.18
(0.4, 0.8) 0.48 (17.6, 25.5) 0.94
(0.8, 1.2) 0.67 (25.5, 33.4) 0.78
(1.2, 1.6) 1.00 (33.4.3, 41.3) 1.04
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FR, the larger the correlation between sub-class and erosion 
occurrence.

Importance analysis

In machine learning modeling, understanding the relative 
importance of each input factor is crucial. In this section, 
the results of an importance analysis are presented to delin-
eate the role of each conditioning factor in predicting the 
gully erosion index (GEI). For this purpose, a well-known 
technique, namely, principal component analysis (PCA), is 
applied to the data set. This model creates orthogonal vari-
ables called principal components (PCs) composed of a lin-
ear combination of the original inputs (Abdi and Williams 
2010). Each PC receives an eigenvalue with a threshold of 1, 
so that the PCs with eigenvalue ≥ 1 are significant (Kim et al. 
1978). As shown in Fig. 3a, seven PCs satisfy this condition, 
and altogether account for 72.13% variation in the data set. 
These PCs are then exposed to the Varimax rotation method 
whose results are shown in Fig. 3b. The inputs with loading 
factors ≥ 0.75 and loading factors ≤ − 0.75 [Kaiser Criterion 
(Kaiser 1958)] are considered more important for predicting 
the GEI. PC1 suggests RSP, Valley Depth, Drainage Density, 
Dis. to Stream, HAND; PC3 suggests Slope and TRI; PC4 
suggests Sand Content; and PC5 suggests TPI and Plan Cur-
vature as the most important inputs. These results obtained 
from the PCA method are in good accordance with other 
methods such as Jackknife test performed by Arabameri 
et al. (2020a).

Methodology

Figure 4 shows the methodology of this study which con-
sists of four major steps:

(a) Data provision: first, data are processed, and a geo-data-
base is created. In addition, the relationship between 
gully erosion and conditioning factors is explored using 
the FR and IA techniques;

(b) Model development: a conventional ANN and three 
metaheuristic-based ANNs are developed in this step. 
The models are optimized using the prepared data, and 
they predict the GEI for the whole area;

(c) Mapping and interpretation: the research continues with 
developing GESMs and their interpretation; and

(d) Accuracy assessment: finally, the obtained maps and 
prediction results of the models are assessed using dif-
ferent accuracy criteria. The models are then ranked, 
and a formula is derived from the best one.

Algorithms

ANN

As a well-accepted predictive model, the initial idea of 
ANN was presented by McCulloch and Pitts in the 1940s 
(Abraham 2002), who demonstrated the computational 
capability of a network of neurons. By inventing learning 
rules along with perceptron networks, the first practical 

Table 3  (continued) Layer Sub-class FR Layer Sub-class FR

(1.6, 2.0) 2.20 (41.3, 49.6) 0.83
(2.0, 3.3) 3.41 (49.6, 58.9) 0.66

Altitude (m) (160.0, 336.6) 1.46 (58.9, 71.4) 1.12
(336.6, 461.3) 1.38 (71.4, 118.8) 0.68
(461.3, 570.4) 0.89 RSP (0.0, 0.1) 2.36
(570.4, 695.1) 1.15 (0.1, 0.3) 0.71
(695.1, 830.2) 0.82 (0.3, 0.5) 0.21
(830.2, 975.7) 0.44 (0.5, 0.8) 0.23
(975.7, 1141.9) 0.13 (0.8, 1.0) 0.11
(1141.9, 1490.0) 0.08
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Fig. 3  Results of the PCA 
analysis. a Scree plot and b 
Varimax-rotated factor loadings
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application of these models was in the 1950s (Esmaeili 
et al. 2014). Multi-layer Perceptron (MLP) network is 
among the most powerful types of ANNs. It is a globally 
known processor that can learn and reproduce the rela-
tionship between non-linear data (Hornik 1991). In these 

models, the duty of analysis is carried out by so-called 
“neuron” entities. Depending on the layer that the neuron 
lies in, it is extremely connected to other neurons in the 
previous and subsequent layers. The connection is accom-
plished by the weights, which along with biases are the 

Fig. 4  Graphical strategy of the study

Fig. 5  ANN configuration used 
in this study
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variables of the network. In general, the network follows 
a forward path to adjust the weights and biases to achieve 
a suitable connection, eventually, a reliable estimation of 
the parameter of interest (Seyedashraf et al. 2018).

Figure 5 shows the ANN used in this study. As it can be 
seen, owing to the number of inputs (i.e., 20 conditioning 
factors) and targets (i.e., one GEI), this network owns 20 
neurons in the input layer and one neuron in the output layer 
(see yellow squares). The number of neurons in the mid-
dle layer is user-defined and was selected as 25 after trying 
several values.

Equation 1 expresses the analysis of a typical neuron in 
the ANN:

where AF() is the activation function of the neuron. If the 
neuron of interest is located in the hidden or input layers, 
then, the produced output will be passed to the next layer as 
a new input. Then, the same calculation is performed to pro-
duce a new output (Moayedi et al. 2019). Levenberg–Mar-
quardt (LM) algorithm (More 1978) is used for training the 
ANN. Hence, this model is called LM-NN hereafter.

SOS

The SOS is one of the most capable optimizers that has 
successfully been applied to a wide variety of engineering 
problems (Chakraborty et al. 2022; Goldanloo and Ghare-
hchopogh 2022). Jahanafroozi et al. (2022) showed the 
suitability of this technique for optimizing the ANN. The 
SOS was designed by Cheng and Prayogo (2014) inspired 
by the biological symbiotic association among species. To 
attain the optimum solution, the most successful organism 
is identified.

Based on the considered strategy, three steps are imple-
mented as explained in the following:

(i) Ecosystem initialization: the population is scattered 
within the space;

(ii) Identifying the outstanding individual shown by Xb;
(iii) Mutualism: this step is carried out between two organ-

isms of the ecosystem to improve their survival com-
petency. In this regard, Eqs. 2 and 3 express this step 
for updating the candidate solution:

 where Xi and Xj signify the organisms in interaction, 
� and � represent random values ranging in [0, 1], and 

(1)Output = AF ((Input × Weight) + Bias),

(2)Xi_new = Xi + �
(
Xb − VM × BF1

)
,

(3)Xj_new = Xj + �
(
Xb − VM × BF2

)
,

BF1 and BF2 are benefit factors. In addition, the mutual 
vector that contains the organisms’ characteristics is 
shown by VM;

(iv) Commensalism: it simply means the association of 
two species, where union is beneficial for one, and not 
harmful for the other one. This process is shown for Xj 
and Xi organisms as follows:

where � is a random number with a uniform distribu-
tion between − 1 and 1. In this step, the fitness func-
tion is applied and compared to the one of the previous 
solution; if it shows more promise, the new solution 
replaces the old one; and

(v) Parasitism: the algorithm mutates Xi to generate a par-
asite vector. Xj is then randomly selected to play the 
role of host for the parasite vector. Their fitness values 
are calculated and compared and the parasite vector 
replaces Xj if it provides a better fitness, otherwise, it 
is dropped.

Above steps are iterated until the algorithm meets a 
stopping criterion (Abdullahi and Ngadi 2016).

Benchmark optimizers

Along with the SOS, two other algorithms, namely, SCE and 
EFO, are identically used as comparative benchmarks. The SCE 
and EFO were designed by Duan et al. (1993) and Abedinpour-
shotorban et al. (2016), respectively. Both of these techniques 
are among the quickest optimizers that have widely served in 
finding the global solution to many problems (Moayedi et al. 
2021). The general optimization procedure is similar to other 
metaheuristic techniques, i.e., it starts with scattering the popula-
tion and continues with updating the solutions and detecting the 
most optimum one. The SCE aims at positioning the individuals 
into some complexes and finding the local optimum in each 
complex, and then, the global solution of the problem. Likewise, 
the basis of the EFO is grouping some electromagnetic into three 
fields with respect to their fitness, and evaluating their interac-
tion based on the attraction–repulsion rule. Further details and 
mathematical explanations of this algorithm can be found in 
the earlier literature, see (Gao et al. 2018; Zhang et al. 2022) for 
SCE and (Song et al. 2019; Talebi and Dehkordi 2018) for EFO.

Optimizer‑ANN integration

To create a hybrid of ANN with a metaheuristic algorithm, 
the steps listed below should be followed (Asadi Nalivan 
et al. 2022; Mehrabi et al. 2020):

(4)Xi_new = Xi + �
(
Xb − Xj

)
,
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(a) Determining the structure and properties of the ANN;
(b) Converting the model to the equation format that pre-

dicts the GEI from conditioning factors;
(c) Defining a cost function to address the solution quality;
(d) Yielding the above items to a metaheuristic algorithm 

to optimize them;
(e) Tuning the parameters of the metaheuristic algorithm; 

and
(f) Running optimization and saving the best solution.

In fact, the optimization process plays the role of training 
for the ANN. In this work, a three-layer MLP network rep-
resents the ANN. For constructing its equation, the weights 
and biases are left as variables to be optimized. Mean square 
error (MSE) is defined as the cost function that measures 
the error of training in each iteration. Next, the population 
size and number of iterations are the parameters that are 
defined for each metaheuristic algorithm. During optimiza-
tion, the algorithm tries to optimize the ANN and create the 
best equation for it.

Considering different behaviors of the SCE, EFO, and 
SOS algorithms, the most proper population size and the 
number of iterations for them were found by a trial-and-error 
effort (Mehrabi and Moayedi 2021). Finally, the population 
size and the number of iterations for the SCE, EFO, and 
SOS were obtained 10 and 3000, 50 and 50,000, 350 and 
1000, respectively. the optimization progress is illustrated 
in Fig. 6 in which the reduction of MSE is depicted versus 
the iterations.

Hereafter, the conventional ANN is named LM-NN, 
while the developed hybrids are called SCE-NN, EFO-NN, 
and SOS-NN.

Accuracy criteria

To assess the accuracy of the used models, as well as the 
reliability of the produced GESMs several criteria are 

employed. These are also useful for comparing models and 
addressing the most suitable map.

Mean square error and mean absolute error

The first group of these criteria are the mean square error 
(MSE) and the mean absolute error (MAE), which are 
among the most popular error indicators. As formulated in 
Eqs. 5 and 6, they are based on the difference between the 
real  and predicted GEIs (  GEIireal  and GEIipredicted  , 
respectively):

where Q signifies the number of samples taken into 
calculation.

AUROC, sensitivity, and specificity

It was explained that the MSE and MAE reflect the error 
of prediction. Three other indices, namely, the area under 
the receiving operating characteristic curve (AUROC), 
the sensitivity, and the specificity, are also used to quan-
tify the accuracy of prediction (Arabameri et al. 2020b; 
Nguyen et al. 2019). As the name connotes, the AUROC 
is obtained by calculating the area beneath the ROC curve, 
varying between 0.5 and 1, which, respectively, stand for 
a random and ideal prediction. Assuming E and N as the 
number of erosion and non-erosion data, the formulation 
of the AUROC is as follows:

(5)MSE =
1

Q

Q∑

i=1

(GEIireal − GEIipredicted )
2,

(6)MAE =
1

Q

Q∑

i=1

|||
GEIireal − GEIipredicted

|||
,

Fig. 6  Optimization progress of 
the used algorithms
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where TP and TN represent true positive and true nega-
tive, respectively. Moreover, sensitivity and specificity are 
expressed in Eqs. 8 and 9 to determine what portion of ero-
sion and non-erosion data are correctly classified:

where FP and FN stand for false positive and false negative, 
respectively.

Results

As explained earlier, the primary objective of this study is to 
introduce and assess the suitability of a new hybrid method-
ology, namely, SOS-NN for analyzing the susceptibility to 
gully erosion in the North of Iran. After data processing and 
model optimization step, which have been explained above, 
the results are presented in this section by addressing GESM 
development and accuracy assessment in two separate parts.

Predicting GEI and developing GESMs

Once the models are properly trained using the erosion and 
non-erosion samples, they can be applied to the whole study 
area for producing the GESMs. In this process, the condi-
tioning factors are extracted for all pixels of the area, and a 
GEI is predicted for each pixel. MATLAB and ArcMap are 
used for calculations and to visualize the results.

Figure 7 shows the GESMs produced by all four models. 
Note that, the primary maps were plotted with GEIs in the 
ranges [− 0.67, 2.01], [− 2.38, 3.14], [− 0.97, 4.22], and 
[− 0.88, 1.66], for the LM-NN, SCE-NN, EFO-NN, and 
SOS-NN, respectively. Next, the maps were subjected to a 
Natural Break classification for developing Fig. 7 in five 
categories ‘Very Low,’ ‘Low,’ ‘Moderate,’ ‘High,’ and ‘Very 
High.’ The use of Natural Break is common for categoriz-
ing the maps related to susceptibility and hazard assessment 
of various environmental phenomena (Mehrabi et al. 2020; 
Moayedi et al. 2020). This classification technique finds the 
breaks that maximize between-class differences and mini-
mize within-class differences (Chen et al. 2013).

Figure 8 shows the percentage of each susceptibility class 
in the obtained GESM. Despite the differences in the per-
centages, it can be generally said that the percentages of the 
areas labeled as ‘Low,’ ‘Moderate,’ and ‘High’ susceptible 

(7)AUROC =

∑
TP +

∑
TN

(E + N)
,

(8)Sensitivity =
TP

TP + FN
,

(9)Specif icity =
TN

FP + TN
,

are considerably larger than ‘Very Low’ and ‘Very High’ 
classes. Another noticeable point is the difference in the 
tendency of models for identifying places with ‘Very Low’ 
susceptibility. The least percentage is 6.11% by EFO-NN, 
while the greatest is 17.51% by SOS-NN.

Based on Fig. 7, all models have performed successful 
prediction of GES over the study area, as it may be under-
stood from controlling the location of the erosion points with 
susceptibility classes. A more detailed analysis in this regard 
is presented in Table 4, which reports the percentage of the 
erosion/non-erosion points fallen within the susceptibility 
classes. As a general favorable trend, the portion of erosion 
points increases, and adversely, the portion of non-erosion 
points falls with the increase of susceptibility level. For 
instance, 91.8%, 75.08%, 77.39%, and 91.27% of the train-
ing erosions, and 88.79%, 79.65%, 72.6%, and 87.13% of 
the testing erosions are found in the ‘High’ and ‘Very High’ 
susceptibility classes.

Training and testing accuracy

Five accuracy criteria introduced in “Mean square error 
and mean absolute error” are here calculated for the per-
formance of all models to examine the accuracy of training 
and testing stages. Considering error criteria for the train-
ing stage, the LM-NN, SCE-NN, EFO-NN, and SOS-NN 
achieved MSEs 0.1188, 0.1104, 0.0886, 0.0635, and 
0.0635, and MAEs 0.2851, 0.2379, 0.2205, and 0.1867, 
respectively. Figure 9 shows the histogram of training 
errors  (Errori = GEIireal − GEIipredicted ). As known for a histo-
gram diagram, the higher the frequency around zero, the 
higher the accuracy. Based on the reported values and 
illustrations, it can be said that all four models have been 
properly trained by analyzing the erosion and non-erosion 
patterns.

Based on the same accuracy criteria for the testing 
stage, the MSEs 0.1350, 0.1239, 0.1183, and 0.1235, 
and the MAEs 0.3022, 0.2493, 0.2533, and 0.2601 were 
obtained for the used models. Figure 10 illustrates the his-
togram diagrams for the testing data. These results indi-
cate an acceptable level of error in predicting the GEI over 
the study area.

Moreover, Fig. 11a, b depicts the ROC diagrams plotted 
for the training and testing stages, respectively. From these 
diagrams, it can be seen that all curves cover a large area 
beneath them, indicating an acceptable accuracy. Quanti-
tatively speaking, the obtained AUROCs are 0.928, 0.925, 
0.957, and 0.984 for the training data, and 0.898, 0.905, 
0.915, and 0.914 for the testing data. Besides, the sensi-
tivities of 88.79%, 81.14%, 91.10%, and 95.37% for the 
training phase and 86.72%, 86.31%, 87.14%, and 80.50% 
for the testing phase demonstrate a high accuracy of the 
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Fig. 8  Percentage of GES 
classes in Fig. 7
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models in classifying the erosion pixels, while the specifi-
cities 83.81%, 88.97%, 86.83%, and 90.57% for the train-
ing phase and 83.88%, 83.88%, 85.54%, and 91.32% for 
the testing phase, show a high accuracy of the models in 
classifying non-erosion pixels.

SOS‑based GEI formula

This section exhibits a monolithic equation that can be used 
to directly predict the GEI by exposing the conditioning 
factors. This formula is extracted from the implemented 

Table 4  Percentage of springs in each GWM class

Class Train Test

LM-NN SCE-NN EFO-NN SOS-NN LM-NN SCE-NN EFO-NN SOS-NN

Non-erosion (%)
Very low 19.39 6.40 11.74 24.19 19.83 6.61 11.57 26.61
Low 32.02 24.91 23.48 39.32 27.68 24.79 27.68 32.64
Moderate 25.97 29.00 29.18 22.59 30.57 31.81 24.38 23.55
High 16.01 27.93 24.55 9.78 13.63 28.92 28.51 13.22
Very High 6.40 11.56 11.03 4.09 7.85 7.85 7.85 4.54

Erosion (%)
Very low 0.35 0.17 1.24 0.00 1.24 0.00 0.82 0.14
Low 0.88 4.09 6.04 1.60 2.90 2.07 4.56 3.73
Moderate 6.93 20.64 15.30 7.11 7.05 18.25 21.99 8.71
High 22.41 42.52 48.57 22.06 23.23 46.05 46.05 25.72
Very High 69.39 32.56 28.82 69.21 65.56 33.6 26.55 61.41

(a) (b)

(c) (d)

Fig. 9  Histogram of training errors by a LM-NN, b SCE-NN, c EFO-NN, and d SOS-NN
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(a) (b)

(c) (d)

Fig. 10  Histogram of training errors by a LM-NN, b SCE-NN, c EFO-NN, and d SOS-NN

(a) (b)

Fig. 11  Plotted ROC curves and calculated AUROCs for the a training and b testing phases
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SOS-NN model, since it presented the most accurate anal-
ysis of gully erosion. There are two components for this 
equation: (i) Eq. 10 is the linear part that is performed in 
the output layer of the ANN to calculate the GEI. It is con-
structed by receiving the outputs of the hidden layer (i.e., Y1, 
Y2, …, Y25) multiplied by the 25 corresponding weights, and 
eventually summing up with a bias (see Fig. 5):

where Yi (i = 1,2, …, 25) is calculated by the non-linear parts 
as follows:

where W1,i (i = 1,2, …, 20) is given in Table 5. In addition, 
the function Tansig is expressed as follows:

Discussion

Due to the undesirable impacts of gully erosion on the sur-
rounding areas (Poesen et al. 2003), providing a susceptibil-
ity map may highly improve the preparedness against the 
effects of this phenomenon. Considering the incorporation 
of several environmental factors in the occurrence of gully 
erosion, this may be considered a complex process (Pal 
et al. 2022; Valentin et al. 2005). Therefore, proper predic-
tions in this sense require sufficient computational poten-
tial. Many studies have highlighted the great capability of 
machine learning techniques, and most notably ANNs, in 
susceptibility assessment of gully erosion. On the other 
hand, it has been shown that ANNs may experience accuracy 

(10)

GEI = 0.164 × Y
1
+ 0.081 × Y

2
+ 0.740 × Y

3
− 0.470 × Y

4

− 0.364 × Y
5
− 0.762 × Y

6
+ 0.880 × Y

7
+ 0.291 × Y

8

− 0.041 × Y
9
+ 0.279 × Y

10
+ 0.089 × Y

11
+ 0.295 × Y

12

+ 0.088 × Y
13
+ 0.442 × Y

14
+ 0.045 × Y

15
+ 0.987 × Y

16

− 0.563 × Y
17
− 0.788 × Y

18
− 0.781 × Y

19
− 0.873 × Y

20

− 0.191 × Y
21
− 0.103 × Y

22
− 0.268 × Y

23
+ 0.527 × Y

24
+ 0.256 × Y

25
+ 0.544

(11)

Y
i
=Tansig(W1,i × Silt Content + W2,i × Slope + W3,i × Soil Texture

+ W4,i × TPI + W5,i × Sand Content + W6,i × RSP

+ W7,i × Dis. to Road + W8,i × Plan Curvature

+ W9,i × Valley Depth + W10,i × Bulk Density

+ W11,i × Clay Content + W12,i × Altitude + W13,i

× Drainage Density + W14,i × Dis. to Stream + W15,i

× HAND + W16,i × Land use + W17,i × Lithology + W18,i

× Slope Aspect + W19,i × Mineral Soil + W20,i × TRI + b
i
)

(12)Tansig(x) =
2

1 + e−2x
− 1

enhancement when they are well-coupled with optimization 
algorithms.

In this work, an ANN was optimized by three metaheuris-
tic techniques (i.e., SCE, EFO, and SOS) for gully erosion 
susceptibility analysis of a Northern area of Iran. Models 
were compared with conventional ANN to investigate the 
effect of SCE, EFO, and SOS on its accuracy. The analysis 

of the results indicated significant enhancements in terms of 
most accuracy indicators. For instance, the testing AUROC 
climbed from 0.898 to 0.905, 0.915, and 0.914, and after 
applying the SCE, EFO, and SOS, respectively. For a con-
venient comparison, Table 6 gives a summary of all five 
accuracy indicators used in this study, and Fig. 12a, b depicts 
the Taylor diagrams for the training and testing stages.

By comparing the models, the superiority of the SOS 
with respect to the SCE and EFO is demonstrated. As shown 
in Fig. 6, the SOS was also the quickest algorithm (consid-
ering the number of iterations) in stabilizing the solution. 
This algorithm could optimize the ANN in 1000 iterations, 
while the SCE and EFO required threefolds and fiftyfolds of 
it, respectively. In contrast, by considering the time of opti-
mization, the EFO was the fastest algorithm. The respective 
time of optimization for the SCE, EFO, and SOS was 9605, 
605, and 46,255 s.

This study also attained significant improvements 
with respect to previous works carried out for the same/a 
similar study area. For example, Arabameri et al. (2020a) 
defined several data-division scenarios for testing the abil-
ity of conventional machine learning models. The high-
est accuracy of prediction was obtained by ANN with 
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AUC = 0.868, which is considerably lower than the AUCs 
of the hybrid models tested in this work. Likewise, the 
hybrid models of this study outperformed several ensem-
bles presented by Arabameri et al. (2020b). Moreover, 
the ANN model employed by Liu et al. (2023) produced 
a GESM with AUC = 0.904 when the best scenario (i.e., 
using 50% of erosions) was considered. This accuracy is 
less than the hybrid models in this study. From this para-
graph, it can be deduced that the assistance of metaheuris-
tic algorithms has improved the prediction accuracy of 
gully erosion.

The generated susceptibility maps in Fig. 7 were inter-
preted to identify the regions with critical susceptibility. 
Although there were differences regarding the fraction of 
these regions in the map of each model, the distribution 
of ‘High’ and ‘Very High’ susceptible areas was in good 
accordance together, based on which, these regions could 
be detected with a higher probability. From a practical point 

of view, this zonation may interest the relevant authorities 
to adapt their planning for establishing facilities (e.g., pipe-
lines) and construction projects (e.g., road construction) 
within the study area.

However, there are some ideas that could be regarded 
in future projects to overcome the limitations of this study. 
First, due to the dimension of the adopted data, which itself 
called for the use of a deep network, the computations han-
dled by each of the LM, SCE, EFO, and SOS algorithms 
were huge. More precisely, in the used ANN (see Fig. 5), a 
total of (20 × 25 =) 500 weights connect the first and second 
layers along with 25 biases and (25 × 1 =) 25 weights that 
connect the second and third layers along with one bias, 
which altogether yields 551 to-be-adjusted variables. It was 
basically the reason that the extracted formula is composed 
of many terms. It is believed that the optimization of the 
database by eliminating insensitive conditioning factors 
(e.g., ten inputs with reference to “Importance analysis”) 

Table 6  Accuracy criteria 
obtained for the used models

Indicator Models and phases

LM-NN SCE-NN EFO-NN SOS-NN

Train Test Train Test Train Test Train Test

MSE 0.1188 0.1350 0.1104 0.1239 0.0886 0.1183 0.0635 0.1235
MAE 0.2851 0.3022 0.2379 0.2493 0.2205 0.2533 0.1867 0.2601
AUC 0.928 0.898 0.925 0.905 0.957 0.915 0.984 0.914
Sensitivity (%) 88.79 86.72 81.14 86.31 91.10 87.14 95.37 80.50
Specificity (%) 83.81 83.88 88.97 83.88 86.83 85.54 90.57 91.32

Fig. 12  Taylor diagrams of the a training and b testing phases
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could tangibly reduce the computational cost of this process. 
It is also worth mentioning that manual use of the ANN-
based formula presented in “SOS-based GEI formula” 
requires normalizing inputs and unnormalizing the outputs, 
because these processes are automatically carried out in the 
MATLAB environment (Mehrabi 2021). Therefore, it may 
be more convenient if the user constructs an ANN using 
the given weights and biases. Concerning the case study, 
the focus of this research was on a specific region in North-
ern Iran, and the models are recommended for different 
study areas to see if the results are generalizable to differ-
ent geological and environmental conditions. Moreover, to 
achieve a more comprehensive assessment of metaheuristic 
techniques, comparative studies are highly recommended. 
Although the SOS could optimize the ANN and enhance its 
accuracy by up to 91%, newer algorithms may enhance this 
accuracy even further.

Conclusions

Gully erosion susceptibility mapping (GESM) is a funda-
mental step toward mitigating the damages caused by this 
phenomenon. In this research, novel methodologies were 
used for GESM in the north of Iran. An artificial neural 
network (ANN) was optimized using symbiotic organisms 
search (SOS), shuffled complex evolution (SCE), and elec-
tromagnetic field optimization (EFO) metaheuristic algo-
rithms. By comparing the maps developed by the conven-
tional and optimized versions of the ANN, it was shown that 
metaheuristic algorithms can improve the ANN’s response 
to this issue. In terms of MSE, the training error of the ANN 
was reduced from 0.1188 to 0.1104, 0.0886, and 0.0635 after 
the incorporation of SCE, EFO, and SOS, respectively. Like-
wise, the testing MSE experienced a fall from 0.1350 to 
0.1239, 0.1183, and 0.1235. To sum up, the performance 
of the four models was confirmed for producing reliable 
gully erosion susceptibility maps which can be considered 
for decision-making and relevant planning within the study 
area. This study, however, can be further improved by data 
optimization and using more metaheuristic techniques in 
future projects.
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