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Abstract
Determination of the rock elastic parameters is essential in geomechanical studies. Among the elastic parameters, Young’s 
modulus (YM) and Poisson’s ratio (PR) have many applications in wellbore stability analysis, hydraulic fracturing, casing 
design, and sand production. In this study, the machine learning methods, including adaptive Neuro-Fuzzy inference system 
(ANFIS), artificial neural network (ANN), and support vector machine (SVM) are used to predict the rock elastic parameters. 
Using these models requires measuring the static elastic parameters, so 34 laboratory tests are used to develop empirical 
correlations between static elastic and dynamic elastic parameters. Then, the static elastic parameters at all logged intervals 
are calculated by applying the suggested empirical correlations. To demonstrate the capabilities of the ANFIS, ANN, and 
SVM methods, DT, RHOB, and NPHI data are used as inputs, and YM and PR data are used as outputs. The performance 
of single models can be enhanced using ensemble models, such as simple averaging ensemble (SAE), weighted averaging 
ensemble (WAE), and neural network ensemble (NNE). The results of the single models showed that ANN models performed 
better overall than other single models. The results also showed that ensemble models predicted elastic parameters better 
than single models. This shows that NNE model with R2 of 0.998 and 0.993, MAPE error values of 0.0041 and 0.0010, and 
RMSE error values of 0.58 and 0.0029 for the training data of YM and PR is more accurate and reliable than SAE, WAE 
and single models.
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Introduction

Knowing about the rock mechanical parameters, including 
Young’s modulus and Poisson’s ratio, is one of the most 
essential tasks in the oil and gas industry. These param-
eters are important in geomechanics applications, such as 
the determination of mud weight windows, casing design, 

hydraulic fracturing, and sand production. Rock elastic 
parameters can be calculated by two methods of laboratory 
tests and downhole measurements. In laboratory tests, the 
elastic parameters are measured using core samples and the 
downhole measurements are done using well-logging data, 
such as compressional and shear velocities. The result of 
laboratory tests and downhole measurements is called the 
static and dynamic elastic parameters, respectively (Mavko 
et al. 2020; Tiab and Donaldson 2015).

The problems of laboratory methods are the unavailabil-
ity of sample tests, lack of access to appropriate facilities, 
and the high cost of tests. Therefore, in recent years, atten-
tion to downhole measurements has increased. The advan-
tages of using dynamic measurement methods includes: 
non-destructive testing, cost-effective in terms of cost and 
time, as well as covering the whole reservoir intervals, 
which has made this method efficient (Zhang and Bentley 
2005). Dynamic and static values are very different from 
each other and static values are more important; therefore, 
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different empirical correlations will be used to convert 
dynamic values to static values (Du et  al. 2001). The 
dynamic parameters require the data of shear velocity Vs; 
however, this information is not always determined in all 
intervals of wells. To predict the mechanical parameters, 
in recent years, many researchers have used machine learn-
ing methods. Ranjbar-Karami et al. (2014) predicted the 
rock elastic parameters such as Young’s modulus, Poisson’s 
ratio, shear modulus, and bulk modulus using an improved 
Fuzzy Inference System (FIS) based on the South Pars Gas 
Field data. Results of this study showed FIS is successful in 
the estimation of static mechanical properties. Armaghani 
et al. (2015) predicted the E and UCS using ANFIS and 
ANN methods. The results showed that the ANFIS method 
is a more appropriate one than the ANN in predicting these 
parameters. Yin et al. (2016) developed a new method for 
assessing Young’s modulus and Poisson’s ratio in reservoir 
rocks. Aboutaleb et al. (2018) predicted Estatic and UCS 
using the ANN and SVM models based on the data of the 
Asmari Formation. Elkatatny et al. (2019) used the ANFIS, 
ANN, SVM machine learning methods for estimation of 
static Young’s modulus based on Well-logging data includ-
ing RHOB,  DTc, and  DTs as input. The results showed that 
the ANN was the model with high accuracy for estimating 
static Young’s modulus. Mahmoud et al. (2019) developed 
the ANN-based empirical correlation for calculating the 
static Young’s modulus based on the data from sandstone 
formation. Abdulraheem (2019) predicted static Poisson’s 
ratio applying compressional and shear wave velocity data 
using ANN and Fuzzy Logic Type-2 (FLT2). This study 
was done based on 75 data from carbonate rocks and the 
results showed that the ANN method has better results. 
Gowida et al. (2020) predicted the static Poisson’s ratio 
using the ANN and ANFIS models. The input data were 
RHOB,  DTc, and  DTs and the results indicated that the 
ANN model has more appropriate results. Ahmed et al. 
(2021b) applied functional network (FN) and random for-
est (RF) methods based on the drilling data to predict the 
static Poisson's ratio. This study was done based on the 
1775 sample data of different rocks, including shale, sand, 
and carbonate. The results showed that the RF method 
has a high correlation coefficient and a low error value. 
In the other study, these researchers used drilling data as 
input and using the ANN, ANFIS, and SVM, the static 
Poisson’s ratio was predicted. The results showed that the 
SVM method has more suitable results for calculating the 
static Poisson’s ratio than the other two methods (Ahmed 
et al. 2021a). Siddig and Elkatatny (2021) constructed a 
model to predict the static Young’s modulus based on the 
drilling data using ANN and SVM methods. The results 
showed that the two methods have appropriate results to 
predict Young’s modulus. Lawal et al. (2021) predicted 
UCS, tensile strength (TS), shear strength (SS), and YM 

of coal using the MARS (multivariate adaptive regression 
spline), double input–single output ANN ((DISO–ANN) 
and genetic algorithm (GA). It was found that the proposed 
models are capable of predicting mechanical properties of 
coal to a high degree of accuracy, and the relationships 
between the best fitness and mean fitness in GA dictated its 
prediction capability. Fattahi and Shirinzade (2022) devel-
oped a new method to estimate the mechanical properties 
of carbonate rocks based on physical properties and pet-
rographic characteristics using support vector regression 
(SVR) improved by metaheuristic algorithms (harmony 
search (HS), grey wolf optimizer (GWO), cuckoo search 
(CS), dolphin echolocation (DE) and genetic algorithm 
(GA)). As the literature review shows, there is no single 
model to be superior to others in all cases and the perfor-
mances of different models may be different according to 
condition of each input parameters. Thus, ensemble tech-
niques can be used as post-process approaches to improve 
prediction models by combining the outputs from different 
single models. The main idea of these models is to use the 
unique capabilities of each model to better estimate the 
data series pattern.In various studies, it has been shown 
that ensemble methods can improve performance and 
reduce modeling error (Bates and Granger 1969; Clemen 
1989; Nourani et al. 2018). Shamseldin et al. (1997) used 
three different methods to estimate the runoff model and 
showed that the output combination of different models 
gives an appropriate estimate of runoff compared to the 
initial single models. Zhang (2003) used an ensemble 
model of neural networks model in combination with an 
autoregressive integrated moving average (ARIMA) to pre-
dict time series, which showed that the model combination 
increased prediction accuracy.

Many studies have been conducted using artificial 
intelligence to predict elastic parameters from well logs. 
Based on these studies, the main components of single AI 
methods were identified and modeled. However, ensem-
ble models have not been much discussed despite their 
higher accuracy and efficiency in predicting the elastic 
parameters of well logs. Therefore, this study creates 
ensemble models using the results of single models and 
evaluates their efficiency. The following steps have been 
done to determine the static elastic parameters. First, the 
empirical correlations between dynamic and static mod-
ulus were developed using the results of 34 laboratory 
core samples. Then, the static values of parameters YM 
and PR in whole logged intervals were calculated using 
the proposed correlations. Due to the lack of access to 
shear wave velocity (Vs) data, well log data including com-
pressional wave transit time (DT), density (RHOB), and 
porosity (NPHI) were used as inputs. Moreover, the static 
elastic parameters data obtained from the empirical corre-
lations are used as the output of the models. To predict the 
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elastic parameters, machine learning methods, including 
adaptive Neuro-fuzzy inference system (ANFIS), artifi-
cial neural network (ANN) and support vector machine 
(SVM) have been used. Finally, the best model for deter-
mining the static YM and static PR has been selected by 
determining the value of the coefficient of determination 
(R2) and the error value. Then, as a new innovation in 
the study is that ensemble models were developed from 
the outputs of the single models, thereby improving the 
modeling results. Different AI models have been used 
to predict elastic parameters, but this study is the first to 
utilize three ensemble methods, including simple averag-
ing ensembles, weighted averaging ensembles, and neural 
network ensembles.

Geological setting

The sample data and petrophysical logs used in this study 
belong to one of the gas fields in southern Iran. The 
reservoir part of this field is mainly related to Kangan 
and Dalan formations. Figure 1 shows these formations 
that are divided into five layers K1 to K5, in which lay-
ers K1 and K2 are related to Kangan, layers K3 and K4 
are related to the upper Dalan, and layer K5 belongs to 
the lower Dalan and Nar section. Geologically, reservoir 
layers in Dalan and Kangan Formations have Upper Per-
mian to Lower Triassic age, and based on petrophysi-
cal studies, the rocks are carbonate including dolomite, 
anhydrite, and iron ores, such as siderite, hematite, and 
magnetite.

Theory

Rock elastic parameters

Rock mechanics is defined as the science of studying the 
behavior and deformation of rock against external and inter-
nal factors. The importance of this deformation process has 
led petroleum engineers to pay attention to this science. 
Knowing the rock elastic parameters at the lifecycle of a 
well helps engineers to understand the conditions and pos-
sible changes. In addition, it is very essential to determine 
the rock elastic parameters for analyzing wellbore stabil-
ity, predicting hydraulic fracture, and sand production. The 
main rock elastic parameters include Young’s modulus and 
Poisson’s ratio. Young’s modulus can be defined as the 
ratio between stress and strain and Poisson’s ratio can be 
expressed as the ratio between lateral strain to axial strain 
(Zhang 2019). Calculation of rock elastic parameters can be 
done by two general methods, including laboratory measure-
ment methods on core samples (static) and determination of 
elastic parameters using the results of density logs and sonic 
wave velocity (dynamic). According to the previous studies, 
static parameters are less than dynamic values (Plona and 
Cook 1995). This difference is due mainly to strain ampli-
tude. In the dynamic method, this value is much smaller than 
in the static method (Ranjbar-Karami et al. 2014).

This study imposes limitations on modeling due to 
the lack of correlation between the input and output data, 
since there are 2790 samples and 34 samples, respectively. 
Therefore, empirical correlations between dynamic and 
static modulus were obtained. Then, with the help of these 

Fig. 1  Stratigraphy of the stud-
ied formations in southern Iran
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relationships, the dynamic values were converted to static 
values and the data for all the well intervals (2790 samples) 
were calculated and these data were used as the output of the 
models. In addition, since the static parameters are depend-
ent on the dynamic parameters, this limitation has caused 
the dynamic modulus to be calculated solely to develop 
empirical correlation. As a result of these limitations, 34 
core samples at depths between 2650 and 2820 from one of 
the southern Iranian gas fields were tested using the UCS 
test. Static YM is defined as the tangential modulus (Et) at 
50% of maximum strength. The static PR is derived from 
the ratio of radial to axial strain. As well, dynamic elastic 
parameters based on the shear wave velocity, compression 
wave velocity, and density are calculated as follows (Fjar 
et al. 2008):

where Ed is dynamic Young’s modulus (GPa), � is bulk den-
sity (g/cm3), Vs is shear wave velocity (km/s), Vp is com-
pressional wave velocity (km/s) and �d is dynamic Poisson’s 
ratio.

The empirical correlations between static and dynamic 
elastic parameters were developed using the dynamic and 
static results, as shown in Fig. 2. The results obtained for 
the Poisson’s ratio in the linear mode indicate a low corre-
lation coefficient; however, to determine the empirical rela-
tionship with the high correlation, it is essential to remove 
the y-intercept from the model. Results without y-intercept 
showed a higher correlation coefficient and a higher accu-
racy. The empirical model considering the y-intercept is 
expressed in Eq. (3), which has a correlation coefficient of 
0.96. In addition, the empirical relationships and its correla-
tion coefficients for static YM is shown in Eq. (4):

(1)Ed = �V2

s

3V2
p
− 4V2

s
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)

Lower correlation coefficient of Eq. (5) may be due to 
dependence of the equation to y-intercept. Furthermore, 
Poisson’s ratio in Eq. (3) (with no y-intercept) has higher 
correlation of coefficient. Therefore, it has been used for 
predicting Poisson’s ratio:

where E and � are Young’s modulus and Poisson’s ratio, 
respectively. The subscripts d and s represent the dynamic 
and static values. Then, the static YM and PR were cal-
culated using the equations obtained from Fig. 2 for depth 
intervals 2650–2820, the results of them are illustrated in 
Fig. 3.

Machine learning methods

Adaptive neuro‑fuzzy inference system (ANFIS)

The ANFIS system was first introduced by Jang (1993). In 
the fuzzy part of the ANFIS system using the membership 
functions and rules (if and then), a relationship is established 
between the input and output variables, and the character-
istics related to the fuzzy part membership functions are 
determined by the neural network (Grima et al. 2000; Sezer 
et al. 2014). A fuzzy system is defined as Eq. (6) (Kalkan 
et al. 2009):

where x is a member of X and �A is the degree of member-
ship of x, the value of which is between zero and one vari-
able. Membership functions are used to consider the degree 
of membership. These functions include a variety of func-
tions, including triangular, trapezoidal, Gaussian, s-shape, 
z-shape, and sigmoidal. Fuzzy inference systems rely on 

(3)�s = 0.72�dR
2 = 0.96

(4)Es = 0.5624Ed − 13.91R2 = 0.86

(5)�S = 0.504�d + 0.0768R2 = 0.30

(6)A =
{(

x.�A(x).x ∈ X
)}

Fig. 2  Correlation between 
dynamic and static elastic 
parameters
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two kinds of Mamdani (Mamdani and Assilian 1975) and 
Takagi–Sugeno-Kang (TSK–FIS) (Sugeno and Kang 1988). 
ANFIS model uses the Sugeno system as the main modeling 
system. Figure 4 shows a first-order fuzzy Sugeno model 
with two inputs (x, y), one output (f), and two membership 
functions for each input. In this model two rules (if and then) 
are defined as Eq. (7) (Takagi and Sugeno 1985):

(7)IfxisA1andyisB1thenf1 = p1x + q1y + r1(rule1)

IfxisA2andyisB2thenf2 = p2x + q2y + r2(rule2)

Fig. 3  Comparing dynamic and 
static elastic parameter values 
versus depth

Fig. 4  Schematic of ANFIS architecture (Kalkan et al. 2009) 
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where A1, A2, B1, and B2 are the membership functions for 
x, y inputs, respectively, and p1, p2, q1, q2, r1, and r2 are the 
parameters of the output function.

The fuzzy system has steps, including, fuzzified inputs, 
applying the fuzzy operator and implication method, 
applying aggregation method, and defuzzification. In the 
first step, the input set will be fuzzy using the member-
ship functions and these membership functions are defined 
through clustering. In the next step, a set of fuzzy rules 
was created to communicate the input and output param-
eters, and finally outputs are created that uses diffuse 
methods to convert the fuzzy output of the system into a 
non-fuzzy output.

Artificial neural network (ANN)

The artificial neural network system is inspired by the bio-
logical neural system to process information, and it pro-
cesses information like the human brain. The main task of 
an artificial neural network is to pattern recognition, identi-
fication, classification information, and approximate a func-
tion during a learning process (Kalkan et al. 2009). Fig-
ure 5 shows the neural network system in which this system, 
including input layer, hidden layer, and output layer parts, 
each of layer has responsible for receiving data, processing, 
and producing output layers. Artificial neural networks are 
created from simple processing units called neurons. Neu-
rons receive the information in the input layer and transfer 
it to the hidden layer for processing, and finally transfer the 
processed data to the output layer. The number of neurons in 
the input and output layers depends on the input and output 
parameters in the model, and usually, the number of neurons 
in the hidden layer will be determined based on the complex-
ity of the problem. The signal is transmitted between neu-
rons through weighted communication links that connect all 
layers of the network with connections of different weights.

The most common type of artificial neural network is the 
feed-forward Multilayer Perceptron (MLP). These types of 

networks consist of an input layer, one or more hidden lay-
ers, and one output layer, and weight is considered for each 
connection (Adhikary and Mutsuyoshi 2006). The back-
propagation algorithm is one of the widest algorithms for 
training feed-forward MLP artificial neural networks. In this 
method, the gradient descent technique is used. The errors 
will be split from the input layer to the output layer and the 
weights will be corrected until the error was minimized. 
Therefore, the training process of this system is a gradual 
correction of weights to minimize the error function. This 
operation continues until the model responds positively 
to one of the applied stop criteria (Mukherjee and Biswas 
1997).

Support vector machine (SVM)

SVM is based on statistical learning theory developed by 
Vapnik (1999). This model uses the inductive principle of 
structural error minimization. The two main categories of 
SVM are Support Vector Classification (SVC) and Support 
Vector Regression (SVR). SVC is used to solve data clas-
sification with different classes and SVR is used for predic-
tive data. The aim of SVR is to create a linear regression 
hyperplane expressed in Eq. (8) that allows as many devia-
tions from the true values as is possible (Fig. 6) while at the 
same time trying to find a solution that is as flat (Chapelle 
and Vapnik 1999; Cortes and Vapnik 1995; Gholami and 
Moradzadeh 2012):

where b is the bias, Wt
0
 is the optimum weight vector, and �(x) 

is input variable transformed to a higher dimensional feature 
space by means of a mapping function. Solving the above 
minimization problem leads to an optimum hyperplane that 
results in the smallest possible generalization error. The 

(8)y = Wt
0
�(x) + b

Fig. 5  Schematic of the ANN method

Fig. 6  Schematic of the SVM
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formula to calculate the SVR model prediction is as follows 
(Dutta et al. 2010):

where �i, �∗
i
 are the weights corresponding to individual 

input parameters, and K(xi, x) is a user-defined kernel func-
tion. A common kernel function is the isotropic Gaussian 
RBF defined as follows (Dutta et al. 2010):

where � is the kernel bandwidth.

Ensemble learning techniques

Ensemble techniques predict the needed results with 
higher accuracy than single methods, so their use has 
become more widespread, and researchers are paying 
more attention to them. In this method, the capability of 
single model is used to enhance the performance of the 
ensemble technique. In this study, several ensemble tech-
niques were used to improve the performance of the sin-
gle models, including simple averaging ensemble (SAE), 
weighted average ensemble (WAE), and neural network 
ensemble (NNE).

The SAE method consists of training ANFIS, ANN, 
and SVM models separately, then comparing their output 
results with the measured values. The equation for SAE 
is as follows:

where N is number of learners (N = 3) and pi is output of 
single model (ANFIS, ANN, and SVM) at depth d.

Weighted averaging assigns different weights to single 
model outputs based on their relative significance. In gen-
eral, WAE is expressed in the following formula:

where wi is applied weight on output model. This parameter 
canbe determined using Eq. (13) as follows:

(9)

f(x) =

n∑

i=1

(
�i − �∗

i

)
.�(xi).�(x) + b

=

n∑

i=1

(
�i − �∗

i

)
.K(xi,x) + b

(10)K(xi,x) = e
−|xi− x|2

2�2

(11)P(d) =
1

N

∑N

i=1
pi(d)

(12)P(d) =
∑N

i=1
wipi(d)

(13)wi =
R2

i
∑N

I=1
R2

i

R2

i
 is the coefficient of determination for single models.

In the NNE method, new neural networks are trained. 
The neural ensemble model's input layer is derived from 
the outputs of the ANN, ANFIS, and SVM models. The 
training of a neural ensemble model such as single ANN 
can be achieved using the BP algorithm by considering 
tangent sigmoid as activation functions. Furthermore, the 
best epoch number and structure for the ensemble network 
can be determined through trial and error. There are many 
different non-linear kernels (e.g., ANFIS, SVM, etc.) that 
can be used in a non-linear assembly, but in this study, 
the ANN was used, since it is the most widely used AI 
method. Figure 7 illustrates the proposed neural ensemble 
method.

Evaluation criteria

The efficiency and accuracy of machine learning models are 
evaluated using several criteria. These criteria include the 
coefficient of determination (R2), Mean Absolute Percentage 
Error (MAPE), and Root Mean Square Error (RMSE), which 
examine the performance of the model as essential statistical 
criteria. Equations (14)–(16) will be used to calculate these 
parameters:

(14)R2 =

�
∑n

i=1

�
Mrm −Mrm

��
Mrp −Mrp

��2

∑n

i=1
(Mrm −Mrm

�2 ∑n

i=1
(Mrp −Mrp

�2

(15)MAPE =
1

n

n∑

i=1

(|||||

Mrm −Mrp

Mrm

|||||

)

(16)RMSE =

�∑n

i=1

�
Mrp −Mrm

�2

n

Fig. 7  Schematic of neural ensemble model
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where MrmandMrp are the measured and predicted values, 
respectively, Mrm,Mrp is the average measured and pre-
dicted values, respectively, and n is the number of samples. 
According to previous studies, systems indicate high effi-
ciency when it has a high coefficient of determination (close 
to 1) and low error value (close to zero) (Armaghani et al. 
2015; Elkatatny et al. 2019; Ranjbar-Karami et al. 2014).

Methodology

Data analysis

Artificial intelligence (AI) models are data-driven, the use 
of different data as input of AI models cannot guarantee 
high accuracy results. Therefore, having a criterion for 
reviewing the data helps to select the appropriate data as 
input data. One of these criteria is the correlation coefficient 
(CC) between input and output data (Eq. 17) (Elkatatny et al. 
2019):

where n is the sample size, x and y are the input and output 
data. In this study, CC was calculated between conventional 

(17)CC =
n
∑

xy − (
∑

x)(
∑

y)
�

n(
∑

x2) −
�∑

x
�2
.

�
n(
∑

y2) −
�∑

y
�2

well logs as inputs (DT, NPHI, and RHOB) and the elastic 
parameters as output. As is seen from Fig. 8, static Young’s 
modulus parameter has an inverse relationship with DT, 
NPHI, and also a linear relationship with RHOB. The figure 
also shows the static Poisson’s ratio is an inverse relation-
ship to all parameters. The DT shows the highest correlation 
and the NPHI shows the lowest correlation with the elastic 
parameters.

Data description

The performance of AI models depends on having high-
quality data. In this study, data related to shear wave velocity 
(Vs) were not measured, and also according to the results of 
correlation coefficient (Fig. 8) from well logs data including 
DT, RHOB, and NPHI have been used as modeling inputs. 
2790 data are used which are the result of well-logging 
data. DT range is between 45.11 and 71.78 ( μs∕f t ), NPHI 
is between 0 and 0.29 ( v∕v ) and RHOB range is between 
1.37 to 3.95 (g/cm3). Data are divided into three parts: 70% 
(1953) are used for training, 20% (559) for testing, and 10% 
(278) for validation. Table 1 lists the statistical analysis of 
the data.

Fig. 8  Relative importance of input parameters with a static value of 
YM and PR

Table 1  Statistical description 
of the data

Parameters Max Min Mean Range SD Skewness Kurtosis

DT 71.78 45.11 50.85 26.67 3.4 2.04 7.31
NPHI 0.29 0 0.05 0.29 0.04 0.67 3.43
RHOB 3.95 1.37 2.88 2.58 0.22 0.71 13.8
Static YM 54.18 0.24 38.03 53.94 4.8 − 2.99 16.38
Static PR 0.3 0.05 0.28 0.25 0.02 − 5.57 43.35

Table 2  Error values and clustering radius for estimating YM and PR

By comparing the clustering radius and errors at each steps, the bold 
numbers were selected as suitable for continuing the ANFIS mode-
ling process

TSK_FIS Ra Static Young’s 
Modulus

Static Poisson’s Ratio

No. of “if 
_then” rules

Error No. of “if 
_then” rules

Error

1 0.1 9 1.5403 10 0.0037631
2 0.15 5 0.9128 5 0.0042013
3 0.2 4 1.0252 3 0.0057225
4 0.25 2 1.3611 2 0.0053058
5 0.3 2 1.2266 2 0.0050616
6 0.35 2 1.0498 2 0.004839
7 0.4 2 0.7612 1 0.0086493
8 0.45 1 2.0268 1 0.0086493
9 0.5 1 2.0268 1 0.0086493
10 0.55 1 2.0268 1 0.0086493
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ANFIS architecture

The structure of ANFIS entails determining the number of 
input and output membership functions. The subtractive clus-
tering method has been used to determine the membership 
function. In this method, the clustering radius for 10 TSK–FIS 
was changed from 0.1 to 0.55 with 0.05 intervals to obtain the 
number of rules for ANFIS modeling. The evaluation criterion 
of the model is based on the error in testing data. Therefore, 
based on the results obtained for estimating the static value of 
YM and PR, the optimal clustering radius is 0.4 and 0.1, which 
correspond to error values of 0.76 and 0.0037, respectively. 
Accordingly, the number of membership functions generated 
for YM and PR are 2 and 10, respectively. Gaussian function 
as input and linear function as output were used and the hybrid 
algorithm was used to train the model. Table 2 shows the 
results of the clustering radius and the error obtained in each 
step. Figure 9 also shows the structure of two ANFIS models 
for estimating the static value of static elastic parameters.

ANN architecture

The main challenge of the neural network method is to deter-
mine the number of hidden layers, many people have intro-
duced different methods to determine the hidden layer. Ham 
and Kostanic (2001) explained trial and error method can 
be determined by hidden layers. In addition, many studies 
have stated that one or two hidden layers can estimate almost 
all complicated problems well (Basheer 2000; Gordan et al. 
2016; Hecht-Nielsen 1987; Hornik et al. 1989). In this study, 
one hidden layer was used to construct the ANN model. To 
determine the number of neurons in this layer in each step, 
the number of neurons was changed between 1 and 20, and 
by measuring the error in each step, the appropriate number 
of neurons in the hidden layer was selected. Based on the 
results obtained for estimating the static value of YM and 
PR, the number of neurons used to create the ANN model for 

YM and PR are 10 and 8, which correspond to error values 
of 0.309 and 2.09796e–06, respectively. Input and hidden 
layers are transferred using linear-type activation function 
and hidden and output layers by TAN-sigmoidal-type activa-
tion function. As a training algorithm, Levenberg–Marquardt 
backpropagation is used. Figure 10 illustrates the various 
steps taken by the ANN model to estimate YM and PR.

SVM architecture

In the SVM method, the input and output data are entered 
and then the calculations related to the SVM regression will 
be performed according to the kernel selection. In this case, 
there are different kernels, including linear, quadratic, cubic, 
fine Gaussian, medium Gaussian, and coarse Gaussian. SVM 
model in each step determines the RMSE error for different 
kernels and finally, the appropriate result with low RMSE 
was selected. In this study, by modeling for different kernels, 
the RMSE errors obtained are shown in Table 3. By compar-
ing the error values, in this case, it was concluded that cubic 
kernel functions have lower error values for estimating the 
YM and PR.

Fig. 9  Schematic of ANFIS for 
determining the static value of 
YM and PR

Fig. 10  Schematic of ANN for determining the static value of YM 
and PR
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Results and discussion

Single model predictions

In this study, the ability of ANFIS, ANN and SVM models 
to predict the static value of Young’s modulus and Poisson’s 

ratio has been investigated. ANFIS, ANN, and SVM mod-
els were created using three inputs DT, NPHI, RHOB, and 
two outputs YM and PR. According to the above, one of 
the criteria for evaluating the performance of models is the 
coefficient of determination (R2) between the measured and 
predicted values. Figures 11 and 12 show the results for 

Table 3  RMSE error values of 
kernels

By comparing the errors in different SVM methods, the bold values are qualified to continue SVM mod-
eling

Static Young’s Modulus Static Poisson’s Ratio

Kernel function RMSE (validation) Kernel function RMSE (validation)

Linear 2.8982 Linear 0.010078
Quadratic 3.9701 Quadratic 0.0020338
Cubic 0.6292 Cubic 0.0016779
Fine Gaussian 2.6849 Fine Gaussian 0.012871
Medium Gaussian 1.3002 Medium Gaussian 0.00678
Coarse Gaussian 1.1854 Coarse Gaussian 0.0061972

Fig. 11  Crossplot of R2 between measured and predicted static YM using ANFIS

Fig. 12  Crossplot of R2 between measured and predicted static PR using ANFIS
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Fig. 13  Crossplot of R2 between measured and predicted static YM using ANN

Fig. 14  Crossplot of R2 between measured and predicted static PR using ANN

Fig. 15  Crossplot of R2 between measured and predicted static YM using SVM
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predicting the static value of YM and PR using ANFIS for 
training, testing, and validation data. As shown in Fig. 11, 
the value of  R2 between the measured and predicted static 
YM for training, testing, and validation data are 0.968, 
0.926, and 0.907, respectively. In addition, these values 
for the static PR are 0.935, 0.851, and 0.896, respectively 
(Fig. 12).

Figures 13 and 14 show the static value of YM and 
PR predicted using the ANN model against the measured 
value for training, testing, and validation data, respec-
tively. R2 obtained to predict static YM for training, test-
ing, and validation data were 0.98, 0.958, and 0.948, 
respectively, as well as these values, are 0.958, 0.886, and 
0.910 for static PR. In addition, using the SVM method, 
the values of  R2 for the training, testing, and validation 
data are 0.946, 0.915, and 0.898 for the static YM, and 
the values of 0.927, 0.847, and 0.890 for the static PR, 
respectively, which in Figs. 15 and 16 were shown.

The efficiency of ANFIS, ANN, and SVM methods in 
predicting the static value of YM and PR, were compared 
using the parameters of coefficient of determination (R2), 

RMSE, and MAPE error value. As mentioned, the model 
has high accuracy results when the value of R2 is close to 
1 and also the error values are close to zero. In this study, 
using the results obtained for the coefficient of determina-
tion  (Figs. 11, 12, 13, 14, 15 and 16) and RMSE, MAPE 
values (Table 4), the efficiency of ANFIS, ANN, and SVM 
models are investigated, and finally the appropriate model 
for estimating the elastic parameters was selected. As shown 
in Table 4, performance indices have been derived by predic-
tive models for training, testing, and validation data. Accord-
ing to this table, ANN predictive models perform better than 
other models at predicting elastic parameters. The results 
obtained from ANFIS and SVM methods show that these 
methods can also be used in predicting elastic parameters. 
However, these approaches should be used according to the 
situation and will be used when less accuracy is required.

Ensemble model predictions

The single model has appropriate performance in modeling 
in part of the reservoir depths and weak performance in 

Fig. 16  Cross plot of R2 between measured and predicted static PR using SVM

Table 4  Performance indices of the predictive models

Predictive model R2 RMSE MAPE

Train Test Validation Train Test Validation Train Test Validation

Static YM
 ANFIS 0.968 0.926 0.907 0.993 0.692 0.933 0.0356 0.00585 0.0109
 ANN 0.979 0.959 0.948 0.763 0.511 0.693 0.00551 0.00227 0.00319
 SVM 0.946 0.916 0.898 1.267 0.758 1.044 0.0129 0.00819 0.01055

Static PR
 ANFIS 0.935 0.851 0.896 0.00654 0.00258 0.00201 0.00950 0.00351 0.00359
 ANN 0.958 0.886 0.909 0.00519 0.00218 0.00169 0.001908 0.000657 0.00102
 SVM 0.927 0.847 0.891 0.00684 0.00259 0.00189 0.00371 0.00234 0.00244
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prediction other parts; therefore, using ensemble methods, 
the results are improved compared to using single models. In 
this study, ANFIS, ANN, and SVM outputs based on NNE, 
SAE, and WAE are used to improve single model perfor-
mance. According to this method, the data same as single 
model divided into 70% for training data, 20% for testing 
data and 10% for validation data, and the results from ensem-
ble models for these data are shown in Table 5. The results 
of  R2, MAPE, and RMSE show that ensemble techniques 
perform better than single models. Integrating outputs of 
different models reduces variance, bias, and improves overall 
modeling performance. Since each single model has its own 
strengths and weaknesses, so the effectiveness of ensemble 
techniques depends on the accuracy of the single models. 

The results of SAE and WAE are very similar, because they 
are both directly affected by single models. In addition, 
WAR is better than SAE, since weights are assigned based 
on relative importance parameters, whereas these factors are 
not considered in simple averages. Compared to two ensem-
ble linear methods, the NNE performs better and predicts 
results more accurately due to its robustness in dealing with 
non-linear interactions and its ability to back propagate the 
generated error during the calibration phase to achieve the 
desired result. By contrast, two linear ensemble techniques 
are directly affected by single models, and weakness in one 
of them leads to weakness in the whole system, so apply-
ing the NNE method provides a higher level of accuracy. 
As shown in Figs. 17 and 18, the error values for the static 

Table 5  Results of ensemble techniques

Predictive model R2 RMSE MAPE

Train Test Validation Train Test Validation Train Test Validation

Static YM
 NNE 0.998 0.977 0.955 0.585 0.215 0.540 0.00418 0.00144 0.00139
 SAE 0.976 0.950 0.937 0.625 0.366 0.557 0.00450 0.00221 0.00220
 WAE 0.982 0.963 0.948 0.651 0.392 0.557 0.00450 0.00211 0.00208

Static PR
 NNE 0.993 0.902 0.927 0.00293 0.00116 0.00131 0.00108 0.000493 0.00128
 SAE 0.977 0.878 0.926 0.00463 0.00153 0.00164 0.00109 0.000551 0.00193
 WAE 0.975 0.896 0.930 0.00450 0.00154 0.00157 0.00111 0.000560 0.00184

Fig. 17  Comparison of the 
RMSE values of single and 
ensemble predictive models

Fig. 18  Comparison of the 
MAPE values of single and 
ensemble predictive models
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value of YM and PR are calculated between the measured 
and predicted values. These values can be used to compare 
the performance between single and ensemble models. In 
addition, Fig. 19 shows the outputs obtained between the 
measured and predicted data for ANN and NNE models at 
depths between 2650 and 2820 for one of the gas wells in 
southern Iran.

Conclusion

ANFIS, ANN, SVM machine learning methods were used 
to predict the static elastic parameters based on the data 
of one of the gas fields in southern Iran. DT, NPHI, and 
RHOB well-logging data were used as input to create 
three models for prediction of static elastic. The created 
models were evaluated comparing the values of R2, the 
RMSE, and MAPE errors for the training, testing, and 
validation data of all the predictive models. Input data, 
including DT, RHOB, and NPHI logs could predict the 
results with high accuracy. The results for Young’s mod-
ulus and Poisson’s ratio showed that the coefficient of 
determination of the ANN method for training data was 

0.979 and 0.958, respectively. The error values for this 
data were 0.0055 and 0.0019 for MAPE and 0.763 and 
0.0051 for RMSE, respectively. According to these results 
and comparison with ANFIS and SVM methods, ANN 
had high accuracy in determining static elastic param-
eters. In addition, it can be concluded that these methods 
have high performance in predicting elastic parameters 
by considering the coefficient of determination of 0.968 
and 0.935 for the ANFIS method and the values of 0.946 
and 0.927 for the SVM method for static YM and static 
PR, respectively. The ANN method was more accurate 
than the other two methods and provided more accurate 
predictions. Finally, ensemble models, including simple 
averaging ensembles (SAE), weighted averaging ensem-
bles (WAE), and neural network ensembles (NNE), have 
been developed to improve single models. The RMSE, 
MAPE, and R2 results indicate ensemble models produce 
better results than single models. The results of SAE 
and WAE are very similar, since they are both directly 
affected by single models; however, WAE slightly out-
performed SAE. In addition, NNE results showed that 
this method was more reliable, robust, and accurate than 
both linear methods.

Fig. 19  Comparison of elastic parameters measured and predicted based on depth for single and ensemble models
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