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Abstract
Metaheuristic methods are increasingly being implemented to source parameter estimation of gravity anomalies. These 
approaches have become popular in the geophysical community because of their superior advantages. We emphasize the 
application of the particle swarm optimizer (PSO), which is motivated by the birds’ behaviors, to elucidate gravity anomalies. 
Besides, using different horizontal derivative orders for the observed data is valuable in reducing the regional field effect. 
The current inversion algorithm applied to other synthetic models (a two-sided dipping fault with a third-order regional, a 
two-sided dipping fault model interfered by a spherical structure model with and without 10% noise, and two neighboring 
two-sided dipping faults models with and without 10% noise) as well as two real-world cases from the United States and 
Tunisia. The usefulness of applying these techniques together was demonstrated by providing stable results in executing 
the buried source parameters and eradicating the regional field effect. Therefore, we recommend the application of these 
techniques in the model parameter estimation studies performed with potential field anomalies due to mineralized zones.

Keywords Modeling · Two-sided fault · Gravity anomalies · Interpretation

Introduction

Gravity exploration method has traditionally been utilized 
to assess and describe the variant in subsurface rock densi-
ties and offer an important understanding sight of the sub-
surface geology (Nabighian et al. 2005; Abdelrahman et al. 
2013; Rezaie 2019; Kumar et al. 2020; Gadirov et al. 2022; 
Essa and Diab 2023). The assessment of model parameters 
of buried source bodies is a vital step in gravity anomaly 
elucidation (Abdelrahman and Essa 2015; Essa and Géraud 
2020; Ekinci et al. 2021). It is utilized to predict the geo-
thermal potential reservoir parameters (i.e., location, depth) 

and also used in several geophysical investigations such as 
hydrocarbon exploration, cavities and tunnels detection, ore 
and mineral exploration, archeological sites investigation, 
and geological features or formations that exist beneath the 
surface of the Earth (Ekinci and Yiğitbaş, 2015; Essa et al. 
2020, 2022; Dilalos and Alexopoulos 2020; Rosid and Saras-
wati 2020; Young et al. 2020; Guglielmetti and Moscariello 
2021; Kheyrollahi et al. 2021; Chavanidis et al. 2022; Saleh 
et al. 2022; Wang et al. 2022).

There are several methods established to infer gravity 
data, i.e., Asfahani and Tlas (2012) presented an approach 
that combined Fair function minimisation and stochastic 
optimisation to inferring residual gravity anomalies for 
spherical and cylindrical model structures. Chakravarthi 
et al. (2016) developed two algorithms in the space-domain 
to scrutinize gravity anomalies for sedimentary basins by 
an exponential-density function. Tlas and Asfahani (2018) 
mentioned an easy interpretation method for gravity anom-
alies depending on the quadratic curve regression. Essa 
et al. (2020) described a fast imaging technique called “the 
R-parameter imaging technique” for inferring gravity data 
acquired along profiles. Essa et al. (2021c) developed an 
inversion algorithm based on the utilization of the analytic 

 * Khalid S. Essa 
 khalid_sa_essa@cu.edu.eg; essa@cu.edu.eg

1 Department of Geophysics, Faculty of Science, Cairo 
University, P.O. 12613, Giza, Egypt

2 Department of Physics, College of Science and Humanities, 
Prince Sattam Bin Abdulaziz University, 11942 Al-Kharj, 
Saudi Arabia

3 GeoRessources Laboratory, University of Lorraine, 
54500 Nancy, France

http://crossmark.crossref.org/dialog/?doi=10.1007/s12665-023-11081-0&domain=pdf


 Environmental Earth Sciences (2023) 82:502

1 3

502 Page 2 of 23

signal to investigate gravity profiles. Mehanee (2022) devel-
oped a nonlinear optimization algorithm for inverting the 
gravity profile for a 2D faulted thin block and was dependent 
on the simultaneous algorithm optimization.

Moreover, the utilization of metaheuristic optimization 
algorithms (particle swarm, simulated annealing, genetic, 
differential evolution, ant colony, cuckoo search, bat, …, 
etc.) has been used too much in the geophysical data inver-
sion and given stable results. For example, Datta et  al. 
(2012) used an ant colony algorithm to elucidate a total gra-
dient potential field. Toushmalani and Saibi (2015) applied 
a cuckoo search for inverting 3D gravity data. Ekinci et al. 
(2016) proposed a useful use for differential evolution (DE) 
to interpret residual gravity anomalies. Essa and Munschy 
(2019) described a method that depends on using a particle 
swarm optimizer (PSO) for inferring second-moving average 
gravity anomalies. Rao and Biswas (2021) used simulated 
annealing to infer gravity anomalies due to 2-D faults. Essa 
and Diab (2023) used the Bat algorithm to infer 2-D gravity 
anomaly profiles for geothermal exploration and volcanic 
activity.

Using a deductive awareness of either density or geom-
etry, it is possible to identify fault structures and reduce 
the complexity of parameter space for gravity inversion. 
This approach enables a distinctive solution to be obtained, 
which can help in understanding the subsurface geology and 
potential mineral resources. For instance, if the density of 
the fault zone is known from geological observations, this 
information can be used as a constraint for gravity inversion, 
which can then provide a better estimate of the position and 
geometry of the fault. Similarly, if the geometry of the fault 
is well-defined from seismic or other geophysical data, this 
information can be used as a constraint for gravity inver-
sion, which can then provide a more precise guess of the 
density distribution within the fault zone. Overall, using a 
deductive approach to assessing fault structure can improve 
the reliability and accuracy of gravity inversion techniques, 
and ultimately help in making more informed decisions for 
resource exploration and management. The process of utiliz-
ing gravity data inversion to assess basement relief continues 
to be employed, despite limited information about basement 
depth from a small number of boreholes and no prior knowl-
edge of density contrast. When it comes to solving these 
problems, global optimization algorithms have a significant 
edge over local optimization algorithms. Global optimiza-
tion techniques can address complex criteria without requir-
ing an initial model to be preset.

Structure assessment of dipping faults is also of signifi-
cant concern in applied geophysics for adequately under-
standing the advancement of various geological features. 
Faults belong to the most valuable geological structures for 
regional studies and specific other explorations. Recogniz-
ing regional faulting and tectonic risks involves knowing 

the subsurface the structure and behavior of dipping faults, 
which is crucial for both scientific investigations and practi-
cal applications in the energy and mining industries. There-
fore, many researchers designed optimization techniques for 
accurately predicting fault geometric features using global 
and local optimization algorithms (Roy and Kumar 2021; 
Nibisha et al. 2022; Roy et al. 2022).

In this paper, we explained how to infer 2D gravity anom-
alies for faults along profiles by determining their charac-
teristic parameters through the usage of a particle swarm 
optimizer method (PSO) for the various-order of the gravity 
horizontal gradient. The benefit of using these gradients is 
fallen on eliminating the regional field effect. The efficacy of 
the current inversion algorithm was confirmed by different 
synthetic models with different scenarios. Practically, it is 
corroborated by two field data sets from USA and Tunisia. 
The results from this scheme were compared with available 
results from drilling, geology, and other used methods.

Methods

Forward modeling

Gravity anomaly along the profile in the Cartesian coordi-
nate system for any geometric style represented by two-sided 
dipping faults (Fig. 1) is (Essa 2013; Essa et al. 2021a):

where xi and xo (m) signify the locations of the collected 
measurement points and fault trace origin, M = 2�fΔσt × 105 
(mGal) and called the amplitude coefficient, t is the thick-
ness (m) of the layer, f = 6.67 × 10−11

(
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Fig. 1  Schematic illustration shows a two-sided dipping fault source 
with its parameters
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represent depths to upthrown downthrown parts, and θ is the 
dip angle of faults.

Formulation of the inverse scheme

Using different orders of horizontal derivatives was con-
sidered a pioneering technique to diminish the effect of the 
regional gravity anomaly. For example, Essa and Munschy 
(2019) mentioned the first-order group. Here, we described 
along the profiles the third horizontal derivative anomaly 
(∆gxxx), which is given as

and the fourth horizontal derivative anomaly (∆gxxxx) is

where s represents the window length.

The particle swarm optimizer (PSO)

To deal with extremely nonlinear issues, recent trends 
employ evolutionary, stochastic heuristic and nature-
inspired algorithms. Differential evolution, particle 
swarm optimizer, cuckoo search, and firefly algorithms 
are examples of nature-inspired algorithms that are sim-
ple and efficient at explaining a wide range of real-world 
issues.

In this paper, the applied algorithm is the particle swarm 
optimizer (PSO) was recognized by Eberhart and Kennedy 
(1995) and inspired by the bird’s search for food in nature. 
The birds presented particles that work in the search field to 
find the solution. More applications for this algorithm are 
found in Singh and Biswas (2016), Anderson et al. (2020), 
and Essa et al. (2022).

The process was initiated by randomly distributing par-
ticles for the swarm and then proceeds to search for sources 
through successive generations. At each step, the velocities 
and locations of the particles are adjusted using the follow-
ing formulas:

where xL
j
 is the present location of the jth particle at the  Lth 

iteration, vL
j
 signifies the velocity of the jth particle at the Lth 

iteration, random numbers amongst [0,1] has been used using 

(2)
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j
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j
,

the rand function, ( c1 , c2 , and c3 ) are some controlling factors 
of the convergence. The parameter c1  serves as a cognitive 
parameter that facilitates the individual exploration of the par-
ticles, c2 is a social parameter that guides the particles to a 
global direction, and the inertial factor, c3, adjusts the speed of 
particles. Tbest is the best location, which is acquired by a 
model, while Jbest is the best global place reached by any par-
ticle in the swarm. Afterwards, the achieved best solution 
( Tbest ) and the global best solution (Jbest ) are stored in memory. 
The model’s velocity and place are updated through an itera-
tion procedure, which terminates when the convergence.

Here, finding the global minimum for this scheme is done 
by applying a suitable objective function. Therefore, the fol-
lowing objective functional (Жobjective) is utilized to execute 
the dipping fault using the gravity data (M, zup, zdown, xo, 
and ϴ):

where u signify the number of data points, Δgobs
j

 represents 
the observed gravity field data and Δgcalc

j
 represents the cal-

culated gravity field data.
The flowchart of the procedures for estimating the model 

parameters is represented in Fig. 2 and in the incoming 
steps:

The gravity data of the profile is read as the first step of 
the procedure, then applying the different horizontal deriva-
tives in the second step (Third, Fourth) to reduce the effect 
of the regional data with different orders (Eqs. 2, 3). Apply-
ing the code of the (PSO) particle swarm optimization will 
come as a third step to appraise the dipping fault param-
eters, which consider the best parameters of the fault, while 
the particles reach the global minimum by updating their 
velocity and location for each parameter. Finally, the forward 
model (Eq. 1) is developed using the derived parameters 
to investigate the discrepancy amongst the calculated and 
observed gravity anomalies.

The parameters of the tuning PSO scheme were selected 
according to various studies of several parameter groups 
(Fig.  3 and Table  1) and the suitable parameters are 
c1 = c2 = 2 and c3 = 0.9 (rapid convergence rate).

Synthetic models studies

To confirm the application of the proposed PSO approach 
in gravity data, several simulated data sets were examined 
to determine the subsurface model parameters as follows:

(6)
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Model 1: effect of a regional field

The observed gravity profile (140 km) was created and 
consisted of a two-sided fault example (M = 390 mGal, 
zup = 6 km, θ = 40°, zdown = 9 km, and x0 = 70 km) with a 
third-order regional field background. It was examined in 
two manners as follows:

First, the third horizontal gradient was employed 
for this anomaly utilizing numerous s values (s = 2, 3, 

4, 5, 6, 7, 8, 9, and 10 km) (Fig. 4a). The PSO scheme 
was used to evaluate the fault parameters (Table  2). 
The predicted parameters are M = 383.2 ± 5.67 mGal, 
zup = 6.77 ± 0.19 km, θ = 45.98 ± 0.94°, zdown = 8.47 ± 0.16 
km, xo = 72.12 ± 0.75 km, and the root mean square of the 
error (RMS error) = 11.0187 mGal.

Second, Fig. 4b displays the observed and expected 
parameters of the two-sided fault by applying the PSO 
to the fourth horizontal derivatives anomalies (Table 3) 

Fig. 2  PSO scheme inversion process flowchart
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Fig. 3  PSO-controls parameters 
(c1, c2, and c3) effect on rate of 
convergence

Table 1  Model 1: Influence of the parameters  c1,  c2 and  c3 on the convergence rate (Fig. 3)

Parameters RMS error (mGal)

c1, c2 = 1.3
c3 = 0.3

c1, c2 = 1.3
c3 = 0.8

c1, c2 = 1.3
c3 = 0.9

c1, c2 = 1.6
c3 = 0.3

c1, c2 = 1.6
c3 = 0.8

c1, c2 = 1.6
c3 = 0.9

c1, c2 = 2
c3 = 0.3

c1, c2 = 2
c3 = 0.8

c1, c2 = 2
c3 = 0.9

Iterations
 50 0.4231 0.4103 0.3001 0.3701 0.3012 0.2022 0.3408 0.1801 0.1077
 75 0.3011 0.3791 0.2901 0.3441 0.2514 0.1701 0.3111 0.1231 0.0991
 100 0.2821 0.2415 0.2808 0.2801 0.2001 0.1507 0.2313 0.1102 0.0822
 125 0.2723 0.1777 0.2788 0.2601 0.1819 0.101 0.1671 0.101 0.0701
 150 0.2412 0.1402 0.2709 0.2134 0.1602 0.0602 0.1111 0.1008 0.0601
 175 0.2301 0.111 0.2409 0.187 0.1508 0.0501 0.101 0.095 0.0301
 200 0.2105 0.1001 0.2401 0.1501 0.0911 0.0901 0.0522 0.0701 0.0211
 225 0.181 0.0861 0.2001 0.0992 0.1019 0.0805 0.0401 0.054 0.0041
 250 0.0181 0.0602 0.0902 0.0805 0.0444 0.1111 0.0017 0.0081 0.0033
 275 0.01 0.0302 0.081 0.0609 0.0384 0.0912 0.0015 0.0068 0.003
 300 0.0041 0.0085 0.0231 0.0021 0.0013 0.0407 0.0017 0.0055 0.0031
 325 0.0039 0.0085 0.0081 0.002 0.0013 0.0388 0.0017 0.0054 0.0029
 350 0.0042 0.0084 0.0079 0.0021 0.0013 0.0389 0.0017 0.0055 0.0028
 375 0.0042 0.0084 0.0079 0.002 0.0013 0.0389 0.0017 0.0055 0.0028
 400 0.0041 0.0084 0.0078 0.0021 0.0013 0.0388 0.0017 0.0055 0.0028
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and the predicted parameters are M = 390.17 ± 1.07 mGal, 
zup = 6 ± 0 km, θ = 40.04 ± 0.16°, zdown = 9.01 ± 0.03 km, 
xo = 70 ± 0.03 km, and RMS error = 0.1599 mGal.

Third, Fig. 4c displays the observed and expected parame-
ters of the two-sided fault via using the PSO to the third hor-
izontal derivatives anomalies in case of 10% random noises 
(Table 2) and the predicted parameters are M = 410.81 ± 6.91 

mGal,  zup = 6.99 ± 0.27 km, θ = 49.73 ± 2.66°, 
zdown = 9.88 ± 0.23 km, xo = 74.55 ± 1.3 km, and RMS 
error = 26.9787 mGal.

Fourth, Fig.  4d displays the observed and expected 
parameters of the two-sided fault through utilizing 
the PSO to the fourth horizontal derivatives anoma-
lies with 10% random noises (Table 3) and the predicted 

Fig. 4  a Gravity anomaly represents Model 1 in case using a third 
horizontal gradient method. b Gravity anomaly represents Model 1 
in case using a fourth horizontal gradient method. c Gravity anomaly 

represents Model 1 with a 10% noise in case using a third horizontal 
gradient method. d Gravity anomaly represents Model 1 with a 10% 
noise in case using a fourth horizontal gradient method



Environmental Earth Sciences (2023) 82:502 

1 3

Page 7 of 23 502

Ta
bl

e 
2 

 M
od

el
 1

: R
es

ul
ts

 o
f t

he
 P

SO
-in

ve
rs

io
n 

al
go

rit
hm

 a
pp

lie
d 

to
 th

ird
 h

or
iz

on
ta

l d
er

iv
at

iv
e 

an
om

al
ie

s 
of

 th
e 

gr
av

ity
 p

ro
fil

e 
(1

40
 k

m
) d

ue
 to

 c
om

po
si

te
 a

no
m

al
y 

of
 tw

o-
si

de
d 

di
pp

in
g 

fa
ul

t 
m

od
el

 ( M
 =

 3
90

 m
G

al
, z

up
 =

 6 
km

,  
�
 =

 4
0°

, z
do

w
n =

 9 
km

 a
nd

  x
0
 =

 7
0 

km
) a

nd
 th

ird
-o

rd
er

 re
gi

on
al

Pa
ra

m
et

er
s

U
se

d 
ra

ng
es

Re
su

lts

N
oi

se
-f

re
e 

ca
se

s =
 2 

km
s =

 3 
km

s =
 4 

km
s =

 5 
km

s =
 6 

km
s =

 7 
km

s =
 8 

km
s =

 9 
km

s =
 10

 k
m

ɸ
Er

ro
r (

%
)

R
M

S 
er

ro
r 

(m
G

al
)

M
 (m

G
al

)
20

0–
80

0
37

7.
41

39
7

38
1.

67
37

9.
71

38
2.

03
38

4
38

5.
3

38
1.

7
38

0
38

3.
2 ±

 5.
67

1.
74

11
.0

2
z u

p (
km

)
2–

9
6.

9
6.

7
6.

5
6.

8
7.

1
6.

7
6.

5
6.

8
6.

9
6.

77
 ±

 0.
19

12
.7

8
�
 (d

eg
re

e)
20

–1
20

45
.6

44
.7

4
45

.0
5

46
.0

4
47

.1
47

.4
3

46
.5

7
46

.1
5

45
.1

3
45

.9
8 ±

 0.
94

14
.9

5
z d

ow
n (

km
)

5–
14

8.
4

8.
6

8.
5

8.
6

8.
2

8.
3

8.
4

8.
7

8.
5

8.
47

 ±
 0.

16
5.

93
x
o
 (k

m
)

60
–8

0
73

72
.0

5
71

.8
9

72
.4

1
73

.0
9

71
.5

5
71

.3
72

.7
9

71
72

.1
2 ±

 0.
75

3.
03

10
%

 ra
nd

om
 n

oi
se

 c
as

e
 M

 (m
G

al
)

20
0–

80
0

41
5.

09
41

9.
6

40
9.

08
41

1.
08

41
5.

3
40

0
40

2.
74

40
6.

01
41

8.
4

41
0.

81
 ±

 6.
91

5.
33

62
26

.9
7

 z u
p (

km
)

2–
9

6.
9

7.
4

7.
2

6.
8

6.
7

7.
3

6.
7

6.
8

7.
1

6.
99

 ±
 0.

27
16

.4
81

5
 �

 (d
eg

re
e)

20
–1

20
52

.0
3

55
.0

4
49

.2
3

48
.0

1
50

.0
4

47
.2

48
.2

5
46

.6
9

51
.0

6
49

.7
3 ±

 2.
66

24
.3

19
4

 z d
ow

n (
km

)
5–

14
9.

9
9.

8
9.

9
10

.3
9.

7
9.

8
10

.1
9.

9
9.

5
9.

88
 ±

 0.
23

9.
75

31
 x

o
 (k

m
)

60
–8

0
74

74
.9

9
73

.7
6

73
.4

8
72

.8
2

74
.0

8
76

76
.9

8
74

.8
1

74
.5

5 ±
 1.

3
6.

49
52

Ta
bl

e 
3 

 M
od

el
 1

: R
es

ul
ts

 o
f t

he
 P

SO
-in

ve
rs

io
n 

al
go

rit
hm

 a
pp

lie
d 

to
 fo

ur
th

 h
or

iz
on

ta
l d

er
iv

at
iv

e 
an

om
al

ie
s 

of
 th

e 
gr

av
ity

 p
ro

fil
e 

(1
40

 k
m

) d
ue

 to
 c

om
po

si
te

 a
no

m
al

y 
of

 tw
o-

si
de

d 
di

pp
in

g 
fa

ul
t 

m
od

el
 ( M

 =
 3

90
 m

G
al

, z
up

 =
 6 

km
,  
�
 =

 4
0°

, z
do

w
n =

 9 
km

 a
nd

  x
0
 =

 7
0 

km
) a

nd
 th

ird
-o

rd
er

 re
gi

on
al

Pa
ra

m
et

er
s

U
se

d 
ra

ng
es

Re
su

lts

N
oi

se
-f

re
e 

ca
se

s =
 2 

km
s =

 3 
km

s =
 4 

km
s =

 5 
km

s =
 6 

km
s =

 7 
km

s =
 8 

km
s =

 9 
km

s =
 10

 k
m

ɸ
Er

ro
r (

%
)

R
M

S 
er

ro
r 

(m
G

al
)

M
 (m

G
al

)
20

0–
80

0
38

9.
23

39
2

39
1.

02
38

9.
6

39
0.

2
39

0
39

1.
04

39
0

38
8.

43
39

0.
17

 ±
 1.

07
0.

04
0.

16
z u

p (
km

)
2–

9
6

6
6

6
6

6
6

6
6

6 ±
 0

0.
00

�
 (d

eg
re

e)
20

–1
20

40
.2

1
39

.7
1

40
.2

9
39

.9
9

40
.0

6
40

40
.0

5
40

40
.0

1
40

.0
4 ±

 0.
16

0.
09

z d
ow

n (
km

)
5–

14
9

9
9

9
9

9.
1

9
9

9
9.

01
 ±

 0.
03

0.
12

x
o
 (k

m
)

60
–8

0
69

.9
6

70
.0

6
69

.9
5

70
70

70
70

70
70

70
 ±

 0.
03

0.
00

10
%

 ra
nd

om
 n

oi
se

 c
as

e
 M

 (m
G

al
)

20
0–

80
0

38
7.

96
39

5.
67

40
5.

51
38

6.
5

39
4.

6
39

8.
24

38
6.

13
39

9.
55

39
6.

69
39

4.
54

 ±
 6.

55
1.

16
38

12
.6

4
 z u

p (
km

)
2–

9
5.

6
5.

7
6.

4
6.

5
5.

8
6.

3
5.

7
6.

5
6.

4
6.

1 ±
 0.

39
1.

66
67

 �
 (d

eg
re

e)
20

–1
20

43
.1

2
37

.7
7

43
.0

5
45

.9
6

37
.9

46
.1

6
36

.5
7

48
.4

6
35

.0
1

41
.5

6 ±
 4.

85
3.

88
89

 z d
ow

n (
km

)
5–

14
8.

7
9.

3
8.

6
9.

4
9.

5
9.

2
8.

9
9.

4
9.

5
9.

17
 ±

 0.
35

1.
85

19
 x

o
 (k

m
)

60
–8

0
69

.7
2

70
.8

6
70

.5
7

70
.1

8
69

.7
4

70
.7

3
69

.5
6

70
.0

4
69

.3
3

70
.0

8 ±
 0.

54
0.

11
59



 Environmental Earth Sciences (2023) 82:502

1 3

502 Page 8 of 23



Environmental Earth Sciences (2023) 82:502 

1 3

Page 9 of 23 502

parameters are M = 394.54 ± 6.55 mGal, zup = 6.1 ± 0.39 km, 
θ = 41.56 ± 4.85°, zdown = 9.17 ± 0.35 km, xo = 70.08 ± 0.54 
km, and RMS error = 12.6451 mGal.

The obtained results demonstrate that the suggested 
method can produce accurate fault parameters and is capa-
ble of minimizing the influence of regional background and 
noise.

Model 2: effect of interference structures

To study the influence of structures interference, a grav-
ity profile of 140 km was produced for combined two-
sided fault and spherical structures with M = 390 mGal, 
zup = 6 km, θ = 40°, zdown = 9 km and  x0 = 70 km (fault) 
and zsphere = 3 km, Msphere = 510 mGal, xo sphere = 90 
km (sphere) without and with 10% random noise. The 
interpretation procedures are done as the following 
consequence:

First, the third horizontal gradient was employed 
for this anomaly, applying s values equal to 2, 3, 4, 5, 
6, 7, 8, 9, and 10 km (Fig. 5a). Then, the PSO scheme 
was engaged to guess the fault parameters (Table  4) 
and are M = 390.49 ± 2.29 mGal, zup = 6.02 ± 0.12 
km,  θ = 39.96 ± 0 .63° ,  zdown = 9 .04 ± 0 .12 km, 
xo = 70.05 ± 0.18 km and RMS error equals 0.439 mGal 
for a noise-free anomaly. In case of including a 10% 
noise, Fig.  5b shows the observed and the expected 
anomalies, and the parameters are M = 396.34 ± 5.34 
mGal ,  zup = 6 .38 ± 0.29 km,  θ = 41.84 ± 4.23° , 
zdown = 9.19 ± 0.36 km, xo = 70.09 ± 0.83 km, and RMS 
error = 14.0570 mGal (Table 4).

Second, the fourth horizontal gradient was used for the 
same anomaly with the equivalent s values (Fig. 5c), and 
the deduced fault parameters are M = 390.43 ± 1.24 mGal, 
zup = 6.02 ± 0.14 km, θ = 40.65 ± 1°, zdown = 9.01 ± 0.12 
km, xo = 70.06 ± 0.14 km, and RMS error = 0.79 mGal 
(in a case of noise-free) (Table 5). In addition, in case of 
including a 10% noise, Fig. 5d shows the observed and 
the derived anomalies, and the deduced parameters are 
M = 393.8 ± 7.16 mGal, zup = 6.2 ± 0.36 km, θ = 42.2 ± 3.6°, 
zdown = 9.19 ± 0.33 km, xo = 70.38 ± 0.59 km, and RMS 
equals 13.6824 mGal.

Model 3: effect of multi‑faults (horst model)

A 140-km gravity anomaly was created through two neigh-
boring two-sided faults consisting of a horst model with 
M1 = 410 mGal, zsh = 3 km, θ1 = 55°, z1 = 7 km, xo1 = 50 km 
and M2 = 460 mGal, zsh = 3 km, θ2 = 30°, z2 = 5 km, xo2 = 80 
km (Fig. 6a). The interpretation procedures as declared 
above are:

First (using the third horizontal gradient method), 
Fig. 6a displays the observed and predicted anomalies of 
the two neighboring faults with M1 = 410.21 ± 1.4 mGal, 
zsh = 2.99 ± 0.06 km, θ1 = 55 ± 0.15°, z1 = 7.06 ± 0.05 
km, xo1 = 49.99 ± 0.01 km, M2 = 462.45 ± 1.91 mGal, 
z2 = 4.99 ± 0.06 km, θ2 = 29.98 ± 0.09°, xo2 = 80 ± 0.01 
km (in case of noise-free) and RMS error is 2.6953 
mGal. Moreover, in the case of a 10% noise included, 
Fig. 6b shows the observed and predicted anomalies with 
an RMS error of 27.36 mGal, and the deduced param-
eters are M1 = 414.55 ± 6.58 mGal, zsh = 3.11 ± 0.47 km, 
θ1 = 55.86 ± 3.34°, z1 = 7.06 ± 0.53 km, xo1 = 49.67 ± 0.81 
km, M2 = 464.94 ± 6.24 mGal, z2 = 5.14 ± 0.4 km, 
θ2 = 31.93 ± 3.59°, xo2 = 79.94 ± 0.67 km (Table 6).

Second (using the fourth horizontal gradient method), 
Fig. 6c shows the observed and predicted anomalies and 
their deduced parameters (M1 = 410.81 ± 1.11 mGal, 
zsh = 2.99 ± 0.06 km, θ1 = 54.98 ± 0.16°, z1 = 7.03 ± 0.07 
km, xo1 = 50 ± 0.01 km, M2 = 461.23 ± 1.15 mGal, 
z2 = 4.99 ± 0.08 km, θ2 = 30.03 ± 0.19°, xo2 = 80 ± 0.04 km) 
and RMS error is 2.0266 mGal (Table 7). In addition, after 
adding a 10% random noise, Fig. 6d displays the observed 
and predicted anomalies with M1 = 412.49 ± 3.9 mGal, 
zsh = 3.08 ± 0.41 km, θ1 = 54.2 ± 3.92°, z1 = 6.93 ± 0.41 
km, xo1 = 50.24 ± 0.84 km, M2 = 462.42 ± 6.72 mGal, 
z2 = 4.87 ± 0.43 km, θ2 = 31.44 ± 3.78°, xo2 = 79.28 ± 0.25 
km) and RMS error equals 24.3930 mGal.

The combination of input model parameters and out-
puts are the tactical factors. Sensitivity evaluation is an 
approach for evaluating the reliability of a model or a 
judgment. Numerous methods can be used to envision the 
global model and diminish outcome uncertainty (Feng 
2021; Essa et al. 2022). In deciding on the finest control 
systems, the significance of each control factor (c1, c2, and 
c3) was examined (Fig. 3).

The metaheuristic optimization algorithm routine 
finally means selecting the population values based on the 
scale and complexity of the optimization task. Whereas 
the particle swarm algorithm works successfully and 
effectively with higher population density, the process-
ing complexity grows, since more search spaces are found. 
The doubt and integrity of the suggested scheme are also 

Fig. 5  a Gravity anomaly represents Model 2 without noise in case 
using a third horizontal gradient method. b Gravity anomaly repre-
sents Model 2 with a 10% noise in case using a third horizontal gra-
dient method. c Gravity anomaly represents Model 2 without noise 
in case using a fourth horizontal gradient method. d Gravity anomaly 
represents Model 2 with a 10% noise in case using a fourth horizontal 
gradient method

◂
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Fig. 6  a Gravity anomaly represents Model 3 without noise in case 
using a third horizontal gradient method. b Gravity anomaly repre-
sents Model 3 with a 10% noise in case using a third horizontal gra-
dient method. c Gravity anomaly represents Model 3 without noise 
in case using a fourth horizontal gradient method. d Gravity anomaly 
represents Model 3 with a 10% noise in case using a fourth horizon-

tal gradient method. e Error percentage in each calculated parameter 
through Model 1 without and with 10% random noise. f Error per-
centage in each calculated parameter through Model 2 without and 
with 10% random noise. g Error percentage in each calculated param-
eter through Model 3 without and with 10% random noise
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explored using the previously mentioned three synthetic 
models with a 10% random noise and two case studies, 
as discussed in the following section. To avoid the doubt 
of the offered method utilizing different values of s win-
dows and each s window through considerable numbers of 
iterations, then taking the average of the finest parameter 
values from the whole s windows solutions to get more 
reliable results.

Field examples

To investigate the rationality and the stability of the offered 
scheme for the buried fault parameters estimation, two pub-
lished real data sets of case studies from the United States 
and Tunisia were used. The particle swarm optimization 
scheme was implemented to these data to accomplish the 
optimal fit for the buried fault parameters (M, zup, θ, zdown, 
xo). The results were then matched with existing geologic 
information and any additional geophysical outcomes.

Case 1: Seattle fault system, USA

The Puget Lowland is located inside a forearc region of a 
Cascade subduction region. It is confined by a Cascade Vol-
canic Arc, the old Mesozoic terrain, and the uplifted and 
quarried Olympic Mountains accretion complex. The depth 
of the Puget Lowland approaches 25–30 km and superim-
poses Siletz terrain, basalts, and invasive rocks, including 
island-arc formations. The bedrock beneath the tailing basin 
reached depths between 2.195 and 2.637 km. These bed-
rocks are basalt embedded in mafic rock interspersed with 
siltstone, tuff, conglomerate, and sandstone (Symons and 
Crosson 1997; Rau and Johnson 1999; Brink et al. 2002) 
(Fig. 7a). Figure 7a indicates the position of the examined 
area and observed gravity profile. It is crossed over a Seat-
tle fault region, which comprises two steep strata deformed 
primarily through two or more faults (Johnson et al. 1994). 
The Seattle fault region has a placement from east–west, 
depth to subsurface bedrock, and the danger of metropolitan 

Fig. 6  (continued)
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Fig. 7  a Case 1: Geological map for the area including the Seattle 
Fault System, USA (after Brink et  al. 2002). b Observed and pre-
dicted gravity anomalies deduced from using the third horizontal 
gradient method. c Third horizontal derivative anomalies using differ-
ent s values of b. d Convergence rate of the PSO scheme after apply-

ing the third horizontal gradient method. e Observed and predicted 
gravity anomalies deduced from using the fourth horizontal gradient 
method. f Fourth horizontal derivative anomalies using the s values 
of b. g Convergence rate of the PSO scheme after applying the fourth 
horizontal gradient method
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inhabitants’ concentration. It is a complex thrust, reversing 
fault with nearly 7 km width and 70 km length delimiting 
the northern margin of the Seattle uplift.

Figure 7b shows the observed and estimated anoma-
lies with M = − 51.49 ± 6.73 mGal, zup = 1.51 ± 0.1 km, 
θ = 38.55 ± 3.62°,  zdown = 3.88 ± 0.37 km, xo = 27.26 ± 0.87 

Fig. 7  (continued)
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km) and RMS error equals 1.47 mGal (Table 8). Also, the 
third horizontal derivative anomalies using different val-
ues of s (s = 1 km, s = 1.5 km, s = 2 km, s = 2.5 km, s = 3 
km, s = 3.5 km, s = 4 km, s = 4.5 km, s = 5 km) are shown 
in Fig. 7c. Moreover, the convergence rate of the PSO algo-
rithm demonstrated in Fig. 7d.

In case of utilizing the fourth horizontal gradient, 
Fig. 7e explains the observed and estimated anomalies 
with M = − 51.56 ± 3.24 mGal, zup = 1.52 ± 0.17 km, 
θ = 38.93 ± 2.97°, zdown = 3.86 ± 0.33 km, xo = 27.29 ± 0.97 
km) and RMS error is 0.72 mGal (Table 9). In addition, 
the fourth derivative anomalies are displayed in Fig. 7f 
for the same s values declared above. Finally, the conver-
gence rate is mentioned in Fig. 7g. A comparison results 
are demonstrated in Table 10.

Case 2: Bizerte Molassic Basin, Tunisia

Figure 8a, the study area includes a 1:50 km scale geolog-
ical map of Metline and Porto-Farina, the oldest series of 
exposures are Triassic evaporates positioned close to the 
town of El Alia, along the El Alia fault. In the southern 
district of Metline city, the Upper Cretaceous is signified 
by “Cenomanian marly limestone, Senonian marls, and 
Middle Campanian–Lower Maastrichtian marl-limestone 
alternations and outcrops.” Green clays from the El Haria 
formation are a representative fossil of the Late Maas-
trichtian–Paleocene. At El Alia, Metline, and Menzel 
Jemil, huge outcroppings of Globigerina limestone cor-
relate to the lower Eocene deposits. The Middle-Upper 
Miocene succession was signified through “marls, clays, 
sandstones, conglomerates, and gypsum layers” (El Ghali 
and Ben Ayed 2000). In addition, more geologic setting 
details are found in several published literature (Ben Ayed 
et al. 1979; Bejaoui et al. 2016; Zaghdoudi et al. 2021).

Figure 8b explains the original and estimated anom-
alies with M = − 4 ± 0.79 mGal, zup = 0.31 ± 0.11 km, 
θ = 78.07 ± 3.59o, zdown = 0.94 ± 0.13 km, xo = 2.01 ± 0.13 

km, and RMS error equals 1.00 mGal (Table 11). In addi-
tion, Fig. 8c shows the third derivative anomalies using 
different values of s (s = 0.028, 0.042, 0.056, 0.070, 
0.084, 0.098, 0.112, 0.126, and 0.140 km). Figure 8d 
shows the convergence rate of the PSO algorithm engaged 
to third horizontal anomalies.

Finally, Fig. 8 shows the original and estimated anom-
alies with M = − 3.8 ± 0.78 mGal, zup = 0.32 ± 0.09 km, 
θ = 77.97 ± 4.33°, zdown = 0.95 ± 0.2 km, xo = 2.017 ± 0.15 
km, and RMS error is 0.97 mGal (Table 12). Figure 8f 
displays the fourth gradient anomalies for similar s val-
ues. Moreover, Fig. 8g displays the rate of convergence 
of the PSO scheme used for fourth horizontal anomalies.

Discussion

Our results of synthetic investigations, which included the 
weight of the regional field, interference of neighboring 
structures, and complex fault system, explain that the uti-
lization of a particle swarm optimizer incorporated with 
the horizontal gradient method (with different orders) 
can avoid the noise and regional anomaly in the collected 
gravity data and gives a respected view for deducing the 
subsurface two-sided fault parameters (the amplitude coef-
ficient, depths of up- and downthrown, dip angle, and fault 
trace location). Furthermore, the sensitivity error in each 
parameter (M,  zup, θ,  zdown,  xo) in all synthetic cases is 
demonstrated in Fig. 6e, f, and g including the effect of 
noise. Also, attained results for two field cases reflected 
the accuracy of the existing method.

Gravity anomaly in the Seattle Fault Region (Case 1: 
USA) for deducing its parameters (Fig. 7b, e) has been 
investigated. The attained results for this fault structure 
are matched with available geologic and geophysical infor-
mation (Table 10). For example, the depths for up- and 
down-thrown deduced by Brink et al. (2002) equal 1.5 km 
and 3.5 km, respectively. In addition, depths deduced by 
Essa et al. (2021b) are 1.46 km and 3.73 km, respectively. 

Table 10  Case 1: achieved 
results of the Seattle fault, USA

Methods Brink et al. 
(2002)

Anderson et al. (2020) Essa et al. (2021b) Present method

Parameters
 M (mGal) – − 72.61 ± 15.74 − 52.28 ± 12.40 − 51.56 ± 3.24
 zup (km) 1.5 2.2 ± 0.52 1.46 ± 0.34 1.52 ± 0.17
 � (degree) 40 – 38.75 ± 4.06 38.93 ± 2.97
 zdown (km) 3.8 – 3.73 ± 0.40 3.86 ± 0.33
 xo (km) 26.5 25.06 ± 0.97 27.03 ± 0.93 27.29 ± 0.97
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Fig. 8  a Case 2: Geological map of the Bizerte Molassic Basin, 
South of Bizerte City, Northeastern Tunisia (after El Ghali and Ben 
Ayed 2000; Zaghdoudi et al. 2021). b Observed and predicted gravity 
anomalies deduced from using the third horizontal gradient method. 
c Third horizontal derivative anomalies using different s values of b. 
d Convergence rate of the PSO scheme after applying the third hori-

zontal gradient method. e Observed and predicted gravity anomalies 
deduced from using the fourth horizontal gradient method. f Fourth 
horizontal derivative anomalies using the s values of b. g Conver-
gence rate of the PSO scheme after applying the fourth horizontal 
gradient method
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Fig. 8  (continued)
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Moreover, Anderson et al. (2020) postulated this fault as 
a one-side vertical fault and deduced the depth as 2.2 km. 
Therefore, our achieved results were compared with others 
and found acceptable uncertainties (Table 10). Besides, 
the gravity anomaly in the Bizerte Molassic Basin (Case 
2: Tunisia) for deducing fault parameters (Fig. 8b, e) has 
been inspected. The accomplished results for this fault 
structure are matched with available geologic and geo-
physical information from Zaghdoudi et al. (2021). The 
patterns of the calculated gravity anomalies in the two 
cases matched well with the observed anomalies.

Finally, the motivation for exploiting the particle swarm 
scheme is to capitalize on its benefits in overwhelming the 
instability and non-uniqueness of the gravity anomalies 
inversion. In addition, the current algorithm can get a sta-
ble and acceptable accuracy for the parameters of fault and 
can be confirmed by available data from other published 
literature.

Conclusions

The use of the particle swarm optimizer scheme for identify-
ing and deducing the third and fourth horizontal derivative 
anomalies is likely to be valuable in the geophysical inves-
tigation, because it has numerous advantages, including (1) 
eliminating the influence of deep-structure (regional anom-
aly), (2) eradicating the weight of neighboring structures and 
noise responses, and (3) accurately deducing the two-sided 
fault source parameters.

The proposed method is simple, automatic, and does not 
involve any graphical support. The synthetic examples inves-
tigated demonstrated that the suggested approach is stable 
in terms of neighboring effect and noise. It has additionally 
been successively exploited to two real-world data sets from 
the United States and Tunisia over faults structures and pro-
duced positive results. From the validation of the results, this 
method is robust and firm. Finally, the implementation of 
PSO to estimate buried fault parameters using real data sets 
from the United States and Tunisia provides evidence for the 
rationality and stability of the proposed scheme. The accu-
racy of the results obtained using PSO can be used to sup-
port informed decision making in any investment projects.
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